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(2) ϕ(u, Tx) ≤ ϕ(u, x), ∀u ∈ F (T ), x ∈ C;
(3) F̂ (T ) = F (T ).

In this paper, we also denote the set of real numbers and the set of positive integers by R
and N, respectively. Let f : C ×C → R be a bifunction. Consider the following equilibrium
problem: Find p ∈ C such that

f(p, y) ≥ 0, ∀y ∈ C. (1.1)

For solving the equilibrium problem, let us assume that f : C×C → R satisfies the following
conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each y ∈ C, the function x 7−→ f(x, y) is upper semicontinuous;
(A4) for each x ∈ C, the function y 7−→ f(x, y) is convex and lower semicontinuous.
The set of solutions of problem (1.1) is denoted by EP (f).

Recently, Takahashi and Zembayashi [19] proved the following strong convergence theorem
for relatively nonexpansive mappings in a Banach space.

Theorem 1.1. Let E be a uniformly smooth and strictly convex Banach space. Let f be a
bifunction from C × C to R satisfying (A1)-(A4) and T a relatively nonexpansive mapping
from C into itself such that F (T ) ∩ EP (f) ̸= Ø. Let {xn} be a sequence generated by

x0 = x ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTxn),
un ∈ C such that f(un, y) +

1
rn
⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Hn = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
Wn = {z ∈ C : ⟨xn − z, Jx− Jxn⟩ ≥ 0},
xn+1 = ΠHn∩Wnx

for every n ∈ N∪{0}, where J is the normalized duality mapping on E, {αn} ⊂ [0, 1] satisfies
lim infn→∞ αn(1−αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly
to ΠF (T )∩EP (f)x, where ΠF (T )∩EP (f) is the generalized projection of E onto F (T )∩EP (f).

Let g : E → R be a convex function. Then the directional derivative d+g(x)(y) of g at
x ∈ E with the direction y ∈ E is defined by

d+g(x)(y) = lim
t↓0

g(x+ ty)− g(x)

t
. (1.2)

The function g is said to be Gâteaux differentiable at x if limt→0
g(x+ty)−g(x)

t exists for any
y ∈ E (see, for example, [2, p. 12] or [7, p. 508]). In this case, we denote d+g(x) by ∇g(x).
The function g : E → R is said to be Gâteaux differentiable if it is Gâteaux differentiable
everywhere. If g : E → R is a Gâteaux differentiable function, then the Bregman distance
[1, 3] corresponding to g is the function D : E × E → R defined by

D(x, y) = g(x)− g(y)− ⟨x− y,∇g(y)⟩, ∀x, y ∈ E. (1.3)

It is clear that D(x, y) ≥ 0 for all x, y ∈ E. In the case when E is a smooth Banach space,
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setting g(x) = ∥x∥2 for all x ∈ E, we have that ∇g(x) = 2Jx for all x ∈ E and hence

D(x, y) = ∥x∥2 − ∥y∥2 − ⟨x− y,∇g(y)⟩
= ∥x∥2 − ∥y∥2 − ⟨x− y, 2Jy⟩
= ∥x∥2 − ∥y∥2 − ⟨x, 2Jy⟩+ 2∥y∥2
= ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2
= ϕ(x, y)

for all x, y ∈ E.
In this paper, using Bregman functions, we prove strong convergence theorems by the

hybrid projection method for finding a common element of the set of fixed points of a Breg-
man asymptotically quasi-nonexpansive mapping and the set of solutions of an equilibrium
problem in the framework of Banach spaces. The method is computationally described, and
application to the equilibrium problem is demonstrated through an illustrative example.
Our results improve and generalize many known results in the current literature; see, for
example, [8, 9, 4, 6, 11, 12].

2 Preliminaries

For any x ∈ E, we denote the value of x∗ ∈ E∗ at x by ⟨x, x∗⟩. When {xn} is a sequence in
E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak convergence
by xn ⇀ x. For any sequence {x∗

n} in E∗, we denote the strong convergence of {x∗
n} to

x∗ ∈ E∗ by x∗
n → x∗ and the weak convergence by x∗

n ⇀ x∗. The modulus δ of convexity of
E is denoted by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if δ(ϵ) > 0 for
every ϵ > 0. Let S = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux differentiable
if for each x, y ∈ S, the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

exists. In the case, E is called smooth. If the limit (2.1) is attained uniformly in x, y ∈ S,
then E is called uniformly smooth. The Banach space E is said to be strictly convex if
∥x+y

2 ∥ < 1 whenever x, y ∈ S and x ̸= y. It is well-known that E is uniformly convex if
and only if E∗ is uniformly smooth. It is also known that if E is reflexive, then E is strictly
convex if and only if E∗ is smooth; for more details, see [17].
Let A : E → 2E

∗
be a set-valued mapping. We define the domain and range of A by

D(A) = {x ∈ E : Ax ̸= Ø} and R(A) = ∪x∈EAx, respectively. The graph of A is denoted
by G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. The mapping A ⊂ E × E∗ is said to be
monotone [16] if ⟨x − y, x∗ − y∗⟩ ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. It is also said to be
maximal monotone [15] if its graph is not contained in the graph of any other monotone
operator on E. If A ⊂ E × E∗ is maximal monotone, then we can show that the set
A−10 = {z ∈ E : 0 ∈ Az} is closed and convex. A function f : E → (−∞,+∞] is said
to be proper if the domain D(f) = {x ∈ E : f(x) < ∞} is nonempty. It is also called
lower semicontinuous if {x ∈ E : f(x) ≤ r} is closed for all r ∈ R. We say that f is upper
semicontinuous if {x ∈ E : f(x) ≥ r} is closed for all r ∈ R. The function f is said to be
convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (2.2)
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for all x, y ∈ E and α ∈ (0, 1). It is also said to be strictly convex if the strict inequality holds
in (2.2) for all x, y ∈ D(f) with x ̸= y and α ∈ (0, 1). For a proper lower semicontinuous
convex function f : E → (−∞,+∞], the subdifferential ∂f of f is defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + ⟨y − x, x∗⟩ ≤ f(y), ∀y ∈ E} (2.3)

for all x ∈ E. It is well-known that ∂f ⊂ E × E∗ is maximal monotone [13, 14]. For any
proper lower semicontinuous convex function f : E → (−∞,+∞], the conjugate function f∗

of f is defined by
f∗(x∗) = sup

x∈E
{⟨x, x∗⟩ − f(x)}

for all x∗ ∈ E∗. It is well-known that f(x) + f∗(x∗) ≥ ⟨x, x∗⟩ for all (x, x∗) ∈ E ×E∗. It is
also known that (x, x∗) ∈ ∂f is equivalent to

f(x) + f∗(x∗) = ⟨x, x∗⟩. (2.4)

We also know that if f : E → (−∞,+∞] is a proper lower semicontinuous function, then
f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower semicontinuous convex function; see [18] for
more details on convex analysis. The convex function g : E → R is also said to be Fréchet
differentiable at x ∈ E (see, for example, [2, p. 13] or [7, p. 508]) if for all ϵ > 0, there exists
δ > 0 such that ∥y − x∥ ≤ δ implies that

| g(y)− g(x)− ⟨y − x,∇g(x)⟩ |≤ ϵ∥y − x∥.

The function g : E → R is said to be Fréchet differentiable if it is Fréchet differentiable
everywhere. It is well-known that if a continuous convex function g : E → R is Gâteaux dif-
ferentiable, then ∇g is norm-to-weak∗ continuous (see, for example, [2, Proposition 1.1.10]).
Also, it is known that if g is Fréchet differentiable, then ∇g is norm-to-norm continuous
(see, [7, p. 508]). The mapping ∇g is said to be weakly sequentially continuous if xn ⇀ x
implies that ∇g(xn) ⇀

∗ ∇g(x) (for more details, see [2, Theorem 3.2.4] or [7, p. 508]). The
function g is said to be strongly coercive if

∥xn∥ → ∞ =⇒ g(xn)

∥xn∥
→ ∞.

It is also said to be bounded on bounded sets if g(U) is bounded for each bounded subset U
of E.

The following definition is slightly different from that in Butnariu and Iusem [2].

Definition 2.1 ([7]). The function g : E → R is said to be a Bregman function if the
following conditions are satisfied:

(1) g is continuous, strictly convex and Gâteaux differentiable;

(2) the set {y ∈ E : D(x, y) ≤ r} is bounded for all x ∈ E and r > 0.

The following lemma follows from Butnariu and Iusem [2] and Zălinscu [20].

Lemma 2.2. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman
function. Then

(1) ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;

(2) ⟨x− y,∇g(x)−∇g(y)⟩ = 0 if and only if x = y;
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(3) {x ∈ E : D(x, y) ≤ r} is bounded for all y ∈ E and r > 0;

(4) D(g∗) = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)−1.

Let E be a reflexive Banach space, g : E → R a strongly coercive Bregman function and
D : E×E → R the Bregman distance corresponding to g. Then, g∗ : E∗ → R is convex and
Gâteaux differentiable [20]. Let D∗ : E∗ × E∗ → R be the function defined by

D∗(x
∗, y∗) = g∗(x∗)− g∗(y∗)− ⟨∇g∗(y∗), x∗ − y∗⟩ (2.5)

for x∗, y∗ ∈ E∗, where ∇g∗ is the directional derivative of g∗. It follows from (2.2)-(2.5) and
Lemma 2.2 (4) that

D∗(∇g(x),∇g(y)) = g∗(∇g(x))− g∗(∇g(y))− ⟨∇g∗(∇g(y)),∇g(x)−∇g(y)⟩
= g∗(∇g(x))− g∗(∇g(y))− ⟨y,∇g(x)−∇g(y)⟩
= [⟨x,∇g(x)⟩ − g(x)]− [⟨y,∇g(y)⟩ − g(y)]− ⟨y,∇g(x)−∇g(y)⟩
= ⟨x,∇g(x)⟩ − g(x)− ⟨y,∇g(y)⟩+ g(y)− ⟨y,∇g(x)⟩+ ⟨y,∇g(y)⟩
= g(y)− g(x)− ⟨y − x,∇g(x)⟩
= D(y, x) (2.6)

for all x, y ∈ E. On the other hand, we know from [10] that for x ∈ E and x0 ∈ C,
D(x0, x) = miny∈C D(y, x) if and only if

⟨y − x0,∇g(x)−∇g(x0)⟩ ≤ 0, ∀y ∈ C. (2.7)

Furthermore, there exists a unique x0 ∈ C such that

D(x0, x) = min
y∈C

D(y, x).

The Bregman projection PC from E onto C is defined by PC(x) = x0 for all x ∈ E. It is
also well-known that PC has the following property:

D(y, PCx) +D(PCx, x) ≤ D(y, x) (2.8)

for all y ∈ C and x ∈ E (see [2] for more details). Let B be the unit ball of the Banach
space E. Let rB := {z ∈ E : ∥z∥ ≤ r} for all r > 0. Then a function g : E → R is said to
be uniformly convex on bounded sets ([20, pp. 203, 221]) if ρr(t) > 0 for all r, t > 0, where
ρr : [0,+∞) → [0,∞] is defined by

ρr(t) = inf
x,y∈rB,∥x−y∥=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(αx+ (1− α)y)

α(1− α)

for all t ≥ 0. The function ρr is called the gauge of uniform convexity of g. The function g

is also said to be uniformly smooth on bounded sets ([20, pp. 207, 221]) if limt↓0
σr(t)

t = 0
for all r > 0, where σr : [0,+∞) → [0,∞] is defined by

σr(t) = sup
x∈rB,y∈S,α∈(0,1)

αg(x+ (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)

for all t ≥ 0.
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Remark 2.3. Let r > 0 be a constant and g : E → R a convex function which is uniformly
convex on bounded sets. Then

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)ρr(∥x− y∥)

for all x, y ∈ rB and α ∈ (0, 1), where ρr is the gauge of uniform convexity of g.

We know the following two results; see [20, Proposition 3.6.4].

Theorem 2.4. Let E be a reflexive Banach space and g : E → R a convex function which
is bounded on bounded sets. Then the following assertions are equivalent:
(1) g is strongly coercive and uniformly convex on bounded sets;
(2) D(g∗) = E∗, g∗ is bounded on bounded sets and uniformly smooth on bounded sets;
(3) D(g∗) = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous
on bounded sets.

Theorem 2.5. Let E be a reflexive Banach space and g : E → R a continuous convex
function which is strongly coercive. Then the following assertions are equivalent:
(1) g is bounded on bounded sets and uniformly smooth on bounded sets;
(2) g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on bounded
sets;
(3) D(g∗) = E∗, g∗ is strongly coercive and uniformly convex on bounded sets.

The following two lemmas have been proved in [7].

Lemma 2.6. Let g : E → R be a Gâteaux differentiable function which is uniformly convex
on bounded sets. If {xn} and {yn} are bounded sequences in E such that limn→∞ D(xn, yn) =
0, then limn→∞ ∥xn − yn∥ = 0.

Lemma 2.7. Let E be a reflexive Banach space, g : E → R a strongly coercive Bregman
function and V the function defined by

V (x, x∗) = g(x)− ⟨x, x∗⟩+ g∗(x∗)

for all x ∈ E and x∗ ∈ E∗. Then

D(x,∇g∗(x∗)) = V (x, x∗).

The following result has been proved in [20].

Theorem 2.8. Let g : E → (−∞,+∞] be a function. Then the following assertions are
equivalent:
(1) g is convex and lower semicontinuous;
(2) g is convex and weakly lower semicontinuous;
(3) epi(g) is convex and closed;
(4) epi(g) is convex and weakly closed,
where epi(g) = {(x, t) ∈ E × R : g(x) ≤ t} denotes the epigraph of g.

3 Main results

Let E be a reflexive Banach space and g : E → R a function. We say that g is strongly
admissible, if it is convex, continuous, strongly coercive and Gâteaux differentiable. Then
the Bregman distance [1, 3] satisfies that

D(x, z) = D(x, y) +D(y, z) + ⟨x− y,∇g(y)−∇g(z)⟩, ∀x, y, z ∈ E. (3.1)
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A mapping T : C → C is said to be closed, if for any sequence {xn} ⊂ C with
limn→∞ xn = x0 and limn→∞ Txn = y0, then we have Tx0 = y0.
A mapping T : C → C is said to be Bregman asymptotically quasi-nonexpansive, if F (T ) ̸= Ø
and there exists a real sequence {kn}∞n=1 ⊂ [1,∞) with kn → 1 as k → ∞ such that

D(p, Tnx) ≤ knD(p, x), ∀x ∈ C, p ∈ F (T ), n ∈ N.

A mapping T : C → C is said to be Bregman quasi-nonexpansive, if F (T ) ̸= Ø and

D(p, Tx) ≤ D(p, x), ∀x ∈ C, p ∈ F (T ).

A mapping T : C → C is said to be Bregman relatively nonexpansive if the following
conditions are satisfied:
(1) F (T ) is nonempty;
(2) D(p, Tv) ≤ D(p, v), ∀p ∈ F (T ), v ∈ C;
(3) F̂ (T ) = F (T ),
where F̂ (T ) is the set of asymptotic fixed points of T .
A mapping T : C → C is said to be λ-uniformly continuous if there exists a positive real
number λ such that

∥Tnx− Tny∥ ≤ λ∥x− y∥, ∀x, y ∈ C, n ∈ N.

In this section, we prove the strong convergence theorems for Bregman asymptotically quasi-
nonexpansive mappings in reflexive Banach spaces. We first prove that the set of fixed points
of a closed Bregman asymptotically quasi-nonexpansive mapping is closed and convex.

Lemma 3.1. Let E be a reflexive Banach space and g : E → R a strongly admissible function
which is bounded on bounded sets and uniformly convex on bounded sets. Let T : C → C be a
closed Bregman asymptotically quasi-nonexpansive mapping with a sequence {kn} ⊂ [1,∞),
kn → 1. Then F (T ) is closed and convex.

Proof. We first show that F (T ) is closed. Let {pn} be a sequence in F (T ) such that pn → p
as n → ∞. Then we have {pn} is a bounded sequence in E. We claim that p ∈ F (T ). Since
g is continuous, we conclude that g(pn) → g(p) as n → ∞. This implies that

D(pn, p) = g(pn)− g(p)− ⟨pn − p,∇g(p)⟩
≤ |g(pn)− g(p)|+ ∥pn − p∥∥∇g(p)∥ → 0, (n → ∞).

In view of the definition of T , we obtain

D(pn, Tp) ≤ k1D(pn, p) → 0, (n → ∞).

This implies that

0 = lim
n→∞

D(pn, Tp) = lim
n→∞

[g(pn)− g(Tp)− ⟨pn − Tp,∇g(Tp)⟩] = D(p, Tp).

It follows from Lemma 2.6 that Tp = p. Thus we have p ∈ F (T ).
Let us show that F (T ) is convex. For any p, q ∈ F (T ), t ∈ (0, 1), we set x = tp+ (1− t)q.
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We prove that x ∈ F (T ). By the definition of Bregman distance, we get

D(x, Tnx) = g(x)− g(Tnx)− ⟨x− Tnx,∇g(Tnx)⟩
= g(x)− g(Tnx)− ⟨tp+ (1− t)q − Tnx,∇g(Tnx)⟩
= g(x)− g(Tnx)− t⟨p− Tnx,∇g(Tnx)⟩ − (1− t)⟨q − Tnx,∇g(Tnx)⟩

+tg(p) + (1− t)g(q)− [tg(p) + (1− t)g(q)]

= g(x) + t[g(p)− g(Tnx)− ⟨p− Tnx,∇g(Tnx)⟩]
+(1− t)[g(q)− g(Tnx)− ⟨q − Tnx,∇g(Tnx)⟩]

= g(x) + tD(p, Tnx) + (1− t)D(q, Tnx)− [tg(p) + (1− t)g(q)]

≤ g(x) + tknD(p, x) + (1− t)knD(q, x)− tg(p)− (1− t)g(q)

= g(x) + kn[t(g(p)− g(x)− ⟨p− x,∇g(x)⟩)
+(1− t)(g(q)− g(x)− ⟨q − x,∇g(x)⟩)]− tg(p)− (1− t)g(q)

= g(x) + kn[−g(x)− ⟨t(p− x),∇g(x)⟩ − ⟨(1− t)(q − x),∇g(x)⟩]
+kn[tg(p) + (1− t)g(q)]− tg(p)− (1− t)g(q)

= g(x)− kng(x)− kn[⟨tp+ (1− t)q − x,∇g(x)⟩]
+kn[tg(p) + (1− t)g(q)]− tg(p)− (1− t)g(q)

= (kn − 1)(−g(x)) + (kn − 1)tg(p) + (kn − 1)(1− t)g(q)

= (kn − 1)[−g(x) + tg(p) + (1− t)g(q)].

This implies that limn→∞ D(x, Tnx) = 0. Thus for each ϵ > 0 there exists n0 ∈ N such that

D(x, Tnx) ≤ ϵ, ∀n ≥ n0.

This means that the sequence {D(x, Tnx)} is bounded. In view of Definition 2.1, we conclude
that the sequence {Tnx} is bounded. Then, by Lemma 2.6, we obtain limn→∞ ∥x−Tnx∥ = 0.
Thus we have Tn+1x → x, that is T (Tnx) → x. Since T is closed, we deduce that Tx = x,
which completes the proof. �

In order to get the strong convergence theorems for Bregman asymptotically quasi-
nonexpansive mappings in reflexive Banach spaces, we need to prove the following key
Lemma. Using ideas in [19], we can prove the following result.

Lemma 3.2. Let E be a reflexive Banach space and g : E → R a strongly admissible function
which is bounded on bounded sets and uniformly convex on bounded sets. Let f : C×C → R
be a bifunction satisfying (A1)-(A4). For r > 0 and x ∈ E, we define a mapping Tr : E → C
as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
⟨y − z,∇g(z)−∇g(x)⟩ ≥ 0 for all y ∈ C}

for all x ∈ E. Then, the following statements hold:
(1) Tr is single-valued;
(2) Tr is a Bregman firmly nonexpansive-type mapping [5], i.e., for all x, y ∈ E,

⟨Trx− Try,∇g(Trx)−∇g(Try)⟩ ≤ ⟨Trx− Try,∇g(x)−∇g(y)⟩;

(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex;
(5) Tr is a Bregman asymptotically quasi-nonexpansive mapping;
(6) Tr is a closed mapping;
(7) D(q, Trx) +D(Trx, x) ≤ D(q, x), ∀q ∈ F (Tr).
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Proof. Using ideas in [19, Lemma 2.7], we have that Tr(x) ̸= Ø for all x ∈ E. We claim
that Tr is single-valued. For any x ∈ E and r > 0, let z1, z2 ∈ Trx. Then, we have

f(z1, z2) +
1

r
⟨z2 − z1,∇g(z1)−∇g(x)⟩ ≥ 0

and

f(z2, z1) +
1

r
⟨z1 − z2,∇g(z2)−∇g(x)⟩ ≥ 0.

Adding the two inequalities, we obtain

⟨z2 − z1,∇g(z1)−∇g(z2)⟩ ≥ 0.

Since ∇g is strictly monotone, we conclude that z1 = z2.
Next, we show that Tr is a Bregman firmly nonexpansive-type mapping. Let x, y ∈ E

be arbitrary. Then, we have

f(Trx, Try) +
1

r
⟨Try − Trx,∇g(Trx)−∇g(x)⟩ ≥ 0

and

f(Try, Trx) +
1

r
⟨Trx− Try,∇g(Try)−∇g(y)⟩ ≥ 0.

Adding the two inequalities, we obtain

f(Trx, Try) + f(Try, Trx) +
1

r
⟨Try − Trx,∇g(Trx)−∇g(Try)−∇g(x) +∇g(y)⟩ ≥ 0.

In view of (A2) and r > 0, we get

⟨Try − Trx,∇g(Trx)−∇g(Try)−∇g(x) +∇g(y)⟩ ≥ 0.

Thus, we have

⟨Trx− Try,∇g(Trx)−∇g(Try)⟩ ≤ ⟨Trx− Try,∇g(x)−∇g(y)⟩.

We prove that F (Tr) = EP (f). It is obvious that

u ∈ F (Tr) ⇐⇒ u = Tru
⇐⇒ f(u, y) + 1

r ⟨y − u,∇g(u)−∇g(u)⟩ ≥ 0, ∀y ∈ C
⇐⇒ f(u, y) ≥ 0, ∀y ∈ C
⇐⇒ u ∈ EP (f).

Now, we show that EP (f) is closed and convex. In view of (3), we have EP (f) = F (Tr).
For any x, y ∈ E, it follows from (2) that

⟨Trx− Try,∇g(Trx)−∇g(Try)⟩ ≤ ⟨Trx− Try,∇g(x)−∇g(y)⟩.

Further, we have

D(Trx, Try) +D(Try, Trx) = g(Trx)− g(Try)− ⟨Trx− Try,∇g(Try)⟩
+ g(Try)− g(Trx)− ⟨Try − Trx,∇g(Trx)⟩

= ⟨Trx− Try,∇g(Trx)−∇g(Try)⟩,
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and

D(Trx, y) +D(Try, x)−D(Trx, x)−D(Try, y)
= g(Trx)− g(y)− ⟨Trx− y,∇g(y)⟩+ g(Try)− g(x)− ⟨Try − x,∇g(x)⟩
− [g(Trx)− g(x)− ⟨Trx− x,∇g(x)⟩]− [g(Try)− g(y)− ⟨Try − y,∇g(y)⟩]

= ⟨Trx,∇g(x)−∇g(y)⟩ − ⟨Try,∇g(x)−∇g(y)⟩
= ⟨Trx− Try,∇g(x)−∇g(y)⟩.

Thus we have

D(Trx, Try) +D(Try, Trx) ≤ D(Trx, y) +D(Try, x)−D(Trx, x)−D(Try, y). (3.2)

In view of (3.2), for all x, y ∈ E, we obtain

D(Trx, Try) +D(Try, Trx) ≤ D(Trx, y) +D(Try, x).

Letting y = u ∈ F (Tr) in the above inequality, we deduce that

D(u, Trx) ≤ D(u, x).

This shows that Tr is a Bregman asymptotically quasi-nonexpansive mapping.
Next, we prove that Tr is a closed mapping. Let the sequences {xn} ⊂ E and {zn} ⊂ C be
such that xn → x and zn → z with zn = Trxn. It is enough to show that z = Trx. Since
zn = Trxn, we have that for any y ∈ C,

0 ≤ f(zn, y) +
1

r
⟨y − zn,∇g(zn)−∇g(xn)⟩.

In view of (A3), we conclude that

0 ≤ f(z, y) +
1

r
⟨y − z,∇g(z)−∇g(x)⟩.

Thus we have z = Trx and hence Tr is a closed mapping. Employing Lemma 3.1, we
conclude that F (Tr) = EP (f) is closed and convex.
Finally, we have from (2) and (3.2) that

D(Trx, Try) +D(Try, Trx) ≤ D(Trx, y) +D(Try, x)−D(Trx, x)−D(Try, y).

Letting y = q ∈ F (Tr) in the above inequality, we obtain

D(q, Trx) +D(Trx, x) ≤ D(q, x).

This completes the proof. �

Now, we are ready to prove the strong convergence theorems for Bregman asymptotically
quasi-nonexpansive mappings in a reflexive Banach space.

Theorem 3.3. Let E be a reflexive Banach space and g : E → R a strongly coercive
Bregman function which is bounded on bounded sets, and uniformly convex and uniformly
smooth on bounded sets. Let f be a bifunction from C × C to R satisfying (A1)-(A4). Let
T : C → C be a closed Bregman asymptotically quasi-nonexpansive mapping with a sequence
{kn} ⊂ [1,∞), kn → 1 which is λ-uniformly continuous for some λ > 0. Suppose that
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F := F (T ) ∩ EP (f) is a nonempty and bounded subset of C, where EP (f) is the set of
solutions to the equilibrium problem (1.1). Let {xn} be a sequence generated by

x0 = x ∈ C chosen arbitrarily,
C0 = C,
yn = ∇g∗[αn∇g(xn) + (1− αn)∇g(Tnxn)],
un ∈ C such that f(un, y) +

1
rn
⟨y − un,∇g(un)−∇g(yn)⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : D(z, un) ≤ D(z, xn) + (kn − 1)θn},
xn+1 = PCn+1x and n ∈ N ∪ {0},

(3.3)
where ∇g is the directional derivative of g and θn = sup{D(z, xn) : z ∈ F} for all n ∈ N∪{0}.
Let {αn} be a sequence in (0, 1) such that lim infn→∞ αn(1−αn) > 0 and {rn} ⊂ [a,∞) for
some a > 0. Then the sequence {xn} defined in (3.3) converges strongly to PFx, where PF

is the Bregman projection from E onto F .

Proof. We divide the proof into several steps.
Step 1. We show that Cn is closed and convex for each n ∈ N ∪ {0}.

It is clear that C0 = C is closed and convex. Let Cm be closed and convex for some m ∈ N.
From the definition of Cm+1, we have that

D(z, um) ≤ D(z, xm) + (km − 1)θm

which is equivalent to

⟨z,∇g(xm)−∇g(um)⟩ ≤ g(um)− g(xm) + ⟨xm,∇g(xm)⟩ − ⟨um,∇g(um)⟩+ (km − 1)θm.

An easy argument shows that Cm+1 is closed and convex. Thus we have Cn is closed and
convex for each n ∈ N ∪ {0}.

Step 2. We claim that F ⊂ Cn for all n ≥ 0.
It is obvious that F ⊂ C0 = C. Assume now that F ⊂ Cm for some m ∈ N. Employing
Lemma 2.7, for any w ∈ F ⊂ Cm, we obtain

D(w, um) = D(w, Trmym)
≤ D(w, ym)
= D(w,∇g∗[αm∇g(xm) + (1− αm)∇g(Tmxm)])
= V (w,αm∇g(xm) + (1− αm)∇g(Tmxm))
≤ αmV (w,∇g(xm)) + (1− αm)V (w,∇g(Tmxm))
= αmD(w, xm) + (1− αm)D(w, Tmxm)
≤ αmD(w, xm) + (1− αm)kmD(w, xm)
≤ αmD(w, xm) + kmD(w, xm)− αmD(w, xm)
= kmD(w, xm)
≤ D(w, xm) + (km − 1)θm.

(3.4)

This shows that w ∈ Cm+1. Thus, we have F ⊂ Cn for each n ∈ N ∪ {0}.
Step 3. We prove that {xn} and {Tnxn} are bounded sequences in C.

In view of (2.8), we conclude that

D(xn, x) = D(PCn
x, x) ≤ D(w, x)−D(w, xn) ≤ D(w, x)

for all w ∈ F ⊂ Cn and for each n ∈ N ∪ {0}. This implies that the sequence {D(xn, x)} is
bounded and hence there exists M > 0 such that

D(xn, x) ≤ M, ∀n ∈ N ∪ {0}. (3.5)
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We claim that the sequence {xn} is bounded. Assume on the contrary that ∥xn∥ → ∞ as
n → ∞. From the definition of Bregman distance and (3.5), it follows that

M ≥ D(xn, x) = g(xn)− g(x)− ⟨xn − x,∇g(x)⟩
= g(xn)− g(x)− ⟨xn,∇g(x)⟩+ ⟨x,∇g(x)⟩
≥ g(xn)− g(x)− ∥xn∥∥∇g(x)∥+ ⟨x,∇g(x)⟩, ∀n ∈ N ∪ {0}.

(3.6)

Without loss of generality, we may assume that ∥xn∥ ̸= 0 for each n ∈ N. This, together
with (3.6), implies that

M
∥xn∥ ≥ g(xn)

∥xn∥ − g(x)
∥xn∥ − ∥∇g(x)∥+ ⟨x,∇g(x)⟩

∥xn∥ , ∀n ∈ N. (3.7)

Since g is strongly coercive, by letting n → ∞ in (3.7), we conclude that 0 ≥ ∞, which is
a contradiction. Therefore, {xn} is bounded. Since T is a Bregman asymptotically quasi-
nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1, we have for any q ∈ F (T )
that

D(q, Tnxm) ≤ k1D(q, xm), ∀n,m ∈ N.

This, together with Definition 2.1 and the boundedness of {xn}, implies that {Tnxn} is
bounded.

Step 4. We show that xn → p for some p ∈ F (T ) ∩ EP (f), where p = PF (T )∩EP (f)x.
By the Step 3, we have that {xn} is bounded. Since E is reflexive, without loss of generality,
we may assume that xn ⇀ p for some p ∈ E. Since Cn is closed and convex, we conclude
that p ∈ Cn for each n ∈ N. Then, we have

D(xn, x) ≤ D(p, x), ∀n ∈ N. (3.8)

Since g is continuous, by Theorem 2.8 we conclude that the Bregman distance is weakly
lower-semicontinuous in the first argument. This, together with (3.8) implies, that

D(p, x) = g(p)− g(x)− ⟨p− x,∇g(x)⟩
≤ lim infn→∞[g(xn)− g(x)− ⟨xn − x,∇g(x)⟩]
≤ lim supn→∞[g(xn)− g(x)− ⟨xn − x,∇g(x)⟩]
= lim supn→∞ D(xn, x)
≤ D(p, x).

Thus, we have
lim

n→∞
D(xn, x) = D(p, x). (3.9)

In view of (3.9), we obtain

limn→∞[g(xn)− g(p)− ⟨xn − p,∇g(x)⟩] = limn→∞[g(xn)− g(x)− ⟨xn − x,∇g(x)⟩
− g(p) + g(x) + ⟨p− x,∇g(x)⟩]

= limn→∞[D(xn, x)−D(p, x)]
= 0.

(3.10)
Since xn ⇀ p, it follows from (3.10) that

limn→∞ D(xn, p) = limn→∞[g(xn)− g(p)− ⟨xn − p,∇g(p)⟩]
= limn→∞[g(xn)− g(p)− ⟨xn − p,∇g(x)⟩
− ⟨xn − p,∇g(p)−∇g(x)⟩]

= 0.

(3.11)
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On the other hand, since {xn} is bounded, we have from Lemma 2.6 and (3.11) that

lim
n→∞

∥xn − p∥ = 0. (3.12)

Now, we show that p ∈ F (T ). By the construction of Cn, we have that Cn+1 ⊂ Cn and
xn+1 = PCn+1x ∈ Cn. It follows that

D(xn+1, xn) = D(xn+1, PCnx)
≤ D(xn+1, x)−D(PCnx, x)
= D(xn+1, x)−D(xn, x).

(3.13)

In view of (3.13), we obtain

lim
n→∞

D(xn+1, xn) = 0. (3.14)

Since xn+1 ∈ Cn+1, we conclude that

D(xn+1, un) ≤ D(xn+1, xn) + (kn − 1)θn.

This, together with (3.14), implies that

lim
n→∞

D(xn+1, un) = 0. (3.15)

Employing Lemma 2.6 and (3.14)-(3.15), we deduce that

lim
n→∞

∥xn+1 − xn∥ = 0 and lim
n→∞

∥xn+1 − un∥ = 0. (3.16)

In view of (3.12) and (3.16), we get

lim
n→∞

∥un − p∥ = 0. (3.17)

Thus, we have {un} is a bounded sequence.
From (3.16), it follows that

lim
n→∞

∥xn − un∥ = 0.

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim
n→∞

∥∇g(xn)−∇g(un)∥ = 0. (3.18)

The function g is bounded on bounded subsets of E and therefore ∇g is also bounded on
bounded subsets of E∗ (see, for example, [2, Proposition 1.1.11] for more details). This,
together with Step 3, implies that the sequences {∇g(xn)}, {∇g(un)} and {∇g(Tnxn)} are
bounded in E∗.
Let s = sup{∥∇g(xn)∥, ∥∇g(Tnxn)∥ : n ∈ N} and let ρ∗s : E∗ → R be the gauge of uniform
convexity of the conjugate function g∗. We prove that for any w ∈ F (T )

D(w, yn) ≤ D(w, xn) + (kn − 1)θn − αn(1− αn)ρ
∗
s(∥∇g(xn)−∇g(Tnxn)∥). (3.19)

Let us show (3.19). For any given w ∈ F (T ), in view of the definition of Bregman distance,
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Remark 2.3 and (2.4), we obtain

D(w, yn) = g(w)− g(yn)− ⟨w − yn,∇g(yn)⟩
= g(w) + g∗(yn)− ⟨yn,∇g(yn)⟩ − ⟨w,∇g(yn)⟩+ ⟨yn,∇g(yn)⟩
= g(w) + g∗(αn∇g(xn) + (1− αn)∇g(Tnxn))
− ⟨w,αn∇g(xn) + (1− αn)∇g(Tnxn))⟩

≤ αng(w) + (1− αn)g(w) + αng
∗(∇g(xn)) + (1− αn)g

∗(∇g(Tnxn))
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥)

− αn⟨w,∇g(xn)⟩ − (1− αn)⟨w,∇g(Tnxn)⟩
= αn[g(w) + g∗(∇g(xn))− ⟨w,∇g(xn)⟩]
+ (1− αn)[g(w) + g∗(∇g(Tnxn))− ⟨w,∇g(Tnxn)⟩]
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥)

= αn[g(w)− g(xn) + ⟨xn,∇g(xn)⟩ − ⟨w,∇g(xn)⟩]
+ (1− αn)[g(w)− g(Tnxn) + ⟨Tnxn,∇g(Tnxn)⟩ − ⟨w,∇g(Tnxn)⟩]
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥)

= αnD(w, xn) + (1− αn)D(w, Tnxn)
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥)

≤ αnD(w, xn) + (1− αn)knD(w, xn)
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥)

≤ D(w, xn) + (kn − 1)D(w, xn)
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥)

≤ D(w, xn) + (kn − 1)θn
− αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥).

In view of (3.19), we obtain

D(w, un) = D(w, Trnyn)
≤ D(w, yn)
≤ D(w, xn) + (kn − 1)θn − αn(1− αn)ρ

∗
s(∥∇g(xn)−∇g(Tnxn)∥).

(3.20)

It follows from (3.14)-(3.16) that

D(xn, un) = D(xn, xn+1) +D(xn+1, un)− ⟨xn − xn+1,∇g(xn+1)−∇g(un)⟩
≤ D(xn, xn+1) +D(xn+1, un) + ∥xn − xn+1∥∥∇g(xn+1)−∇g(un)∥
→ 0

(3.21)

as n → ∞. This, together with Lemma 2.6, implies that

lim
n→∞

∥xn − un∥ = 0. (3.22)

By the definition of Bregman distance and (3.22), we obtain

|g(xn)− g(un)| = |D(xn, un) + ⟨xn − un,∇g(un)⟩|
≤ D(xn, un) + ∥xn − un∥∥∇g(un)∥
→ 0

(3.23)
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as n → ∞. From (3.18) and (3.22)-(3.23), we conclude that

|D(w, xn)−D(w, un)| = |g(w)− g(xn)− ⟨w − xn,∇g(xn)⟩
− [g(w)− g(un)− ⟨w − un,∇g(un)⟩]|

= |g(un)− g(xn) + ⟨xn − w,∇g(xn)⟩+ ⟨w − un,∇g(un)⟩|
= |g(un)− g(xn) + ⟨xn − w,∇g(xn)⟩ − ⟨xn − w,∇g(un)⟩
+ ⟨xn − w,∇g(un)⟩+ ⟨w − un,∇g(un)⟩|

= |g(un)− g(xn) + ⟨xn − w,∇g(xn)−∇g(un)⟩+ ⟨xn − un,∇g(un)⟩|
≤ |g(un)− g(xn)|+ ∥xn − w∥∥∇g(xn)−∇g(un)∥+ ∥xn − un∥∥∇g(un)∥
→ 0

(3.24)

as n → ∞. In view of (3.24) and taking into account kn → 1 as n → ∞, we obtain

D(w, xn)−D(w, un) + (kn − 1)θn → 0 as n → ∞. (3.25)

In view of (3.20) and (3.25), we conclude that

αn(1− αn) ρ∗s(∥∇g(xn)−∇g(Tnxn)∥)
≤ D(w, xn)−D(w, un) + (kn − 1)θn
→ 0

as n → ∞. From the assumption lim infn→∞ αn(1− αn) > 0, we have

lim
n→∞

ρ∗s(∥∇g(xn)−∇g(Tnxn)∥) = 0.

Therefore, from the property of ρ∗s we deduce that

lim
n→∞

∥∇g(xn)−∇g(Tnxn)∥ = 0. (3.26)

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞

∥xn − Tnxn∥ = 0. (3.27)

Since ∇g is uniformly norm-to-norm continuous on bounded subsets of E, from (3.12) we
infer that

lim
n→∞

∥∇g(xn)−∇g(p)∥ = 0. (3.28)

It follows from (3.26) and (3.28) that

lim
n→∞

∥∇g(Tnxn)−∇g(p)∥ = 0. (3.29)

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞

∥Tnxn − p∥ = 0. (3.30)

Furthermore, by the assumption that T is λ-uniformly continuous, we have that

∥Tn+1xn − Tnxn∥ ≤ ∥Tn+1xn − Tn+1xn+1∥+ ∥Tn+1xn+1 − xn+1∥
+ ∥xn+1 − xn∥+ ∥xn − Tnxn∥

≤ (λ+ 1)∥xn+1 − xn∥+ ∥Tn+1xn+1 − xn+1∥+ ∥xn − Tnxn∥.

This, together with (3.16) and (3.27), implies that

lim
n→∞

∥Tn+1xn − Tnxn∥ = 0.
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Hence, from (3.30), we have limn→∞ ∥TTnxn− p∥ = 0. In view of (3.30) and the closedness
of T , we conclude that Tp = p. Thus, we have p ∈ F (T ).

Next, we show that p ∈ EP (f). It follows from (3.20) that

D(w, yn) ≤ D(w, xn) + (kn − 1)θn. (3.31)

From Lemma 3.2 (7), (3.31) and un = Trnyn, we conclude that

D(un, yn) = D(Trnyn, yn)
≤ D(w, yn)−D(w, Trnyn)
≤ D(w, xn)−D(w, Trnyn) + (kn − 1)θn
= D(w, xn)−D(w, un) + (kn − 1)θn
→ 0

(3.32)

as n → ∞. In view of (3.32) and Lemma 2.6, we obtain

lim
n→∞

∥un − yn∥ = 0. (3.33)

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, it follows from
(3.33) that

lim
n→∞

∥∇g(un)−∇g(yn)∥ = 0. (3.34)

By the assumption rn ≥ a, we have

lim
n→∞

∥∇g(un)−∇g(yn)∥
rn

= 0. (3.35)

In view of un = Trnyn, we obtain

f(un, y) +
1

rn
⟨y − un,∇g(un)−∇g(yn)⟩ ≥ 0, ∀y ∈ C.

From condition (A2), we deduce that

∥y − un∥
∥∇g(un)−∇g(yn)∥

rn
≥ 1

rn
⟨y − un,∇g(un)−∇g(yn)⟩

≥ −f(un, y) ≥ f(y, un) ≥ 0, ∀y ∈ C.

Letting n → ∞ in the above inequality, we have from (3.35) and (A4) that

f(y, p) ≤ 0, ∀y ∈ C.

For t ∈ (0, 1] and y ∈ C, let yt = ty + (1 − t)p. Then we have yt ∈ C, which yields that
f(yt, p) ≤ 0. Thus, we have from (A1) that

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

Dividing by t, we get
f(yt, y) ≥ 0, ∀y ∈ C.

Letting t ↓ 0, from the condition (A3), we obtain that

f(p, y) ≥ 0, ∀y ∈ C.
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This means that p ∈ EP (f). Therefore, p ∈ F (T ) ∩ EP (f).
Finally, we show that p = PFx. From xn = PCnx, we conclude that

⟨z − xn,∇g(xn)−∇g(x)⟩ ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn for each n ∈ N, we obtain

⟨z − xn,∇g(xn)−∇g(x)⟩ ≥ 0, ∀z ∈ F. (3.36)

Letting n → ∞ in (3.36), we deduce that

⟨z − p,∇g(p)−∇g(x)⟩ ≥ 0, ∀z ∈ F.

In view of (2.7), we have p = PFx which completes the proof. �

A similar argument as in the proof of Theorem 3.3 proves the following result.

Theorem 3.4. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman
function which is bounded on bounded sets, and uniformly convex and uniformly smooth on
bounded sets. Let f be a bifunction from C × C to R satisfying (A1)-(A4). Let T : C → C
be a closed Bregman quasi-nonexpansive mapping which is λ-uniformly continuous for some
λ > 0. Suppose that F := F (T ) ∩ EP (f) is a nonempty and bounded subset of C, where
EP (f) is the set of solutions to the equilibrium problem (1.1). Let {xn} be a sequence
generated by

x0 = x ∈ C chosen arbitrarily,
C0 = C,
yn = ∇g∗[αn∇g(xn) + (1− αn)∇g(Txn)],
un ∈ C such that f(un, y) +

1
rn
⟨y − un,∇g(un)−∇g(yn)⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : D(z, un) ≤ D(z, xn)},
xn+1 = PCn+1x and n ∈ N ∪ {0},

(3.37)
where ∇g is the directional derivative of g. Let {αn} be a sequence in (0, 1) such that
lim infn→∞ αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then the sequence {xn}
defined in (3.37) converges strongly to PFx, where PF is the Bregman projection from E
onto F .

Remark 3.5. Theorem 3.3 improves Theorem 1.1 in the following aspects.
(1) For the structure of Banach spaces, we extend the duality mapping to more general
case, that is, a convex, continuous, strongly coercive Bregman function which is bounded
on bounded sets, and uniformly convex and uniformly smooth on bounded sets.
(2) For the mappings, we extend the mapping from a relatively nonexpansive mapping to a
Bregman asymptotically quasi-nonexpansive mapping. We extend the assumption F̂ (T ) =
F (T ) to a closed mapping, where F̂ (T ) is the set of asymptotic fixed points of the mapping
T .
(3) For the algorithm, we remove the set Wn in Theorem 1.1.

At the end of this paper, we include a concrete example in support of Theorem 3.4.
Let E be a reflexive Banach space with the dual space E∗ and let A be a maximal

monotone operator from E to E∗. For any r > 0, let the mapping Jr : E → D(A) be
defined by Jr = (∇g + rA)−1∇g. The mapping Jr is called the resolvent of A. It is
well-known that A−1(0) = F (Jr) for each r > 0 (for more details, see, for example [17]).

Using Theorem 3.3, we obtain the following strong convergence theorem for maximal
monotone operators.
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Theorem 3.6. Let E be a reflexive Banach space and g : E → R a strongly coercive
Bregman function which is bounded on bounded sets, and uniformly convex and uniformly
smooth on bounded sets. Let A be a maximal monotone operator from E to E∗ such that
A−1(0) ̸= Ø. Let r > 0 and Jr = (∇g + rA)−1∇g be the resolvent of A. Let {xn} be a
sequence generated by

x0 = x ∈ E chosen arbitrarily,
C0 = E,
yn = ∇g∗[αn∇g(xn) + (1− αn)∇g(Jrxn)],
Cn+1 = {z ∈ Cn : D(z, un) ≤ D(z, xn)},
xn+1 = PCn+1

x and n ∈ N ∪ {0},

(3.38)

where ∇g is the directional derivative of g. Let {αn} be a sequence in (0, 1) such that
lim infn→∞ αn(1− αn) > 0. Then the sequence {xn} defined in (3.38) converges strongly to
PA−1(0)x, where PA−1(0) is the Bregman projection from E onto A−1(0).

Proof. Letting f ≡ 0 and T = Jr in Theorem 3.4, from (3.37) we obtain (3.38). We need
only to show that T satisfies all the conditions in Theorem 3.4. It is easy to see that T is
a Bregman relatively nonexpansive mapping (for more details, see, for example [7]). Thus,
we have

D(p, Jrv) ≤ D(p, v), ∀v ∈ E, p ∈ F (Jr)

and
F̂ (Jr) = F (Jr) = A−1(0),

where F̂ (Jr) is the set of all asymptotic fixed points of Jr. Therefore, in view of Theorem
3.4 we have the conclusions of Theorem 3.6. This completes the proof. �

4 Numerical Example

In this section, in order to demonstrate the effectiveness, realization and convergence of
algorithm of Theorem 3.2, we consider the following simple example.

Example 4.1. Let T : [0, 2] → [0, 2] be defined by

Tx =

{
0 if x ̸= 2,
1 if x = 2.

Then T is a quasi-nonexpansive mapping. Indeed, for any x ∈ [0, 2), we have that Tnx = 0
for all n ≥ 1. Thus,

|Tnx− 0|2 = 0 ≤ |x− 0|2.
The other cases can be verified similarly. It is worth mentioning that T is neither nonex-
pansive nor continuous. Now, we define a function f : [0, 2]× [0, 2] → R by

f(x, y) = y2 + xy − 2x2, x, y ∈ [0, 2].

It is easy to that the function f satisfies (A1)-(A4). In view of Lemma 3.2, we have that Tr

is single-valued. Next, we deduce a formula for Tr. For any y ∈ [0, 2], r > 0

f(z, y) + 1
r ⟨y − z, z − x⟩ ≥ 0 ⇐⇒ y2 + zy − 2z2 + 1

r (y − z)(z − x) ≥ 0
⇐⇒ ry2 + rzy − 2rz2 + yz − yx− z2 + zx ≥ 0
⇐⇒ ry2 + (rz + z − x)y + zx− z2 − 2rz2 ≥ 0
⇐⇒ ry2 + (rz + z − x)y + zx− (1 + 2r)z2 ≥ 0
⇐⇒ ry2 + ((1 + r)z − x)y + zx− (1 + 2r)z2 ≥ 0.
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Let G(y) = ry2 + ((1 + r)z − x)y + zx− (1 + 2r)z2. Then G(y) is a quadratic function of y
with coefficients a = r, b = (1 + r)z − x and c = zx− (1 + 2r)z2. Thus we have

∆ = b2 − 4ac
= [(1 + r)z − x]2 − 4r[zx− (1 + 2r)z2]
= (r + 1)2z2 − 2x(r + 1)z + x2 − 4rzx+ 4r(1 + 2r)z2

= (r2 + 2r + 1)z2 − 2rzx− 2zx+ x2 − 4rzx+ 4rz2 + 8r2z2

= r2z2 + 2rz2 + z2 + 4rz2 + 8r2z2 + x2 − 2(1 + 3r)zx
= 9r2z2 + 6rz2 + z2 + x2 − 2(1 + 3r)zx
= ((1 + 3r)z)2 + x2 − 2(1 + 3r)zx
= ((1 + 3r)z − x)2.

Then we have G(y) ≥ 0 if and only if ∆ ≤ 0. That is, [(1 + 3r)z − x]2 ≤ 0. Therefore,
z = x

1+3r , which yields that Tr(x) =
x

1+3r . Moreover, by Lemma 3.2 we have that F (Tr) =

EP (f) = {0}. Let αn = 1
2 and rn = 1 for all n ≥ 1. Under the above assumptions, the

given algorithm (3.3) in Theorem 3.3 is simplified as follows:

x0 = x ∈ [0, 2] chosen arbitrarily,
C0 = [0, 2],
yn = 1

2xn + 1
2T

nxn,
un ∈ [0, 2] such that y2 + uny − 2u2

n + (y − un)(un − yn) ≥ 0, ∀y ∈ [0, 2],
Cn+1 = {z ∈ Cn : |z − un| ≤ |z − xn|},
xn+1 = PCn+1x and n ∈ N ∪ {0}.

(4.1)
We know that, in one dimensional case, the set Cn+1 is a closed interval. If we set
[an+1, bn+1] := Cn+1, then the projection point xn+1 of x ∈ C onto Cn+1 can be expressed
as:

xn+1 := PCn+1x =

 x, if x ∈ [an+1, bn+1];
bn+1, if x > bn+1;
an+1, if x < an+1.

Choose x0 = x = 1. Then the iteration process (4.1) becomes

C0 = [0, 2], yn =
1

2
xn, un =

1

4
xn, Cn+1 =

[
0,

5

8
xn

]
, xn+1 = (

5

8
)n. (4.2)

In this section, we give some numerical experiment results (based on Matlab) as follows:

Figure 1: Iteration chart of the sequence {xn} in Example 4.1 with initial value x0 = 1
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n xn yn un

1 1.000000000000000e+000 5.000000000000000e-001 2.500000000000000e-001
2 6.250000000000000e-001 3.125000000000000e-001 1.562500000000000e-001
3 3.906250000000000e-001 1.953125000000000e-001 9.765625000000000e-002
4 2.441406250000000e-001 1.220703125000000e-001 6.103515625000000e-002
5 1.525878906250000e-001 7.629394531250000e-002 3.814697265625000e-002
6 9.536743164062500e-002 4.768371582031250e-002 2.384185791015625e-002
7 5.960464477539063e-002 2.980232238769531e-002 1.490116119384766e-002
8 3.725290298461914e-002 1.862645149230957e-002 9.313225746154785e-003
9 2.328306436538696e-002 1.164153218269348e-002 5.820766091346741e-003
10 1.455191522836685e-002 7.275957614183426e-003 3.637978807091713e-003
11 9.094947017729282e-003 4.547473508864641e-003 2.273736754432321e-003
12 5.684341886080802e-003 2.842170943040401e-003 1.421085471520200e-003
13 3.552713678800501e-003 1.776356839400251e-003 8.881784197001252e-004
14 2.220446049250313e-003 1.110223024625157e-003 5.551115123125783e-004
15 1.387778780781446e-003 6.938893903907228e-004 3.469446951953614e-004
16 8.673617379884036e-004 4.336808689942018e-004 2.168404344971009e-004
17 5.421010862427522e-004 2.710505431213761e-004 1.355252715606881e-004
18 3.388131789017201e-004 1.694065894508601e-004 8.470329472543003e-005
19 2.117582368135751e-004 1.058791184067875e-004 5.293955920339377e-005
20 1.323488980084844e-004 6.617444900424221e-005 3.308722450212111e-005
21 8.271806125530277e-005 4.135903062765138e-005 2.067951531382569e-005
22 5.169878828456423e-005 2.584939414228212e-005 1.292469707114106e-005
23 3.231174267785264e-005 1.615587133892632e-005 8.077935669463161e-006
24 2.019483917365790e-005 1.009741958682895e-005 5.048709793414475e-006
25 1.262177448353619e-005 6.310887241768094e-006 3.155443620884047e-006
26 7.888609052210119e-006 3.944304526105059e-006 1.972152263052530e-006
27 4.930380657631324e-006 2.465190328815662e-006 1.232595164407831e-006
28 3.081487911019577e-006 1.540743955509789e-006 7.703719777548944e-007
29 1.925929944387236e-006 9.629649721936179e-007 4.814824860968089e-007
30 1.203706215242023e-006 6.018531076210113e-007 3.009265538105056e-007

Table 4.1. This table shows the values of sequence {xn} on 30th iteration steps (initial
value x0 = 1).

Conclusion

Table 4.1 and Figure 1 show that the sequence {xn} generated by (4.2) converges to 0 which
solves the equilibrium problem.
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