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nonsingularity property (UNS-property for short) of a (linear) transformation on a Euclidean
Jordan algebra as a generalization of this P-matrix property. The motivation for our paper
comes from the question whether the UNS-property is inherited by subtransformations and
Schur complements. To elaborate, consider two finite dimensional real Hilbert spaces V1

and V2 with corresponding proper cones K1 and K2; in particular, these could be Euclidean
Jordan algebras with their symmetric cones. Given a linear transformation L on the product
space V1 × V2, we write L in the block form similar to the matrix case (given above),
where the blocks are now linear transformations. With A invertible, we define the Schur
complement L/A as in the matrix case. The question raised in this paper is the following:
What complementarity properties of L are inherited by A and L/A? In particular, is the
UNS-property one such property when both V1 and V2 are Euclidean Jordan algebras? We
answer these by proving the inheritance of various generalizations of the P-property, namely,
the Cartesian P-property [6], [1], GUS-property [10], and the UNS-property [3]. Some of
these results are proved via the so-called principal pivotal transform of L defined as in the
matrix case.

The framework of the product spaces appears in various instances particularly in con-
nection with complementarity problems on product symmetric cones [1], [12], [17]. Here is
an example from conic optimization. Assume K1 ⊆ Rn and K2 ⊆ Rm are proper cones and
consider the quadratic problem

minimize 1
2x

TQx+ ⟨c, x⟩
subject to Ax ≥

K2

b

x ≥
K1

0

where Q ∈ Rn×n is a symmetric matrix, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Here, z ≥
K

0

means that z ∈ K. Under certain constraint qualifications, if x is a solution of the above
problem, then there exists y ∈ K2 (see [5], [6]) such that[

Q −AT

A 0

] [
x
y

]
+

[
c

−b

]
=

[
u
v

]
with [

x
y

]
∈ K1 ×K2,

[
u
v

]
∈ K∗

1 ×K∗
2 , and

[
x
y

]
⊥

[
u
v

]
.

The linear transformation L =

[
Q −AT

A 0

]
acts on the cone K1×K2. In case of invertible

matrix Q, L/Q = AQ−1AT .
The organization of the paper is as follows. In the next section, we cover some basic

material including the definitions of Schur complement, principal pivotal transform, and all
LCP concepts. In Section 3, we consider some complementarity properties that are invariant
under principal pivotal transforms. Section 4 deals with the subtransformation inheritance
properties, and finally in Section 5, we deal with those complementarity properties that are
inherited by Schur complements.

2 Preliminaries

Let (V, ⟨·, ·⟩) be a finite dimensional real Hilbert space and K denote a proper convex cone,
i.e., K is a closed convex pointed cone with a nonempty interior. We use the notation
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x ≥ 0 (x > 0) when x ∈ K (respectively, x ∈ K◦, the interior of K). Also, K∗ denotes the
dual cone of K given by K∗ := {x ∈ V : ⟨x, y⟩ ≥ 0 for all y ∈ K}.

Specializing, we (also) let (V, ◦, ⟨·, ·⟩) denote a Euclidean Jordan algebra of rank r and
K := {x2 : x ∈ V } be its symmetric cone of squares [7], [10]. It is well known that
any Euclidean Jordan algebra is a product of simple Euclidean Jordan algebras and ev-
ery simple algebra is isomorphic to the Jordan spin algebra Ln or to the algebra of all
n × n real/complex/quaternion Hermitian matrices, or to the algebra of all 3 × 3 octo-
nion Hermitian matrices. Given any a ∈ V , we let La denote the corresponding Lyapunov
transformation on V :

La(x) := a ◦ x.

We say that objects a and b in V operator commute if LaLb = LbLa. It is known that
a and b operator commute if and only if they have their spectral decompositions with
respect to a common Jordan frame. One sufficient condition for operator commutativity is:
0 ≤ a ⊥ b ≥ 0, see [10], Proposition 6.

2.1 Linear Transformations on Product Spaces

In what follows, we will focus on linear transformations defined on a product of two finite
dimensional real Hilbert spaces, and in particular, on the product of two Euclidean Jor-
dan algebras. Let V = V1 × V2 be the product of two such spaces and consider a linear
transformation L : V → V . Then, L can be uniquely presented in a block form as

L =

[
A B
C D

]
, (2.1)

where entries of this “matrix” are linear operators acting in the following way:

A : V1 → V1, B : V2 → V1, C : V1 → V2, and D : V2 → V2. (2.2)

When A is invertible, we define the Schur complement of A in L by

L/A := D − CA−1B (2.3)

and the principal pivotal transform of L with respect to A by

L♢ =

[
A−1 −A−1B
CA−1 L/A

]
. (2.4)

Note that[
y1
y2

]
= L♢

[
x1

x2

]
+

[
q1
q2

]
⇐⇒

[
x1

y2

]
= L

[
y1
x2

]
+

[
−Aq1

q2 − Cq1

]
. (2.5)

In case when L and L/A are invertible, we obtain the known formula [13]:

L−1 =

[
A−1 +A−1B(L/A)−1CA−1 −A−1B(L/A)−1

−(L/A)−1CA−1 (L/A)−1

]
. (2.6)

More information on principal pivotal transformations and a historical account can be found
in [16].

We assume that each of the spaces Vi (i = 1, 2) is equipped with a proper cone Ki. This
way, we have a natural proper (product) cone K = K1 × K2 in V . Thus, the ordering in
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V by the cone K is determined by the ordering of factor spaces Vi by the cones Ki, in the
sense that [

x
y

]
≥
K

[
0
0

]
if and only if x ≥

K1

0 and y ≥
K2

0 .

When the context is clear, we will drop the explicit mentioning of the cone.

2.2 LCP Concepts

For a linear transformation L : V → V and a vector q ∈ V , the linear complementarity
problem LCP(L,K, q) is to find a vector x ∈ K such that y := L(x)+ q ∈ K∗ and ⟨x, y⟩ = 0.

Given the space V = V1×V2 and the cone K = K1×K2, for a linear transformation L :
V → V of the form (2.1) and a vector [q1, q2]

T (which is the column vector with components
q1 ∈ V1 and q2 ∈ V2), the linear complementarity problem LCP(L,K1 ×K2, [q1, q2]

T ) is to
find a vector [x1, x2]

T ∈ V such that

0 ≤
K1×K2

[
x1

x2

]
⊥

[
y1
y2

]
≥

K∗
1×K∗

2

0 , (2.7)

where [
y1
y2

]
= L

[
x1

x2

]
+

[
q1
q2

]
.

The solution set of LCP(L,K, q) is denoted by SOL(L,K, q), or (when L and K are fixed
and the context is clear) by SOL(q).

We remark that the complementarity problems of L and L♢ are defined on different cones,
namely, L on K1×K2 and L♢ on K∗

1×K2. While dealing with L and the corresponding cone
K1 ×K2, we abbreviate SOL(L,K1 ×K2, q) by SOL(L, q). Correspondingly, while dealing
with L♢ and the related cone K∗

1 ×K2, we abbreviate SOL(L♢,K∗
1 ×K2, p) by SOL(L♢, p).

Given a proper cone K in V , we say that a linear transformation L on V has the

(i) Q-property if for all q ∈ V , LCP(L,K, q) has a solution;

(ii) GUS-property if for all q ∈ V , LCP(L,K, q) has a unique solution;

(iii) Lipschitzian property if for all p, q ∈ V , such that SOL(p) ̸= ∅ and SOL(q) ̸= ∅, it
holds that

SOL(p) ⊆ SOL(q) + c∥p− q∥B,
where B is the unit ball in V and c > 0 is a constant independent of p and q;

(iv) strict monotonicity property if ⟨L(x), x⟩ > 0 for all x ̸= 0;

(v) Cartesian P-property if V = E1 × E2 × · · · × El and

max
1≤i≤l

⟨Li(x), xi⟩ > 0 ∀x ̸= 0,

where Li(x) := (L(x))i for all i.

Now suppose that V is a Euclidean Jordan algebra and K denotes its symmetric cone. We
say that a linear transformation L defined on V has the

(a) cross-commutative property if for any q ∈ V and any two solutions x1 and x2 of
LCP(L,K, q), x1 operator commutes with y2 and x2 operator commutes with y1,
where yi = L(xi) + q (i = 1, 2).
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(b) P-property if x and L(x) operator commute and x ◦ L(x) ≤ 0 ⇒ x = 0;

(c) Uniform nonsingularity property (UNS) if there exists ∆ > 0 such that for any Jordan
frame {e1, e2, . . . , er} in V , any x ∈ V with its Peirce decomposition x =

∑
i≤j xij

(with respect to the given Jordan frame), and any r×r nonnegative, symmetric matrix
D = [dij ],

∥L(x) +
∑
i≤j

dijxij∥ ≥ ∆∥x∥. (2.8)

The UNS-property was introduced in [2], see also [6], [1], and [3], where the following
implications were proved:

strict monotonicity ⇒ Cartesian P ⇒ UNS ⇒ GUS.

We use the notation L ∈ T(K) or L ∈ T to say that L has the T-property with respect to
K.

Proposition 2.1 ([10], [11]). We have:

(a) strict monotonicity ⇒ Lipschitz ∩GUS ⇒ GUS ⇒ Q,
(b) In the context of a Euclidean Jordan algebra, GUS ⇔ cross-commutative ∩P, P ⇒ Q.

3 Invariance Under Principal Pivotal Transformations

It is easy to see from classical matrix theory results that (strict) monotonicity is inherited
by principal pivotal transforms, principal subtransformations, and Schur complements. In
this section, we show that many of the complementarity properties are similarly inherited
by principal pivotal transforms.

Theorem 3.1. When T∈{Q, GUS, Cartesian P, Lipschitzian, P, cross-commutative}
and A is invertible, L has the T-property if and only if L♢ has the T-property.

Proof. Since (L♢)♢ = L, it is enough to show that L ∈ T ⇒ L♢ ∈ T.
(1) Let T ∈ {Q,GUS}. Given [q1, q2]

T ∈ V , we have from (2.5),[
x1

x2

]
∈ SOL

(
L♢,K∗

1 ×K2,

[
q1
q2

])
⇐⇒

[
y1
x2

]
∈ SOL

(
L,K1 ×K2,

[
−Aq1

q2 − Cq1

])
,

(3.1)
where [

y1
y2

]
= L♢

[
x1

x2

]
+

[
q1
q2

]
.

We easily verify that if T has either the Q or GUS property, then L♢ will also have the
same property.

(2) Let T = Cartesian P. For 1 ≤ m < l, we write V = E1×· · ·×El, with V1 = E1×· · ·×Em

and V2 = Em+1 × · · · × El. Let

0 ̸=
[

x
y

]
∈ V1 × V2 and L

[
x
y

]
=

[
u
v

]
.

We know that max
1≤i≤m

⟨ui, xi⟩ > 0 or max
m+1≤j≤l

⟨vj , yj⟩ > 0. Since L♢[u, y]T = [x, v]T , L♢ has

the
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Cartesian P-property on V = E1 × · · · × Em × Em+1 × · · · × El.

(3) Let T = Lipschitzian. Fix p = [p1, p2]
T and q = [q1, q2]

T with SOL(L♢, p) and
SOL(L♢, q) nonempty. Let[

u1

u2

]
∈ SOL(L♢, p) and L♢

[
u1

u2

]
+

[
p1
p2

]
=

[
x1

x2

]
.

Then by (3.1), [
x1

u2

]
∈ SOL

(
L,

[
−Ap1

p2 − Cp1

])
.

From the Lipschitzian property of L, there exists a constant c and[
x̄1

ū2

]
∈ SOL

(
L,

[
−Aq1

q2 − Cq1

])
such that ∥∥∥∥[ x1

u2

]
−
[

x̄1

ū2

]∥∥∥∥ ≤ c

∥∥∥∥[ −Ap1
p2 − Cp1

]
−
[

−Aq1
q2 − Cq1

]∥∥∥∥ ≤ c̄∥p− q∥,

where c depends on c and L.

Hence, ∥x1 − x̄1∥ ≤ c̄∥p− q∥ and ∥u2 − ū2∥ ≤ c̄∥p− q∥. By letting[
ū1

x̄2

]
= L

[
x̄1

ū2

]
+

[
−Aq1

q2 − Cq1

]
,

and using (2.5) and (3.1), we have

L♢
[

ū1

ū2

]
+

[
q1
q2

]
=

[
x̄1

x̄2

]
, and

[
ū1

ū2

]
∈ SOL(L♢, q).

Now,∥∥∥∥[ u1

u2

]
−
[

ū1

ū2

]∥∥∥∥ =

∥∥∥∥[ A(x1 − x̄1) +B(u2 − ū2) +A(q1 − p1)
u2 − ū2

]∥∥∥∥ ≤ c′ ∥q − p∥,

where c′ is a positive constant, that depends on c and the blocks of L.

In the rest of the proof, we deal with Euclidean Jordan algebras.

(4) Let T = P. Let x = [x1, x2]
T and L♢(x) = y = [y1, y2]

T operator commute and
x ◦ y ≤ 0. Then xi and yi operator commute for i = 1, 2. Thus, using (2.5) with q = 0,
[x1, y2]

T = L[y1, x2]
T operator commutes with [y1, x2]

T . Since L ∈ P, it follows that x = 0,
proving the P-property of L♢.

(5) Let T = cross-commutative. Fix any [q1, q2]
T ∈ V .

Suppose that [x1, x2]
T and [u1, u2]

T are two solutions to LCP
(
L♢, [q1, q2]T

)
, and let[

y1
y2

]
= L♢

[
x1

x2

]
+

[
q1
q2

]
and

[
v1
v2

]
= L♢

[
u1

u2

]
+

[
q1
q2

]
.
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Now, using (3.1), we obtain[
y1
x2

]
∈ SOL

(
L,

[
−Aq1

q2 − Cq1

])
and

[
v1
u2

]
∈ SOL

(
L,

[
−Aq1

q2 − Cq1

])
,

which together with (2.5) and the cross-commutative property of L imply that

⟨u1, y1⟩ = 0, ⟨v2, x2⟩ = 0, ⟨x1, v1⟩ = 0, ⟨y2, u2⟩ = 0.

From [10], Proposition 6, these give the operator commutativity of various vectors and leads
to the verification of the cross-commutative property of L♢.

4 Inheritance of Complementarity Properties by Principal Sub-
transformations

A property T is called a principal subtransformation inheritance property, if for any linear
transformation L given by (2.1), we have L ∈ T ⇒ A ∈ T and D ∈ T.

Theorem 4.1. On a proper cone K1 ×K2, GUS and Cartesian P are principal subtrans-
formation inheritance properties.

Proof. (1) Let T = GUS. For any q ∈ V1, suppose that LCP(A, q) has two solutions x1

and x2.
Now, since K2 is proper, we can choose p ∈ V2 such that p + Cx1 ≥ 0 and p + Cx2 ≥ 0.
Then

L

[
xi

0

]
+

[
q
p

]
=

[
Axi + q
Cxi + p

]
≥ 0

for i = 1, 2. Hence, [x1, 0]
T and [x2, 0]

T are solutions of LCP
(
L, [q, p]T

)
. Since L ∈ GUS,

x1 = x2. Thus, A ∈ GUS.

(2) Let T = Cartesian P. We assume that V = E1 × · · · × El and max1≤i≤l⟨Li(x), xi⟩ > 0
∀x ̸= 0. For 1 ≤ m < l, let V1 = E1 × · · · × Em and V2 = Em+1 × · · · × El. We will show
that A defined on V1 has the Cartesian P-property.

Let u ̸= 0 in V1 and x := [u, 0]T ̸= 0 in V . Since L ∈ Cartesian P, there is an index
i ∈ {1, 2, . . . , l} such that

⟨Li(x), xi⟩ > 0.

As this index must be in {1, 2, . . . ,m}, we see that ⟨Ai(u), ui⟩ > 0. This completes the
proof.

Similarly, we can show that D ∈ T. �

In the above result we showed that L ∈ GUS implies A,D ∈ GUS. While the converse
is not true in general, see the example given in the next section, the converse does hold when

C = 0. To see this, let L =

[
A B
0 D

]
with A,D ∈ GUS. We verify the GUS-property for

L. Let [p, q]T ∈ V1×V2 be any element and, for i = 1, 2, [xi, yi]
T ∈ SOL

(
L,K1 ×K2, [p, q]

T
)
.

Thus, we get[
xi

yi

]
∈ K1 ×K2,

[
ui

vi

]
:= L

[
xi

yi

]
+

[
p
q

]
∈ K∗

1 ×K∗
2 , and

[
xi

yi

]
⊥

[
ui

vi

]
. (4.1)
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From the second item in (4.1), we get

Axi +Byi + p = ui

Dyi + q = vi.

As yi ∈ K2, vi = Dyi + q ∈ K∗
2 , and yi ⊥ vi, we see that y1, y2 ∈ SOL(D,K2, q). Hence,

y1 = y2, as D ∈ GUS. Now, we put ȳ := y1 = y2. Then for i = 1, 2,

Axi + (Bȳ + p) = ui ∈ K∗
1 , and xi ⊥ ui,

so x1, x2 ∈ SOL(A,K1, Bȳ+ p). As A ∈ GUS, x1 = x2. Finally, [x1, y1]
T = [x2, y2]

T ; hence
L ∈ GUS.

Theorem 4.2. On a symmetric cone of the form K1 × K2, P, cross-commutative, and
UNS properties are inherited by principal subtransformations.

Proof. (a) Let T = P: Suppose that Ax1 and x1 operator commute and x1 ◦Ax1 ≤ 0. Then

L

[
x1

0

]
◦
[

x1

0

]
=

[
x1 ◦Ax1

0

]
≤ 0.

Since L ∈ P, and [Ax1, Cx1]
T and [x1, 0]

T operator commute, we must have x1 = 0.
(b) Let T = Cross-commutative: For any q ∈ V1, suppose that LCP(A, q) has two solutions
x1 and x2. Put y1 := Ax1 + q and y2 := Ax2 + q. Now choose p ∈ V2 such that Cx1 + p ≥ 0
and Cx2 + p ≥ 0, so that for i = 1, 2,

L

[
xi

0

]
+

[
q
p

]
=

[
Axi + q
Cxi + p

]
=

[
yi

Cxi + p

]
≥ 0.

Thus, [x1, 0]
T and [x2, 0]

T are solutions of LCP
(
[q, p]T

)
. Since L has the cross-commutative

property, for i = 1, 2, [xi, 0]
T operator commutes with [y3−i, Cx3−i + p]T , which implies the

operator commutativity of x1 and y2, and of x2 and y1. This shows the cross-commutative
property for A.

(c) Let T = UNS. It follows from Theorem 3.1 in [14] that every principal subtransforma-
tion of L has the UNS-property. Since A can be treated as a principal subtransformation
of L (see [14] for definition and details on principal subtransformations) we get our claim.
See the proof of Theorem 5.1 below for an alternate proof.

Remarks. The following example shows that the Lipschitzian property is not inherited by

principal subtransformations. Let M =

[
0 −1

−1 −1

]
, K1 = R+, K2 = R+. Then the set of

all q’s, for which LCP(M,R2
+, q) is solvable, is R2

+. Moreover, for q =

[
α
β

]
,

SOL(q) =



[
0
0

]
if β = 0,{[

0
0

]
,

[
0
β

]}
if α > β > 0,{[

0
0

]
,

[
β − α
α

]}
if β ≥ α > 0,{[

x
0

]
, 0 ≤ x ≤ β

}
if α = 0 .
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One easily checks, using the 1-norm, that M is a Lipschitzian transformation with c = 2
(for the Euclidean norm, we may put c = 2

√
2). Consider now N = [0], a linear sub-

transformation of M . We have SOL(N,R+, 0) = R+, while SOL(N,R+, 1) = {0}. Ob-
serve that the set of all q’s for which SOL(N,R+, q) ̸= ∅ is R+. Clearly the inclusion
SOL(N,R+, 0) ⊆ SOL(N,R+, 1) + c|1 − 0|B cannot hold as the right-hand side set is
bounded, while SOL(N,R+, 0) is unbounded. This contradiction shows that N is not Lips-
chitzian.

5 Inheritance of Complementarity Properties by Schur Comple-
ments

The Schur complement L/A of a block linear transformation L is intimately related to its
principal pivot transformation L♢. In this section, we study the preservation of certain
complementarity properties by Schur complements.

Theorem 5.1. Let T∈{GUS, Cartesian P, cross-commutative, P, UNS}. If L has the
T-property and A is invertible, then L/A has the T-property.

Proof. (1) Suppose that L ∈ GUS. Then L♢ ∈ GUS by Theorem 3.1. Hence, L/A ∈ GUS
follows from Theorem 4.1.

(2) Suppose that L ∈ Cartesian P on V = E1 × · · · × El. Again, for 1 ≤ m < l, let
V1 = E1 × · · · × Em and V2 = Em+1 × · · · × El. We claim that L/A has the Cartesian
P-property on Em+1 × · · · ×El. Observe that the Cartesian P-property of L implies that L
is invertible and L−1 ∈ Cartesian P. By (2.6),

L−1 =

[
∗ ∗
∗ (L/A)−1

]
.

As L−1 ∈ Cartesian P, by Theorem 4.1, (L/A)−1 ∈ Cartesian P, hence L/A ∈ Cartesian P
on Em+1 × · · · × El. This implies that L/A has the Cartesian P-property.

In the rest of the proof, we deal with Euclidean Jordan algebras.

(3) If L has the cross-commutativity property, then by Theorem 3.1, L♢ has the cross-
commutativity property. By Theorem 4.2, L/A has the cross-commutativity property.

(4) Suppose that L ∈ P. Then L♢ ∈ P by Theorem 3.1. Hence, L/A ∈ P by Theorem 4.2.

(5) Let L have the UNS-property on V1 × V2. Let {e1, e2, . . . , er} be a Jordan frame in V1

and {f1, f2, . . . , fs} be a Jordan frame in V2. Then{[
e1
0

]
,

[
e1
0

]
, . . . ,

[
er
0

]
,

[
0
f1

]
,

[
0
f2

]
, . . . ,

[
0
fs

]}
is a Jordan frame in V1 × V2. For u ∈ V1 and v ∈ V2, write their Peirce decompositions
u =

∑
uij and v =

∑
vij . Since L has the UNS-property,∥∥∥∥[ Au+Bv +

∑
αijuij

Cu+Dv +
∑

βijvij

]∥∥∥∥ ≥ ∆

∥∥∥∥[ u
v

]∥∥∥∥ ∀αij , βij ≥ 0. (5.1)

In (5.1), we let u = −A−1Bv and αij = 0 for all i, j. Then

||(D − CA−1B)v +
∑

βijvij || ≥ ∆

∥∥∥∥[ u
v

]∥∥∥∥ ≥ ∆||v||.
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So L/A has the UNS-property.

As a by-product of the proof given in part (5) above, we can show that the subtransfor-
mation A of an UNS transformation L also has the UNS-property. Here is the argument:
In (5.1), we fix u =

∑
uij and let w := −Cu =

∑
wij , βij := k (natural number) for all i, j,

and v := 1
kw. Then (5.1) becomes∥∥∥∥[ Au+ 1

kBw +
∑

αijuij

Cu+ 1
kDw + w

]∥∥∥∥ ≥ ∆

∥∥∥∥[ u
1
kw

]∥∥∥∥ ∀ k = 1, 2, . . . .

Letting k → ∞ and using Cu+ w = 0, we get ||Au+
∑

αijuij || ≥ ∆||u||. Thus, A has the
UNS-property.

The example given below shows that the converse relations in the above theorem need
not hold.

Example. Consider on R2,

L =

[
1 2

−2 −3

]
.

Here, A = [1] ∈ P and L/A ∈ P, but L /∈ P. For symmetric matrices, however, the
conditions A ∈ P and L/A ∈ P imply L ∈ P (see [9]).

Remarks. In this paper, we considered some complementarity properties that are gen-
eralizations of the P-property of a matrix. Another such property is the so-called Jordan
P-property, defined on a Euclidean Jordan algebra by the implication x◦L(x) ≤ 0 ⇒ x = 0,
see [10]. That this property is inherited by principal pivotal transformations, principal sub-
transformations, and Schur complements can be easily seen by modifying the proofs given
for the P-property. Below, we consider several complementarity properties and investigate
whether they remain the same under principal pivotal transformations and are inherited by
principal subtransformations and Schur complements. We follow the notation of Section 2.2.

(1) We say that L has the R0-property on K if SOL(L,K, 0) = {0}. When K = K1×K2,
it follows from (3.1) that the R0-property is inherited by principal pivotal transforms.
However, the R0-property need not be inherited by principal subtransformations and
Schur complements. To see this, consider the following two examples in the setting of
K = R+ ×R+: [

0 1
−1 1

]
and

[
1 1
1 1

]
.

Clearly, the first matrix has the R0-property on R2
+, but has a principal submatrix

which is not R0; the second matrix also has the R0-property on R2
+, but has zero

Schur complement.

(2) We say that L has the R-property on K if it has the R0-property and there is a d ∈
(K∗)◦ such that SOL(L,K, d) = {0}. The following example shows that this property
need not be inherited by principal pivotal transforms, principal subtransformations,
and Schur complements. Let

L =

[
−1 2
−2 2

]
and L⋄ =

[
−1 2
2 −2

]
.
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It can be easily shown that on R2
+, L has the R-property with respect to d = [1 1]T .

However, the principal submatrix [−1] and its Schur complement, namely, [−2] do
not have the R-property with respect to any p > 0 in R. In addition, for any d =
[p q]T > 0 in R2

+, [p 0]T is a nonzero solution of LCP(L⋄, R2
+, d) implying that L⋄

does not have the R-property. We remark that the construction of L⋄ was inspired by
Theorem 6.6.4, [5] on the so-called N-matrices.

(3) We say that L has the S-property on K if there exists a d ∈ K◦ with L(d) ∈ K◦. Now
suppose that K = K1 ×K2 with K∗

1 = K1. (Note that this condition holds when K
is a symmetric cone, or, more generally, a self-dual cone.) In this setting, if L has the
S-property on K1 × K2, then also L⋄ has the S-property on K1 × K2. This follows
from (2.5) with q1 = 0, q2 = 0, x1, y1 ∈ (K1)

◦ and x2, y2 ∈ (K2)
◦.

It is easy to see that even in the standard LCP case, the S-property is not inherited
by principal subtransformations and Schur complements. For example, consider the
following two S-matrices on R2

+:[
0 1
1 1

]
and

[
1 1
1 1

]
.

In the first matrix, the S-property is not inherited by the principal submatrix [0].
In the second matrix, the Schur complement of [1], namely, [0], does not have the
S-property.

(4) The transformation L is said to be copositive on K if ⟨L(x), x⟩ ≥ 0 for all x ∈ K. It is
easy to see that this property is inherited by principal subtransformations. However,
the following example shows that even in the standard LCP setting, principal pivotal
transforms and Schur complements do not inherit the copositivity property. Let

L =

[
1 1
1 0

]
and L⋄ =

[
1 −1
1 −1

]
.

Clearly, L is copositive on R2
+, but L

⋄ and the Schur complement of [1] are not copos-
itive.

6 Inheritance of the UNS-Property in Simple Euclidean Jordan
Algebras

In the previous sections, we dealt with the inheritance of some complementarity properties
of linear transformations defined over product spaces/algebras. What happens in the case
of a simple Euclidean Jordan algebra? Since it is known that P and GUS properties are
not inherited by principal subtransformations in simple algebras, see [8], we consider only
the UNS property. Let V be any simple Euclidean Jordan algebra of rank r. Given any
idempotent c in V with 0 ̸= c ̸= e, where e is the unit element in V , we consider the
subalgebras

V1 := {x ∈ V : x ◦ c = x} and V0 = {x ∈ V : x ◦ c = 0}.
We also let

V 1
2
:=

{
x ∈ V : x ◦ c = 1

2
x
}
.

Then the following (orthogonal) Peirce decomposition holds [7]:

V = V1 + V0 + V 1
2
.
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Now, given any linear transformation L on V , using the above decomposition, we write L
in the block form

L =

 A B C
D E F
G H J

 , (6.1)

where the blocks are linear transformations acting on appropriate spaces.

Theorem 6.1. Suppose that L has the UNS-property on V . Given any idempotent c with
0 ̸= c ̸= e, consider the block decomposition of L given by (6.1). Then the transformation[

A B
D E

]
: V1 × V0 → V1 × V0

also has the UNS-property. Consequently, A has the UNS-property on V1 and the E −
DA−1B has the UNS-property on V0.

Proof. Let {e1, e2, . . . , ek} be a Jordan frame in V1 and {fk+1, fk+2, . . . , fr} be a Jordan
frame in V0, so that {e1, e2, . . . , ek, fk+1, . . . , fr} is a Jordan frame in V , e1+e2+ · · ·+ek = c
and fk+1 + fk+2 + · · ·+ fr = e− c. From the UNS-property of L, we may write

||L(z) +
∑
i≤j

dijzij || ≥ ∆||z||,

for all z ∈ V and dij ≥ 0, where
∑

i≤j zij is the Peirce decomposition of z ∈ V with respect
to {e1, e2, . . . , ek, fk+1, . . . , fr}.
Now, we fix u ∈ V1 with its Peirce decomposition

∑
1≤i≤j≤k uij relative to {e1, e2, . . . , ek}

and v ∈ V0 with its Peirce decomposition
∑

k+1≤i≤j≤r vij relative to {fk+1, fk+2, . . . , fr}.
Assume also αij ≥ 0, βij ≥ 0 for all i, j. Let w := −Gu − Hv ∈ V 1

2
and γij = k, for

all i, j with k an arbitrary natural number. Note that we have w′ = 1
kw ∈ V 1

2
. Now,∑

uij +
∑

vij +
∑

wij and
∑

uij +
∑

vij +
∑

1
kwij are, respectively, Peirce decompositions

of u+ v+w and u+ v+w′ in V with respect to {e1, e2, . . . , ek, fk+1, . . . , fr}. Now we have
the inequality∥∥∥L(u+ v + w′) +

∑
αijuij +

∑
βijvij +

∑
k
wij

k

∥∥∥ ≥ ∆
∥∥∥u+ v +

1

k
w
∥∥∥,

for all αij ≥ 0, βij ≥ 0, i, j, and k = 1, 2, . . .. Rewriting this in the “matrix” form, we get∥∥∥∥∥∥
 Au+

∑
αijuij +Bv + 1

kCw
Du+ Ev +

∑
βijvij +

1
kFw

Gu+Hv + 1
kJw + w

∥∥∥∥∥∥ ≥ ∆

∥∥∥∥∥∥
 u

v
1
kw

∥∥∥∥∥∥ .
Letting k → ∞ and using w = −Gu−Hv, we get∥∥∥∥[ Au+

∑
αijuij +Bv

Du+ Ev +
∑

βijvij

]∥∥∥∥ ≥ ∆

∥∥∥∥[ u
v

]∥∥∥∥ .
This gives the stated assertion about the specified principal subblock of L and, in particular,
via Theorem 5.1, gives the UNS-property of A and E − DA−1B. This completes the
proof.
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Remarks. Suppose that the conditions of the above theorem are in place and let

M =

[
A B
D E

]
.

Then, as in the proof of Theorem 5.1, one can show that the Schur complement of M in L
has the following property:

||(L/M)w +
∑

γijwij || ≥ ∆||w|| ∀w =
∑

wij ∈ V 1
2
, γij ≥ 0,

so, L/M has some sort of the UNS-property on V 1
2
.

Concluding remarks and open problems. In this paper, we have described some com-
plementarity properties of linear transformations on product (symmetric) cones that are
inherited by principal pivotal transforms, principal subtransformations, and Schur comple-
ments. We end this paper with a short list of open problems: Suppose that L has the
UNS-property.

• Does L−1 have the UNS-property?

• Does L♢ have the UNS-property?

• Should L have the Lipschitzian property?
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