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MIXED TYPE DUALITY FOR A NONDIFFERENTIABLE
MINIMAX FRACTIONAL COMPLEX PROGRAMMING*

HaNG-CHIN LAl AND ToONE-YAU Huanct

Abstract: We consider a nondifferentiable minimax complex fractional programming problem (P) in this
paper. We will construct a mixed type dual problem (MD) for problem (P). Therefore problem (MD) can
include the Wolfe type dual problem (WD) and the Mond-Weir type dual problem (MWD) of problem (P).
Finally, we prove the duality theorems of (MD). This means that there are no duality gaps between problem
(P) and problem (MD).
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Introduction

The concept of duality problem is a useful tool in mathematical programming, and there
are many researchers interested the dual problems. Various types of the duality problems are
considered (cf. [1-6,11-14]). In 2009, Lai and Huang [10] considered a minimax fractional
complex programming problem (P). In this paper, we want to construct a mixed type dual
problem of problem (P).

Now, we focus on our primary problem: the minimax fractional complex programming
problem (P) as follows:

. Re [f(¢,n) + (2 42)'/3)
(P) ?él)r(l rslea;( Re [9(C, ) — (zHBz)1/2]
st. X={(=(22)€C™| —h() €S}

where Y is a compact subset of {n = (w,w) | w € C™} C C*™; A and B € C"*" are
positive semidefinite Hermitian matrices; S is a polyhedral cone in C?; f(-,-) and g(-,-) are
continuous functions, and for each n € Y, f(-,n) and g(-,n) : C** — C are analytic. We
assume further that h(-) : C2* — CP is an analytic map defined on Q C C?".
This set @ = {(2,%) | z € C"} is a linear manifold over real field. Without loss of generality,
it is assumed that Re [f(¢,n) + (27 A2)1/2] > 0 and Re [g(¢,n) — (27 B2)'/?] > 0 for each
(¢,m) € X xY. We know that this problem will be nondifferentiable if there is a point
Co = (20, %) such that 2T Azg = 0 or 2T Bzy = 0.
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We are interesting in problem (P), because this programming problem is a wide problem.
Indeed, there are some special cases for problem (P). For details, please refer to [6-9] and [11].
The minimax fractional complex programming problem has several applications in such as
electrical engineering, filter theory, etc. We can find an application in the field of filter
theory, that is a problem to evaluate the eigenvalues A1, ..., A, of the correlation matrix A
as the following:

) ZHAz
A = min  max

=1,....m
dim(S)=k z2€S zHz B

where S is a subspace of C™, dim(S) denotes the dimension of subspace S € C™, A is
a positive semidefine Hermitian matrix, and the maximum is taken the nonzero complex
vector z over the subspace S.

The main purpose of this article extend paper [11]. We will establish the mixed type
duality (MD) w.r.t. problem (P). We will know that this new dual problem (MD) in this
paper contains dual problems (WD) and (MWD) in [11], and then we will prove its duality
theorems (cf. [1], [2]). In 2009, Lai and Huang [10] already found the optimality conditions
of problem (P). We can employ to establish a mixed type duality of (P) as follows.

The constraint function in (P) is h(¢) = (h1(¢), h2(C), ..., hp(¢)) € CP. By optimality
conditions of (P), there is a vector multiplier p = (p1,...,up) € S* C C? on h(¢) C C?,
where S* is the dual cone of S in CP. Now, we partition P = {1,...,p}, the index set of
the constraint function h({) to be P = PpU Py U---U P with Re { hp.(¢),up, ) < 0 for
r=0,1,...,t, where hp ({) = (hi(g))iepr, wp, = (“i)iep,.'

We define the mixed type dual problem of (P) as the form:

k
> NiRe[f(&m) + (@ Aa)'? + (hp, (&), pp,)]
i=1

(MD) _max max -
(kA EK(E) (& p,w1,w2)EX3(K,N,17)

> AiRe[g(&,m) — (@ Ba)'/?]

i=1

with the constraint satisfing some conditions (it will be described in section 4).

In 2010, Lai and Huang [11] constructed the Wolfe type dual (WD) and Mond-Weir type
dual (MWD) problems. By later section 4 of this paper, we can know that dual problem
(MD) of problem (P) contains dual problems (WD) and (MWD) as the special cases. Finally,
we will prove the duality theorems of (MD) in section 5. This means that there are no duality
gaps between problem (P) and problem (MD).

Some Definitions and Notations

In order to get the duality theorems, we need some generalizations of convexity as follows.
(cf. Lai and Huang [9,10]).

Definition 2.1. The real part of an analytic function f(-) from C?" to R is called, respec-
tively,

(i) convex (strictly) at (o € Q C C?" if
Re[f(CQ) = f(G)] = Re[fl(¢)(~ )],
(>)

(ii) pseudoconvex (strictly) at (o € @ if

Re[fL(¢0)(C = Co)] > 0= Re[f(¢) — f(C)] >0,
(>0)
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(iii) quasiconvex at (o € @ if
Re[f(¢) = f(Co)] €0 = Re[fL(¢o)(¢ —Co)] <O
Definition 2.2. An analytic mapping h(-) : C>" — CP is called, respectively,

(i) convex at {; € @ with respect to (w.r.t.) a polyhedral cone S in CP? if there is a
nonzero p € S*( C (Cp), the dual cone of S, such that

Re(h(¢) — h(Co), 1) = Re(h'(Co)(C — o), 1)

Here (-, -) stands for the inner product in complex spaces.

(ii) pseudoconvex (strictly) at ¢ € Q w.r.t. S if there is a nonzero u € S*( C (Cp) the
dual cone of S, such that

Re(h'(Co)(¢ — Co), ) > 0 = Re(h(C) — h(Co),p) >0,
(>0)

(iii) quasiconvex at (s € @ w.r.t. S if there is a nonzero p € S*( C (Cp) such that
Re(h(¢) — h(Co), 1) < 0= Re(h'(Co)(¢ — o), 1) < 0.

Definition 2.3. The problem (P) satisfies the constraint qualification
at a point (o = (20, 2g) if for any nonzero p € S* C CP,

Re ( h'(Go)(C = Co) ) # 0 for ¢ # Co. (2.1)

From the next section, we often use the differential property. In order to employ the
behavior, the differential of a complex function is often replaced by the gradient expressions
V. and Vs which we introduce as follows.

Lemma 2.4. (Lai and Huang [9, Lemma 2])
ForneY c C*, weC" and ¢ = (2,2) € Q C C?", we denote the function

®(¢) = £(¢m) + 2" Aw + (h(C), ).

Then ®(() is differentiable at o = (20,%0), and

Re[®'(¢0)(¢—Co)] = Re [< z—20, V=f(Co,n)+ V=S (Co,n)+Aw+pu" V. h(Co)+1" V=h(Co) >}

The generalized Schwarz inequality in complex space can be as the form:

Re(z1 Au) < (27 A2)Y2 (u* Au)'/2,

Necessary and Sufficient Optimality Conditions

Throughout this paper, let S = {£ € CP | Re(K&) > 0} be a polyhedral cone where
K € Ck*P is a k x p matrix; the dual cone S* of S is defined by

S*={ueCP| Re(&u) >0, for £ € S}.

For z, € S, define the set S(z,) as the intersection of those closed half spaces which include
zp in their boundaries. That is, given K = (a1, ...,ax)” € C**P (of polyhedral cone S) for
a; €CP,i=1,... k, and let I(z,) = {i | Re(zp,a;) = 0}, define the set

S(ZP) = miGI(zp){g eCr ‘ Re<€7ai> = 0}



308 H.-C. LAI AND T.-Y. HUANG

Let X be a subset of C?", and for ( = (2,z) € X, f((,-) and ¢((,-) are continuous on the
compact set Y. Thus we can denote

W)+ AN RIC) ) )
Relg(C,n) — (B2 ~ V&Y Relgl(,v) — (7 B2)17)

Y(¢) = {neY‘

since Y is compact, the supremum in the above v € Y is attained. This set Y (¢) is also a
compact subset of Y.

In [10], Lai et al. have established the optimality conditions. We restate the necessary
optimality conditions as follows.

Theorem 3.1 (Necessary Optimality Conditions [10, Theorem 2]). Let o = (20,7%0) € Q be
a (P)-optimal with optimal value v*. Suppose that the problem (P) satisfies the constraint
qualification at (o with assumptions 2z Azg = (Azo,20) > 0 and 2! Bzy = (Bzg,20) > 0.
Then there exist 0 # u € S* C CP, uy,ugy € C" and positive integer k with the following
properties (as Y (o) C Y is pmm’ded a compact subset in C*™):

(i) finite points n; € Y(¢o)  fori=1,...,k;

(ii) fori=1,...,k, multipliers A; > 0 and Zle A=1

such that Z/\ (C,ms) — v g(C,mi)] + (h(C), 1) + (Az, 2)Y% + v*(Bz, 2)/? satisfies the

following condztzons

Z /\i{ [sz(Co, ni) + V=zf(Cos 771‘)} —v* {Vzg(Co, ni) + V=z9(Co, 771‘)} }

i=1

+ (,ﬂvzh(go) + qugh(go)) + (Aug + v Bug) = 0; (3.1)
Re( h(Co),p ) = (3.2)
quAul <1, (% Azo)1/2 Re(zo Auy); (3.3)
ugBuz <1, (,Z'éLIBZO)l/2 = Re(zo Bug). (3.4)

Theorem 3.1 holds under the conditions 24! Az = (Azg, z0) > 0 and 2! B2y = (Bzg, 20) >
0. In fact, we may show that this theorem will be true with the assumption either (Azg, zo) =
0 or (Bzp,20) = 0. In order to prove it, we need the following notations.

Zi(6o) = { ¢ €T | = hi(co)S € S(=h(Go)), € = (2,7) € Q with any one
of the next conditions (i), (ii) and (iii) holds }

(Azg, 2)

k
) e SN [AGm) — ko]

if 2{TAzp > 0 and 24! Bz = 0;

+((v*)2Bz, 2)1/? } <0,

k
B , y v*Bzg, z
(i) Re{ ;/\i [fc(Co,m) —v 9@‘(40#71)}(*‘ (Az, )% + W } <0,

if 2T Azg = 0 and 2! Bz > 0;
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ulm{zy[Q@m>w%@m»cum+vaaw”}<a
if 21 Azo =0 and 2! Bz = 0.

Here, S(—h((p)) is the intersection of those closed half spaces which include —h(({y)(€ CP)
in their boundaries.

Theorem 3.2 (Necessary Optimality Conditions [10, Theorem 3]). Let {y = (20,%0) €
Q be (P)-optimal with optimal value v*. Suppose that problem (P) possesses constraint
qualification at (o and Zz(Co) = 0. Then there exist a nonzero p € S* C CP and vectors
uy, ug € C™ such that the conditions (3.1)~(3.4) in Theorem 8.1 hold.

We state the sufficient optimality conditions of (P) as follows.

Theorem 3.3 (Sufficient Optimality Conditions [10, Theorem 4]). Let (o = (20,%0) € @ be
a feasible solution of (P). Suppose that there exist a positive integer k > 0, v* € R, for
i=1,...,k, Ny >0, n; € Y((o) with Zle)\i =1, and that 0 # p € S* C CP, uy, upy € C”
satisfying conditions (3.1)~(3.4) of Theorem 3.1 for Zz((o) = 0. Assume that any one of
the following conditions (i), (i1) and (i) holds:

) Re {Z/\ [ (Cymi) + zHAul) —v*(g(¢,mi) — zHBug)}} 1s pseudoconver at

¢ =(2,2) € Q, and h({) is quasiconvex at ( € Q w.r.t. the polyhedral cone S C CP;

k
{Z/\ { (¢, mi) + ZHAul) —v*(g(¢,mi) — zHBug)}} s quasiconvex at
¢ =(2,2) € Q, and h(() is strictly pseudoconvex at ¢ € Q w.r.t. S C CP;

(iii) Re {Z /\Z{ (Comi) + 27 Aug) — v (g(¢,mi) — ZHBUQ):| + <h(C),,u>} is pseudoconver
i=1

at ¢ € Q.

Then (o = (20,7%0) s an optimal solution of (P).

Construction for a Mixed Type Duality Model

To perform a mixed type dual problem to the complex programming problem (P), we need
the following preparation. Let ¢ = (2,Z) € Q C C?" be any feasible solution of problem
(P). By the compactness of Y in (P), the closed subset Y({) is also compact in which the
constraints fractional function in 7 has finite points attained to its maximum, that is, to
maximizing the fractional function

e ZH 2 1/2
S0 — s TG+ (142

at ny, n9,..., for some k € N,
WY Relg(Cn) — (B2 2] T e

becomes the objective of problem (P).
Since for each ¢ = (2,2) € Q, for i = 1,...,k, n; € Y({), A; > 0 with Zle A = 1, and
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functions f(¢,-) and ¢(¢, ) are continuous on Y ({), then the objective fractional functional
of problem (P) has the form:

ZA Re[f(¢m) + (2 A2)'/?]

©(¢) = max (4.1)
R , — (zHB)1/2
ney 6[9(4 n) — (1 Bz) ] Z/\Z'Re[g(@m) _ (ZHBZ)I/Z}
=1
and the problem (P) becomes
(P)  mingp(C). (4.2)

cex

Usually, we use the objective functional of expression (4.1) to construct the duality problems
w.r.t. (P).

In 2010, Lai and Huang have established the duality models of Wolfe type duality (WD)
and Mond-Weir type duality (MWD). We restate them as follows. (For detail, please refer
to [11, Sections 5, 6].)

The Wolfe type dual in fractional programming problem is considered by the objective
of fractional functional added the constraints of (P) with a multiplier ¢ € S* into the
numerator of the fractional functional in (P), precisely, it is performed by:

Sy AiRe[£(€,mi) + (o Aa)V2 + (h(€), )]
(WD) _max max - .
(kX EK (E) (€ ptw1,1w2) € X1 (o, X, 7) >oicq AiRe[g(&,mi) — (ot Ba)/?]

Here,

(i) K(¢) stands for a set of points (k, X, 7j) (where A = (A1, ..., \x) and 77 = (71, ..., 7))
satisfying the optimality conditions of problem (P) for any given feasible solution
¢ = (a,@) € @Q, then there exists a nonzero multiplier 4 € S* C CP such that
Re(v,p) > 0 for v € S. Thus Re(h(§),n) <0 as —h(§) € S C CP.

(ii) The constraint set X (k, X, 7) is the set of all feasible solutions (&, u, wy,ws) of (WD),
which satisfy the following expressions:

For ¢ = (o, @) € Q C C?,

k
{ S N[VTEm) + V£ (€ m)] + Awn + u" VoRE) + 1T Vzh(E) |
k k
(22 [g(&m) = (@ Bay2]) = (32 2 [£(€m) + (™ Aa)/2 4 ((€), )] ) %
i=1 1=1
{ Z )\ V.g 53771 + Vzg(fﬂh)] - ng} =0, (43)
Re(h(§),p) >0, pw#0in S*, (4.4)

wi Aw;, <1, (o 4a)'/? = Re(a!? Aw,),
wi Bw, <1, (o’ Ba)Y/? = Re(a! Bw,), (4.6)
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The Mond-Weir type dual contains no constraints of problem (P) in the objective frac-
tional functional of (MWD) as the following form:

M r . H 1/2
A R s A

(MWD) max max Zz 1 e[f(f n;) + (o Aa) ]

(kX EK () (€, p1,w1,w2) € Xa (kA7) E i—1 \ilte [g(g, n:;) — (aHBa)1/2]

where K (€) is the set of points (k, X, 7) (where A = (A, ..., A\x) and 77 = (1., 7)) which
are satisfying to the optimality conditions of (P) for any given feasible solution £ = (a, @) €
Q@, and Xg(k,x,ﬁ) denotes the set of all (&, u, wy,we) € C? x CP x C™ x C" to satisfy the
following conditions:

{i/\i[vzf(&m)Jerf({,m)] +Aw1} (ZA Re [g(&,m:) — (@ Ba)'/?))
k

(ZARe (&m) + (HAozl/Q) {ZA zgferVzg(fm)}—sz}

+ " Vah(€) + p"TVzh(€) = (4.7)
Re(h(&), ) = 0, (4.8)
wi Awy <1, wi Bwy <1, (4.9)
(aff Aa)t? = Re(a® Awy), (o Ba)'/? = Re(a® Bw,), (4.10)
0#pes”. (4.11)

The main purpose of this paper is to construct a new duality model w.r.t. (P) which in-
clude dual problems (WD) and (MWD). In order to construct this new dual problem, we take
some notations as follows. The constraint function in (P) is h(¢) = (h1(¢), h2(¢), ..., hy({)) €
(—S) C CP, and the multiplier pp = (p1,...,1p) € S* C CP. Now, we partition the index set
P ={1,...,p} of the constraint function h({) to be P = Py U P, U---U P, such that

Re { hp (¢),up. ) <0forr=0,1,...,t,

where hp, (¢) = (hi(Q)),cp, and pp, = (ki) ,cp -

Thus, Re (h(C), 1 ) = Re ( hp,(C), pup, ) + Sov_y Re { hp, (¢), up, ) < 0.
And forr=0, 1,..., t

hP,«v /”’PT Z Mz z

i€ P,
Re(hlp, (C0)(C — o), up,) = Re{ z — 20, up, Vahp, (Co) + pup Vzhp, (G) ), (4.12)

where ,uP stands for transpose of up. and ,uP = up is the Hermitian of up, .

For equality (4.12), the following is an easy explanation. Suppose that P. =
{1,2,3,4} C P for some 7, and ¢ = (2,2) = (21, -+, 2n, 21, -+, 2n) € C*, (o = (20,%0) =
(2,“0;17 sy 20ims 2015 - - - ,m) € C?n, Thus,

hp, = (h1(C), ha(C), h3(C), ha(C)), mp. = (k1, p2, i3, p1a)

and
(hp.,pp.) = p1hi(C) + p2ha(C) + nshs(C) + paha(Q).
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(0, @6 = e = { (Ve (o) gt () (222
21 — 2051
V:hi(Co): Vzhi(Co) !

_ V:h2(Co), Vzha(Co) Zn — 20 pho
V.h3(Co), Vzh3(o) 21 — 20,1 ’ 13
V.ha(Co), Vzha(Co) [i4

Zn T 20;n
2211 (C0)s -+ g h(Go)s 5= 1 (Go)s - -+ 52=ha (o)

_ a2 12(Co)s - - s 5= ha(Co)s g=ha(Co)s - - - g=h2(Co)
a2 13(C0)s -+ g2 h(Go)s 5=hs(Go)s - -+ 5=ha(Co)
52-ha(C0)s - - s 5o ha(Go), 3= ha(Co)s - - - 5=halo)
i g (Go) (i — 20i) + iy 7P (Go) (5 = 204)
Yot oz h2(Go) (i — 203) + Yo7y p=h2(Co) (i — 20,)
Yoy a2 ha(Co)(zi — 20) + 2iey a=ha(Co)(Zi — 20:0)
Soim a=ha(Co)(zi — 204) + iy =halCo)(zi — Z0:)

Hence,

(h’p, (C0)(¢ = Co), pp,)

By Lemma 2.4, we have

21 — 2051
241
Zn — 20;n H2
Z1 — 2051 ’ 25
Ha

Zn T Z0;n

M1

H2

M3

Ha

= S 1| Vahi(Go) (2 — 20) + Vhi(Go) = %0)|

= (V.hp,(Co)(z — 20) + Vzhp.(Co)(z — 20), pp,)-

Re(hp (Co)(¢ = Co) pp,) = Re( 2 — 20 , pp, Vhp, (o) + pip, Vzhe, (Co) )

Now, we can construct a mixed type dual (MD) to fractional programming problem (P)
by considering the objective of fractional functional added a part of the constraints of (P)
with a part of multiplier 1 € S* into the numerator of the fractional functional in (P), it

means that

(MD)

max

(kX MEK (€) (€, p,w1,w2) € X3 (k,X,7)

~HlaX
kA m)EK(E)

-

k
> MiRe[f(6,m) + (o A0)V2 + (hp, (€), 1))
=1

max

SOMD(f)

)

k
Z AiRe [9(67 771) - (ClHBa)l/Q}
i=1

where € = (&, p, w1, wo) € X3(k,X, 77) is the feasible solution of (MD).

Here,

)
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(i) K(¢) stands for a set of points (k, X, 7j) (where A = (A1, ..., \,) and 77 = (71, ..., 7))
satisfying the necessary optimality conditions of problem (P) for any given feasible so-
lution § = (o, @) € Q. Then there exists a nonzero vector multiplier 1 = (p1,. .., 1p) €
S*(C CP), the dual cone of the polyhedral cone S in CP, such that Re{v,u) > 0 for
v € S. Thus the constraint function h(&) = (h1(€), ... hy(€)) satisfies Re(h(§), pn) < 0
as —h(§) € S C CP and p € S*.

(ii) The new constraint set Xg(k,x,ﬁ) is the set of all feasible solutions (&, u, w1, wz) of
(MD) satisfying the following expressions (4.13) ~ (4.16).

That is, the constraints of (MD) are as the following expressions:
For ¢ = (o, @) € Q C C?,

k
{ S N[V (Em) + Vef(€mi)] + Awy + ph, Vahp, (&) + pfh Vzhe, (E)}X
i=1

k k
( > ) - (@ Ba)?]) = (DN [F(&m) + (™ A0)" + (i, (), 1, )])

=1

k t
{ Z )\z 29 f 771 + vzg(ga 771 ng} + Z (:U'P \% hP ) + Mgrthpr (5)) =0,

r=1
(4.13)
Relhp, (&), pp.y >0, r=1,...,1, (4.14)
wi Aw, <1, (o Aa)'/? = Re(a!! Awy), (4.15)
wi Bwy < 1, (' Ba)'/? = Re(a' Bw,). (4.16)

In problem (MD), if the index set P of the constraints in (P) is separated by two parts P
and P, that is, P=PyU Py, (P, =0 for r =2,...,t), then
(MD = (WD), when Py = P and P, = () and
(MD) = (MWD), when Py =@ and P, = P.
This shows that the Wolfe type dual (WD) and the Mond-Weir type dual (MWD) are
the special cases of the mixed type dual (MD).

Duality Theorems
For convenient to establish the duality theorems of (MD), we define a function
Qprp(e <Z AiRe [f(o,m) + ()7 Awy + <hPo(.)7,uPo>]>
X <Zi—1 AiRe [g(&,mi) — aHsz])
(ZA Re [f(&m:) + o™ Awy + <hp0(£),up0>])
x (ZH NRe [glovm) — () Bua) )

where o = (-,7) € C*".
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If we get the weak, strong and strict converse duality theorems, then we can know that
there are no duality gaps between problems (P) and (MD).

The weak duality theorem means that: under some conditions, the objective value of the
primary problem (P) is not less than the objective value of its dual problem (D), we state
the theorem as in the following.

Theorem 5.1 (Weak Duality Theorem). Let ( = (z,%) be (P)-feasible, and (k,X, 7,&, b, Wy, wa)
be (MD)-feasible. Suppose that any one of the following conditions (i) and (i) holds:

(1) ®amp(e) is pseudoconver at & € Q, and (hp, (o), up,) forr=1,...,t are quasiconvex

at £ € Q,

(ii) ®arp(e) is quasiconver at £ € Q, and (hp (), up.) forr =1,...,t are strictly pseu-
doconvex at £ € Q.

Then
(minimal) objective value (P) > (mazimal) objective value (MD).

That is,

_Re[f(Gm) + (27 A42)'V?] =
() = I}]lea;( Re[g(C,n) — (ZHBZ)I/Q] > oup(§).

Proof. Suppose on the contrary that there is a 5: (&, 1, w1, ws) such that

Z)\ Re 57771 ( HAa)1/2 + <hP0 (g)vﬂpoﬂ

Re[f(¢n) + (1 Az)1/2
max

S Relg(Con) — (B~ Pupe) =

Z AzRe [9(67 771) — (OéHBa)l/2]

Then for any n € Y,

k
Re[f(C,m) + (27 A2) /%] x > " AiRe[g(&,m) — (o Ba)'/?]

72/\ Re[f(&m) + (@A) ? + (hp, (), nry)] x Re[g(¢.m) — (2" Bz)'/?] < 0.

We replace i by n; and multiply A; (with Zle A; = 1). Then the above inequality deduces
to

{Z)\Re (C.mi) + (HAZW} {ZARG (& m) — (HBa}l/Q]}

{ZARe (&1) + (@ 40) V2 + (hp, (&), um)] | {ZARe (C.m) = (=" B2)/?]}

<0. (5.1)

From inequalities (4.15), (4.16) and generalized Schwarz inequality, we obtain
Re(z Awy) < (27 A2)Y2 (wH Aw)V/? < (21 A2)1/? and (5.2)
Re(z" Bwy) < (27 B2)Y?(w¥ Bwy)'/? < (27 B2)'/?, (5.3)
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since wif Aw; < 1 and wi Bw, < 1.
By (4.15), (4.16), (5.2), (5.3) and (5.1), we have

@arp(C)

:(Z)\Re (C,ns) + 22 Awy + (hp, (O), 1) )x(Z)\Re (& m) —a Bwﬂ)

3" NiRe [f(€m) + o Awy + (hpy(€), m,) ) x (ZA Re [g(C,m:) — sz])

> NRe [£(¢m) + (" A)Y2 4 (e ()., ) x (ZA Re [g(&.m) — o' Bu) )
S ARe [£(6.m0) + o Awy + (hry (). 17,)] ) x (ZA Re [g(¢m) — (" B2)/?))

= (3" MRe [£(Com) + (7 A2)Y2 4 (hpy (), iy ) (ZA Re [g(&,m;) — a ng])
- Xk:/\iRe [f(&mi) + (@A) /2 + (hpy (€), p,) ) (Xk:)\ZRe (¢,m) — (HBZ)W‘])

, pa
<0+ (hp, (O), my) (Z/\ Re [g(&,m:) — a sz]) (5.4)

Since Re (hp,({), pp,) <0 and (Zle AiRe [g(&mi) — aHBwQD > 0, from (5.4), we get

Since ¢ = (z,z) and & = (a, @) are feasible solutions of (P) and (MD), we have
Re (hp.(C);pp,) <0< Re (hp,(§),pp,) T=1,....t. (5.6)

If hypothesis (i) holds, ®p;p(e) is pseudoconvex at £ and (hp (o), up. ) for r =1,... t are
quasiconvex at £, then by (5.5) and (5.6), we get

Re[q)QWD(g)(C - 5)] <0 and R6<h/13, (6)(5 - <)7 /’LP,-> < 0) r= 17 s at'
Thus,

k
{ Z N [V FE i) + V= (€ mi)] + Aws + i, Vo, (€) + uff, Vel (6) }

k k
(X lo(em) = (@7 Ba) ) = (30N [F(Em) + (o7 40) 7 + (opy (), )] ) ¢
k t
ZAZ [W‘FVEQ(&?% Bw2} +Z (/Jp V hp +Mg‘vfhpr(£))
i=1

= r=1

— =

<0. (5.7)
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This contradicts the equality of (4.13).
If hypothesis (ii) holds, from quasiconvexity of ®;p(e) at £ and (5.5), we have

Re[®)p(§)(¢— )] <0
From (hp, (e), pp,) for r =1,...,t are srtictly pseudoconvex at & and (5.6), we get

R6<h3:;(€)(€ - C)HU'PT> <0, r=1,...,1

This contradicts the equality of (4.13), since we can get the inequality (5.7) again.
Hence the proof is complete. O

Suppose that (o is an optimal solution of the primary problem (P). Using (p and the
optimality conditions of (P), we can find a feasible solution for its dual problem (D). Fur-
thermore, if we assume that some suitable conditions are fulfilled, then problems (P) and
(D) have the same optimal vale ( min(P) = max(D) ), and we have the following strong
duality theorem.

Theorem 5.2 (Strong Duality Theorem). Let (o = (29, Z0) be an optimal solution of problem
(P) satisfying the hypothesis of Theorem 3.1 (Necessary Optimality Conditions). Then there
exist (k,X,Tﬂ € K(¢o) and (Co, p,wy,wa) € X(k,x,m such that (k,X,ﬁ, Co, i1, W1, W2) S @
feasible solution of the dual problem (MD). If the hypotheses of Theorem 5.1 are fulfilled,

then (k:,X, 7, Co, b, w1, we) is an optimal solution of (MD), and the two problems (P) and
(MD) have the same optimal values.

Proof. Tf o = (20,%0) € Q is an optimal solution of problem (P) with optimal value
Sy AiRelf (Co i) + (27 Azo)V/?]
S NiRelg(Co,mi) — (24 Bzo)'/?]

then by Theorem 3.1, there exist 0 # p € S* C CP, wy,we € C" and positive integer k to
satisfy the following equality:

v* = () =

k
{ N Vo) + Vaf o)) + Awn + 1" Voh(G) + 1V zh(Go) | x

i=1
(ZA 9(Go,m0) — (4 Bzo) ) - (ZA (G )+ (2§ Az0) 2 + {h(Go), ]
k

{ Z Ai[V2g(Co,mi) + Vzg(Cosmi)] — Bw2} =0.

i=1

Now, let constant Cy = (Zf 1A [9(Co,mi) — ( 5{320)1/2]), and replace up, with up, x C,
forr=1,...,t. Thus

kgw

Xi[V2f(Co,mi) + V=f (Co,mi)] + Awr + g, Vahp, (Go) + i, Vzhe, (Co)} X
1

~
Il

k
N 9(Gormi) = (281 B20)721) = (30 A [F(Gom) + (<87 A0) /2 4 (b (Go). e, )] ) ¢
k t

{Z Ai[V=9(Co,m:)+V=zg(Co, i) —ng}—i—z (MJTDT VthT(Co)‘WgTVEhPT(CO)) =0

i=1 r=1

‘9»

s
Il
_
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It follows that (k, A, 1) € K({o) and (o, p, w1, ws) € X(k, A, 77) such that (k, X, 77, Cos 1 W1, wa)
is a feasible solution of the dual problem (MD).

If the hypotheses of Theorem 5.1 are also fulfilled, then (£, X, 1, Co, 14, W1, w2) is an optimal
solution of the dual problem (MD). O

Next, we state the strict converse duality theorem.

Theorem 5.3 (Strict Converse Duality Theorem). Let ¢ and (E, .7, & 1, w1, ,07) be op-
timal solutions of (P) and (MD), respectively, and assume that the assumptions of Theo-
rem 5.2 are fulfilled. If ®prp(e) is strictly pseudoconver at & € Q and (hp.(e),up,) for
r=1,...,t is quasiconver at £ € Q, then 6: E, and the optimal values of (P) and (MD)
are equal.

Proof. Assume that (2,2) = (£E= (@, @), and reach a contradiction.
By Theorem 5.2, we know that

%
>_AiRe [f(€ ) + (@7 AR + (i, (€),im)]

E
Z AiRe [g(a n:) — (aHBa)1/2]

(fj NRe[f(C, ) + (2742)1/7)) x {ijiRe [9(€.7) — @"Ba)"]}

k k
— (Do ARelg(@i) = 7 B2)M2) x { 3 RRe [£E i) + @A) + (h, (). 7)) |
<0. (5.8)

From inequality (5.8), one can easily obtain

~

Opp(0) < prp(d)
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since we could used the same lines as the proof of Theorem 5.1.
Now, ¢ = (z,%) and £ = (o, @) are feasible solutions of (P) and (MD), respectively. We
then have
Re (hp,(C) i) <0 < Re (hp (€),ip) 7 =1, 1.

By hypothesis, ®p/p(e) is strictly pseudoconvex at & and (hp_ (®),up ), r =1,...,t is
quasiconvexat at £, it implies that

{

Mm

N[V-FE M)+ V=fE )] + By +7im, Vi, (€) + fim " Vhi, (§) } x

K3

(

{ Zk: V.g(E7) + Vg (€. 7)] sz} + Xt: ( T V.hp (6) + ATPTHVthT(fA))

r=1

M?v) »l

k
N g€ 7) — @ Ba)' %)) - (Z (€7) + (@™ AG)Y2 + (o (€), i) )

i=1

<0

which contradicts the equality of (4.13). Hence the proof is complete. ]

@ Conclusions

In this paper, we construct a mixed type dual problem (MD) for a nondifferentiable minimax
fractional complex problem (P). The merit of problem (MD) is that it can include the
wolfe type dual problem (WD) and Mond-Weir type dual problem (MWD) of problem (P).
Furthermore, we have proved the weak, strong and strict converse duality theorems of (MD).
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