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of locally optimal solutions via the strong second-order sufficient condition and the nonsin-
gularity of Clarke’s Jacobian of the KKT system, respectively. Later, Bi et al.[6] follow this
line to provide another characterization for the strong regularity of locally optimal solutions
via the nonsingularity study of the Clarke’s Jacobian of the FB nonsmooth system. We also
note that the modified barrier function methods were extended in [27] to solve the nonlinear
semidefinite programming problem.

This paper is concerned with a class of differentiable exact penalty functions for the non-
linear semidefinite programming. It is well known that the exact penalty function methods
inherit the advantage of the multiplier methods that only requires the penalty parameter
to be over a certain threshold. Also, if the penalty parameter is appropriately chosen, the
exact penalty methods may yield a desired solution of the original problem by solving a
single penalty problem, instead of a sequence of penalty problems. For the polyhedral cone
optimization problems, the differentiable and nondifferentiable exact penalty function meth-
ods are well studied (see, e.g., [2, 21, 22]). However, for the nonpolyhedral cone optimization
problems, there are few works devoted to the exact penalty functions and the correspond-
ing penalty function methods. Recently, Fukuda et al. [11] study the differentiable exact
penalty function for the nonlinear second-order cone optimization problems, and propose a
penalty function method with a superlinear (or quadratic) convergence rate but without the
strict complementarity condition. Motivated by this, we focus on the differentiable exact
penalty functions for the nonlinear semidefinite programming.

Specifically, for any given x ∈ X, we first give an explicit estimation for the Lagrange
multipliers via a strongly convex minimization problem with respect to multiplier variables,
and then employ the multiplier estimation to construct a differentiable penalty function.
We show that this penalty function is exact in the sense of Definition 3.1, and establish
a desirable second-order property for this differentiable exact penalty function, i.e., the
Clarke’s Jacobian of its gradient function is positive definite at the KKT points if the
constraint nondegeneracy condition and the strong second-order sufficient condition are
satisfied. This property implies the locally superlinear (or quadratic) convergence when the
semismooth Newton method is applied for the minimization of this penalty function. Note
that the analysis techniques are different from that of [11] used for dealing with the nonlinear
second-order cone optimization problems.

It is worthwhile to mention that Correa and Ramı́rez [10] gave two nondifferentiable exact
penalty functions associated with (1.1). Their penalty functions are constructed by fixing
the Lagrange multipliers involved in the proximal augmented Lagrangian. On the contrast,
our exact penalty functions are differentiable and constructed by replacing the Lagrange
multipliers involved in the augmented Lagrangian function with continuously differentiable
multiplier functions with respect to the primal variables.

Throughout this paper, I represents an identity operator of appropriate dimension, IR++

is the set of all positive real numbers, TSn+(X) denotes the tangent cone of Sn+ at a point

X ∈ Sn+, and lin(TSn+(X)) denotes the largest linear space in TSn+(X). From [7], the tangent

cone TSn+(X) is defined as

TSn+(X) :=
{
H ∈ Sn : dist

(
X + tH, Sn+

)
= o(t), t ≥ 0

}
, ∀X ∈ Sn+

where dist(Y,Sn+) := inf
{
∥Y − Z∥F : Z ∈ Sn+

}
denotes the distance of Y from Sn+. With the

directional derivative of projection operator ΠSn+(·), it is easy to verify that

TSn+(X)=
{
H ∈ Sn : H = Π′

Sn+(X;H)
}
. (1.2)
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For any n×m real matrices A and B, ⟨A,B⟩ := tr(ATB) means the Frobenius inner product
of A and B, and ∥A∥F is the norm of A induced by the Frobenius inner product. For any
given sets of indices α and β, we designate by Aαβ the submatrix of A whose row indices
belong to α and column indices belong to β. For a linear operator A, we denote by A∗ the
adjoint of A.

This paper is organized as follows. In Section 2, the smooth multiplier function and its
properties are characterized in order to construct the differentiable exact penalty function
for nonlinear semidefinite programming. In Section 3, we prove that the penalty function
is an exact penalty function for nonlinear semidefinite programming. In Section 4, we show
that the Clarke’s Jacobian of the gradient of the exact penalty function at a KKT point is
positive definite under the constraint nondegeneracy and the strong second-order sufficient
condition. Specially, for linear semidefinite programming the strong second-order sufficient
condition is weakened as the dual constraint nondegeneracy. Conclusions are given in Section
5.

2 Estimation of Multipliers

The differentiable exact penalty functions were early proposed in [22] for nonlinear pro-
gramming problems, and were recently extended to the setting of the nonlinear second-order
optimization by [11]. The basic idea to construct the differentiable exact penalty functions
is to replace the multipliers involved in the augmented Lagrangian function with the contin-
uously differentiable multiplier functions with respect to the primal variables. To construct
the differentiable exact penalty function for the nonlinear semidefinite programming, we in
this section present a characterization for the smooth multiplier function.

Let L : X× IRm × Sn+ → IR denote the Lagrangian function of problem (1.1), i.e.,

L(x, µ, Y ) := f(x) + ⟨µ, h(x)⟩ − ⟨Y, g(x)⟩ ∀(x, µ, Y ) ∈ X× IRm × Sn+.

For any given X ∈ Sn, let LX : Sn → Sn be the Lyapunov operator associated with X :

LX(Y ) := XY + Y X ∀Y ∈ Sn.

Then, the Karush-Kuhn-Tucker (KKT) optimality conditions for problem (1.1) take the
form of  ∇xL(x, µ, Y ) = 0,

h(x) = 0,
g(x) ∈ Sn+, Y ∈ Sn+, Lg(x)(Y ) = 0,

(2.1)

where ∇xL(x, µ, Y ) is the gradient of L at (x, µ, Y ) with respect to x.

For any given x ∈ X, we consider the multiplier estimation defined by the following
minimization problem

(µ(x), Y (x)) := argmin
µ,Y

∥∇xL(x, µ, Y )∥2 + ζ21∥Lg(x)(Y )∥2F + ζ22α(x)(∥Y ∥2F + ∥µ∥2), (2.2)

where ζ1, ζ2 > 0 and

α(x) :=
1

2

(
∥h(x)∥2 + ∥ΠSn+(−g(x))∥2F

)
.

To the best of our knowledge, the basic idea of multiplier estimation was given in [12] and
the employment of the feasible measure-type function α was proposed in [18], moreover,
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Fukuda et al. [11] extended them to the multiplier estimation for nonlinear second-order
cone programming. Noting that α(x) = 0 if and only if x is feasible for (1.1), we use the
feasible measure-type function α and the Lyapunov operator to construct the multiplier
estimation (2.2) aiming to satisfy ∇xL(x, µ, Y ) = 0,Lg(x)(Y ) = 0, and h(x) = 0, g(x) ∈ Sn+
when (µ(x), Y (x)) ̸= 0, which force the KKT conditions (2.1) to hold. In addition, we must
point out that the parameters ζ1 and ζ2 can not be omitted since their values may impact
the robustness of the method, as we can see in [3] for the nonlinear programming case.

To study the properties of (µ(x), Y (x)), we first recall the definition of nondegeneracy.

Definition 2.1 ([7]). A feasible point x of the nonlinear semidefinite programming is called
constraint nondegenerate if(

J h(x)
J g(x)

)
X+

(
{0}

lin(TSn+(g(x)))

)
=

(
IRm

Sn
)
, (2.3)

where J h(x) and J g(x) denote the Jacobian of h and g at x, respectively.

In addition, we also need the linear operator N (x) : Sn × IRm → Sn × IRm defined by

N (x) :=

(
J g(x)J g(x)T + ζ21L∗

g(x)Lg(x) −J g(x)J h(x)T

−J h(x)J g(x)T J h(x)J h(x)T

)
+ ζ22α(x)

(
In 0
0 Im

)
.

(2.4)

Lemma 2.2. For any given x ∈ X, if x is an infeasible point or a nondegenerate feasible
point of problem (1.1), then the operator N (x) in (2.4) is symmetric and positive definite.

Proof. The symmetry of N (x) is clear by its definition (2.4). We next prove that N (x) is
positive definite. Let (Z, ξ) be an arbitrary nonzero element from Sn × IRm. Then,

⟨(Z, ξ),N (x)(Z, ξ)⟩ =
⟨
Z,J g(x)J g(x)TZ + ζ21L∗

g(x)Lg(x)(Z) + ζ22α(x)Z − J g(x)J h(x)T ξ
⟩

+
⟨
ξ,−J h(x)J g(x)TZ + J h(x)J h(x)T ξ + ζ22α(x)ξ

⟩
= ∥J g(x)TZ − J h(x)T ξ∥2 + ζ21 |Lg(x)(Z)∥2F + ζ22α(x)(∥Z∥2F + ∥ξ∥2).

If x is infeasible, then ⟨(Z, ξ),N (x)(Z, ξ)⟩ > 0 since α(x) ̸= 0. Let x be a nondegenerate
feasible point. Noting that α(x) = 0, we only need to prove that

∥J g(x)TZ − J h(x)T ξ∥2 + ζ21∥Lg(x)(Z)∥2F > 0.

If not, then we have J g(x)TZ − J h(x)T ξ = 0 and Lg(x)(Z) = 0 for some nonzero (Z, ξ) ∈
Sn × IRm. From J g(x)TZ − J h(x)T ξ = 0, it follows that ⟨J g(x)TZ + J h(x)T (−ξ), z⟩ = 0
for any z ∈ X. Thus,

0 = ⟨J g(x)TZ, z⟩+ ⟨J h(x)T (−ξ), z⟩ = ⟨Z,J g(x)z⟩+ ⟨−ξ,J h(x)z⟩,

which in turn implies that (
−ξ
Z

)
∈
((

J h(x)
J g(x)

)
X
)⊥

,

where((
J h(x)
J g(x)

)
X
)⊥

:=

{(
µ
Y

)
∈
(

IRm

Sn
)

:

⟨(
µ
Y

)
,

(
J h(x)
J g(x)

)
X
⟩

= 0

}
.
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From Lg(x)(Z) = 0, we have g(x)Z + Zg(x) = 0. Without loss of generality, assume
that g(x) has the spectral decomposition g(x) = PΛPT = Pdiag(λ1, . . . , λn)P

T , where
diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of g(x) and P is a corresponding
orthogonal matrix of orthogonal eigenvectors. Noting that g(x) ∈ Sn+, we define

κ := {i : λi > 0} and β := {i : λi = 0} .

Then, by permuting the rows and columns of g(x) if necessary, we may assume that

Λ =

[
Λκ 0
0 Λβ

]
and P = [Pκ Pβ ]

with Pκ ∈ IRn×|κ|, Pβ ∈ IRn×|β|. Then, g(x)Z + Zg(x) = 0 can be equivalently written as

0 = ΛZ̃ + Z̃Λ =

[
ΛκZ̃κκ + Z̃κκΛκ ΛκZ̃κβ

Z̃βκΛκ 0

]

with Z̃ = PTZP , which in turn implies that

PT
β ZPκ = 0, PT

κ ZPβ = 0 and PT
κ ZPκ = 0. (2.5)

In addition, using the spectral decomposition of g(x) and (1.2), it is not hard by [29] to
deduce that

lin
(
TSn+(g(x))

)
=
{
B ∈ Sn : PT

β BPβ = 0
}
. (2.6)

Then, from (2.5) and (2.6) we have that for any B ∈ lin
(
TSn+ (g(x))

)
it holds that

⟨Z,B⟩ = ⟨PTZP, PTBP ⟩ =

⟨[
0 0

0 Z̃ββ

]
,

[
B̃κκ B̃κβ

B̃βκ 0

]⟩
= 0,

which implies that

(
−ξ
Z

)
∈

(
{0}

lin
(
TSn+(g(x))

) )⊥

. The above arguments show that the

nonzero vector

(
−ξ
Z

)
satisfies

(
−ξ
Z

)
∈
((

J h(x)
J g(x)

)
X
)⊥∩(

{0}
lin
(
TSn+(g(x))

) )⊥

,

which contradicts the fact that x is nondegenerate. The proof is completed.

Proposition 2.3. For any given x ∈ X, if x is an infeasible point or a nondegenerate
feasible point of problem (1.1), then the following statements hold.

(a) The problem (2.2) has a unique optimal solution (µ(x), Y (x)) that takes the form of(
Y (x)
µ(x)

)
= N (x)−1

(
J g(x)
−J h(x)

)
∇f(x). (2.7)

In particular, if (x∗, µ∗, Y ∗) ∈ X× IRm × Sn satisfies the KKT conditions (2.1), then
µ(x∗) = µ∗ and Y (x∗) = Y ∗.
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(b) The Jacobians of the multiplier functions Y (·) and µ(·) are given by(
J Y (x)
J µ(x)

)
= N (x)−1

(
R1(x)
−R2(x)

)
with

R1(x) := J 2g(x)∇xL(x, µ(x), Y (x)) + J g(x)∇2
xxL(x, µ(x), Y (x))

−ζ21J (L∗
g(x)Lg(x)(Y (x)))− ζ22Jα(x)Y (x)

R2(x) := J 2h(x)∇xL(x, µ(x), Y (x)) + J h(x)∇2
xxL(x, µ(x), Y (x)) + ζ22Jα(x)µ(x),

where J 2g(x) and J 2h(x) denote the second-order Jacobian of g and h at x, respec-
tively, Jα(x) denotes the Jacobian of α at x and

∇xL(x, µ(x), Y (x)) := ∇xL(x, µ, Y )|µ=µ(x),Y=Y (x),

∇2
xxL(x, µ(x), Y (x)) := ∇2

xxL(x, µ, Y )|µ=µ(x),Y=Y (x).

Proof. (a) Note that the minimization problem (2.2) can be equivalently written as

(µ(x), Y (x)) := argmin
µ,Y

∥∥∥∥A(x)

(
Y
µ

)
− B(x)

∥∥∥∥2
with

A(x) :=


−J g(x)T J h(x)T

ζ1Lg(x) 0
ζ2α(x)

1/2In 0
0 ζ2α(x)

1/2Im

 and B(x) :=


−∇f(x)

0
0
0

 .

By the definition of N (x), it is not hard to verify that N (x) = A∗(x)A(x). This, together
with Lemma 2.2, implies that the minimization problem (2.2) is strictly convex, and conse-
quently it has the unique optimal solution (µ(x), Y (x)). An elementary calculation yields
(2.7). Now assume that (x∗, µ∗, Y ∗) ∈ X × IRm × Sn satisfies the KKT conditions, that is,
∇xL(x

∗, µ∗, Y ∗) = 0, Lg(x∗)(Y
∗) = 0 and α(x∗) = 0. Then, the objective function of (2.2)

with x replaced by x∗ is equal to zero. Since this objective function is always nonnegative,
(µ∗, Y ∗) is a solution to the problem. This proves part (a).

(b) From part (a), it is immediate to have the following equalities

−J g(x)∇xL(x, µ(x), Y (x)) + ζ21L∗
g(x)Lg(x) (Y (x)) + ζ22α(x)Y (x) = 0 (2.8)

J h(x)∇xL(x, µ(x), Y (x)) + ζ22α(x)µ(x) = 0. (2.9)

Making differentiation to (2.8) and (2.9) with respect to x yields the desired result.

Note that if x is a feasible point for nonlinear semidefinite programming, constraint
nondegeneracy is a sufficient condition for Proposition 2.3. Then, in the subsequent analysis,
we always assume constraint nondegeneracy is satisfied at the feasible point x.
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3 Exact Penalty Function

It is known that the augmented Lagrangian function of (1.1), given by Rockafellar and Wets
[26], Shapiro and Sun [28] and Sun et al. [31], takes the form of

Lc(x, µ, Y ) = f(x) + ⟨h(x), µ⟩+ c

2
∥h(x)∥2 + 1

2c
(∥ΠSn+(Y − cg(x))∥2F − ∥Y ∥2F ),

where c > 0 is the penalty parameter. Now replacing (µ, Y ) by the multiplier function
(µ(x), Y (x)) defined in (2.7), we get a function only involving the primal variable x:

Φc(x) := f(x) + ⟨h(x), µ(x)⟩+ c

2
∥h(x)∥2 + 1

2c

(
∥ΠSn+(Y (x)− cg(x))∥2F − ∥Y (x)∥2F

)
.

This section is devoted to proving that Φc : X → IR is an exact penalty function of (1.1)
in the sense of Definition 3.1 below. The structure of the proofs is based on [2, 11, 22] and
the Definition 3.1 comes from [21] without the extra compact set. For the convenience of
discussions, in the rest of this paper, we denote by G∗ and S∗ the set of global minimizers
and the set of local minimizers of (1.1), respectively, and denote by G(Φc) and S(Φc) the
set of global minimizers and the set of local minimizers of Φc, respectively.

Definition 3.1. The function Φc : X → IR is called an exact penalty function of (1.1) if
there exists ĉ > 0 such that G∗ = G(Φc) and S(Φc) ⊆ S∗ for all c > ĉ.

We first study the relation between the set of stationary points of (1.1) and that of Φc.
Here we call x ∈ X a stationary point of (1.1) if there exists (µ, Y ) ∈ IRm × Sn+ such that
(x, µ, Y ) is a KKT triple of (1.1). Note that Φc is continuously differentiable everywhere in
X. Therefore, the set of stationary points of Φc is given by {x ∈ X : ∇Φc(x) = 0} where, for
any x ∈ X,

∇Φc(x) = ∇xL(x, µ(x), Y (x)) + [J µ(x) + cJ h(x)]Th(x) + [J Y (x)− cJ g(x)]T yc(x),

where
yc(x) := c−1

[
ΠSn+ (Y (x)− cg(x))− Y (x)

]
. (3.1)

The following lemma gives a characterization for the zeros of yc, which will be used later.

Lemma 3.2. For any x ∈ X, yc(x) = 0 if and only if Sn+ ∋ Y (x)⊥g(x) ∈ Sn+.

Proof. From [35, Lemma 2.1(b)], we know that Y (x)−ΠSn+ (Y (x)− cg(x)) = 0 is equivalent

to Sn+ ∋ Y (x)⊥cg(x) ∈ Sn+. Noticing that c is greater than 0, we complete this proof.

Let x∗ be a stationary point of (1.1). Then, there exists (µ∗, Y ∗) ∈ IRm × Sn+ such that
(x∗, µ∗, Y ∗) is a KKT triple of (1.1). By Proposition 2.3 (a), it is not hard to obtain that
Sn+ ∋ Y (x∗)⊥g(x∗) ∈ Sn+. From Lemma 3.2, it follows that yc(x

∗) = 0. This, together with
the fact that µ(x∗) = µ∗,Y (x∗) = Y ∗ and (x∗, µ∗, Y ∗) is a KKT triple, implies that x∗ is
a stationary point of Φc. This shows that the set of stationary points of (1.1) is included
in that of Φc associated to any c > 0. However, the converse does not hold generally.
The following proposition states that under a certain condition the stationary point of Φc

associated with a sufficiently large penalty parameter c > 0 will be that of (1.1).

Proposition 3.3. Let x̂ be a feasible point of (1.1). Suppose that there exist sequences
{xk} ⊂ X with xk → x̂ and {ck} ⊂ IR++ with ck → ∞ such that ∇Φck(x

k) = 0 for all k.

Then, there exists k̂ > 0 such that for any k > k̂, xk is a stationary point of (1.1).
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Proof. First, for any given c > 0 and x ∈ X, we present a simplified expression for
−c−1J g(x)∇Φc(x) and c−1J h(x)∇Φc(x). To this end, let ỹc(x) := yc(x) + g(x). By
the definition of yc(x), it is easy to obtain that ỹc(x) = c−1ΠSn+ (cg(x)− Y (x)) . Notice that

⟨ΠSn+ (cg(x)− Y (x)) ,ΠSn+ (Y (x)− cg(x))⟩ = 0.

Hence, we have that Lỹc(x)

(
ΠSn+(Y (x)− cg(x))

)
= 0. Along with the definition of yc(x), we

obtain Lỹc(x) (yc(x)) = −c−1Lỹc(x)(Y (x)). Thus, it holds that

L∗
g(x)Lg(x)(Y (x)) = L∗

g(x)(Lỹc(x) −Lyc(x))(Y (x)) = −L∗
g(x)

(
cLỹc(x) + LY (x)

)
(yc(x)) . (3.2)

In addition, from the formula of ∇Φc(x), it follows that

J g(x)∇Φc(x) = J g(x)∇xL(x, µ(x), Y (x)) + J g(x)[J µ(x) + cJ h(x)]Th(x)

+J g(x)[J Y (x)− cJ g(x)]T yc(x). (3.3)

Combining the equality in (3.3) with equations (2.8) and (3.2), we have that

J g(x)∇Φc(x) = −cÑc(x)yc(x) + J g(x)[J µ(x) + cJ h(x)]Th(x) + ζ22α(x)Y (x), (3.4)

where

Ñc(x) := J g(x)
(
J g(x)− c−1J Y (x)

)T
+ ζ21L∗

g(x)

(
Lỹc(x) + c−1LY (x)

)
.

Similarly, combining J h(x)∇Φc(x) with the equality in (2.9), we obtain

J h(x)∇Φc(x) = J h(x)[J Y (x)− cJ g(x)]T yc(x) (3.5)

+J h(x)[J µ(x) + cJ h(x)]Th(x)− ζ22α(x)µ(x).

The equations (3.4) and (3.5) can be equivalently written as

1

c

(
−J g(x)
J h(x)

)
∇Φc(x) = Nc(x)

(
yc(x)
h(x)

)
− 1

c
ζ22α(x)

(
Y (x)
µ(x)

)
, (3.6)

where

Nc(x) :=

(
Ñc(x) −J g(x)(c−1J µ(x) + J h(x))T

J h(x)(c−1J Y (x)− J g(x))T J h(x)(c−1J µ(x) + J h(x))T

)
.

Using equation (3.6) and noting that α(x) ≤ 1
2 (∥h(x)∥

2 + ∥yc(x)∥2F ), which can
be obtained by the definition (3.1) and the inequality ∥ΠSn+ (Y (x)− cg(x)) − Y (x)∥F ≥
∥ΠSn+(−cg(x))∥F , we have that

1

c2

∥∥∥∥( −J g(x)
J h(x)

)
∇Φc(x)

∥∥∥∥2
≥ 1

2

∥∥∥∥Nc(x)

(
yc(x)
h(x)

)∥∥∥∥2 − ζ42
c2

α(x)2
(
∥Y (x)∥2F + ∥µ(x)∥2

)
≥ 1

2

∥∥∥∥Nc(x)

(
yc(x)
h(x)

)∥∥∥∥2 − ζ42
2c2

α(x)(∥h(x)∥2 + ∥yc(x)∥2F )
(
∥Y (x)∥2F + ∥µ(x)∥2

)
.
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Noting that g(x̂) ∈ Sn+, we have that ỹck(x̂) → g(x̂) as k → ∞, which by the definition of
Nc(x) and α(x̂) = 0 implies that Nck(x

k) → N (x̂). Since N (x̂) is nonsingular by Lemma

2.2, Nck(x
k) is also nonsingular for sufficiently large k. That is, there exists k̂ > 0 such

that for all k > k̂, Nck(x
k) is nonsingular, and consequently, Nck(x

k)∗Nck(x
k) is positive

definite. Thus, we have the following inequality∥∥∥∥Nck(x
k)

(
yck(x

k)
h(xk)

)∥∥∥∥2 ≥ σk
min

(
∥yck(xk)∥2F + ∥h(xk)∥2

)
,

where σk
min means the smallest eigenvalue of the operator Nck(x

k)∗Nck(x
k). Note that

N (x̂)∗N (x̂) is positive definite by Lemma 2.2. Hence, it holds that σk
min → σ∗ > 0 as

k → ∞. This means that there exists ρ̂ > 0 such that for all k > k̂ (by increasing k̂ if
necessary), [

σk
min − ζ42

c2k
α(xk)(∥Y (xk)∥2F + ∥µ(xk)∥2)

]
≥ ρ̂.

Using the last three inequalities and ∇Φck(x
k) = 0, it is easy to obtain that for all k > k̂,

0 =
1

c2k

∥∥∥∥( −J g(xk)
J h(xk)

)
∇Φck(x

k)

∥∥∥∥2
≥ 1

2

[
σk
min − ζ42

c2k
α(xk)(∥Y (xk)∥2F + ∥µ(xk)∥2)

] (
∥yck(xk)∥2F + ∥h(xk)∥2

)
≥ ρ̂

2

(
∥yck(xk)∥2F + ∥h(xk)∥2

)
,

which in turn implies that yck(x
k) = 0 and h(xk) = 0 for all k > k̂. Substituting yck(x

k) = 0
and h(xk) = 0 into ∇Φck(x

k) we get ∇xL(x
k, µ(xk), Y (xk)) = 0. Moreover, by Lemma

3.2, the complementarity condition Sn+ ∋ Y (xk)⊥g(xk) ∈ Sn+ holds. Thus, the proof is
completed.

To get the result of this section, we also require the relation between f and Φc.

Lemma 3.4. If x is a feasible point of (1.1), then Φc(x) ≤ f(x) for all c > 0. In particular,
if x is a stationary point of (1.1), then Φc(x) = f(x) for all c > 0.

Proof. Since x is a feasible point, we have h(x) = 0. From the expression of Φc(x) we only
need to prove that ∥ΠSn+(Y (x) − cg(x))∥F ≤ ∥Y (x)∥F . Recalling that the metric projector

ΠSn+(·) is globally Lipschitz continuous with modulus 1, we have

∥ΠSn+(Y (x)− cg(x))−ΠSn+(−cg(x))∥F ≤ ∥Y (x)− cg(x) + cg(x)∥F = ∥Y (x)∥F .

Noting that ΠSn+(−cg(x)) = 0, we have that ∥ΠSn+(Y (x)− cg(x))∥F ≤ ∥Y (x)∥F .

If x is a stationary point of (1.1), then there exists a multiplier (µ, Y ) ∈ IRm × Sn+
such that (x, µ, Y ) is a KKT triple. This, along with Proposition 2.3 (a), implies that
h(x) = 0. and g(x), Y (x) satisfy the complementarity condition. Then for any c > 0, we
obtain Y (x) = ΠSn+(Y (x)− cg(x)), which implies that Φc(x) = f(x).

Now we can give the main result, the function Φc is an exact penalty function for (1.1),
presented in the two theorems below.
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Theorem 3.5. Assume that G∗ ̸= ∅ and that there exists c̃ > 0 such that
∪

c≥c̃ G(Φc) is
bounded. Then, there exists ĉ > 0 such that for all c > ĉ, G(Φc) = G∗.

Proof. First, we show that there exists ĉ > 0 such that, for all c > ĉ we have G(Φc) ⊆ G∗.
Suppose that this assertion is false. Then, for any positive integer k there must exist a ck > k
and a xk ∈ G(Φck) such that xk is not a global solution of problem (1.1). Note that there
exists c̃ > 0 such that

∪
c≥c̃ G(Φc) is bounded. Then, we only consider the bounded sequence

{xk} with k > c̃. It is obvious that the sequence has a convergent subsequence, without loss
of generality, we denote this subsequence by {xk} and assume that xk → x̂ as k → ∞. We

next show that there exists k̂ > 0 such that xk ∈ G∗ for all k > k̂, which contradicts our
hypothesis. Let x̃ be an arbitrary point in G∗. Then, x̃ is a stationary point of (1.1), which
by Lemma 3.4 implies that Φc(x̃) = f(x̃) for all c > 0. Note that Φck(x

k) ≤ Φck(x̃) = f(x̃)
for all k. Taking the supremum limit to this inequality and using the expression of Φck(x

k),
it is not hard to obtain h(x̂) = 0 and ΠSn+(−g(x̂)) = 0. This shows that x̂ is a feasible point

of (1.1). Then, by Proposition 3.3, there exists k̂ > 0 such that xk is a stationary point of

(1.1) for all k > k̂. Using Lemma 3.4 again, we obtain f(xk) = Φck(x
k) ≤ f(x̃) for all k > k̂,

which means that xk ∈ G∗ for all k > k̂. This shows that there exists ĉ > 0 such that, for
all c > ĉ we have G(Φc) ⊆ G∗.

Secondly, we prove that for all c > ĉ we have G(Φc) ⊇ G∗. Let c be an arbitrary constant
satisfying c > ĉ. Take an arbitrary element x̂ from G∗. Then, x̂ must be a stationary point
of problem (1.1), which by Lemma 3.4 implies Φc(x̂) = f(x̂). Now take a point x̃ ∈ G(Φc).
Since we have proved that G(Φc) ⊆ G∗, we have x̃ ∈ G∗ which, together with Lemma 3.4,
implies that f(x̃) = Φc(x̃) = Φc(x̂) = f(x̂). This shows that x̂ ∈ G(Φc). Thus, we prove
that G(Φc) ⊇ G∗. The proof is completed.

Theorem 3.6. Suppose that there exist sequences {ck} ⊂ IR++ with ck → ∞ and {xk} ⊂ X
with xk → x̂ such that xk ∈ S(Φck) for all k. If x̂ is a feasible point of (1.1), then there

exists k̂ > 0 such that xk ∈ S∗ for all k > k̂; if x̂ is an infeasible point of (1.1), then

∇α(x̂) = J h(x̂)Th(x̂)− J g(x̂)TΠSn+(−g(x̂)) = 0.

Proof. Assume that x̂ is a feasible point of (1.1). Then, from Proposition 3.3, there exists

k̂ > 0 such that xk is a stationary point of (1.1) for all k > k̂. Now let k be an arbitrary

but fixed k > k̂. Since xk ∈ S(Φck), there exists a neighborhood U(xk) of xk such that

f(xk) = Φck(x
k) ≤ Φck(x) for all x ∈ U(xk). (3.7)

Now take an arbitrary x ∈ U(xk) that is feasible to (1.1). From Lemma 3.4 it then follows
that Φck(x) ≤ f(x), which, together with (3.7), shows that f(xk) ≤ f(x). Since x ∈ U(xk)
is arbitrary, we prove that xk ∈ S∗.

If x̂ is infeasible to (1.1), then by the expression of ∇Φc(x) we have that, for all k,

∇xL(x
k, µ(xk), Y (xk))

ck
+

(
J µ(xk)

ck
+ J h(xk)

)T

h(xk)

+

(
J Y (xk)

ck
− J g(xk)

)T

yck(x
k) = 0.

Taking the limit k → ∞ and taking into account the definition of yc(x), we obtain that
∇α(x̂) = J h(x̂)Th(x̂)− J g(x̂)TΠSn+(−g(x̂)) = 0. The proof is then completed.
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Theorem 3.5 and Theorem 3.6 show that if the sequence {xk} converges to some point
x̂ ∈ X, then there exists ĉ > 0 such that G∗ = G(Φc) for all c > ĉ, especially, if x̂ is
feasible, we have S∗ = S(Φc) for all c > ĉ, otherwise, x̂ is a stationary point of α(x). In
short, the function Φc(x) is a continuously differentiable exact penalty function for nonlinear
semidefinite programming. However, we must point out that the construction of Φc(x) is
based on Proposition 2.3, which assumes x is constraint nondegenerate if x is feasible. So
this section is established on this assumption.

4 Second-order Property of Φc

Since f, g, h are twice continuously differentiable functions and ΠSn+(·) is globally Lipschitz

continuous, the mapping ∇Φc(·) is Lipschitz continuous on X. Thus, the Clarke’s Jacobian
of ∇Φc(x) at any x ∈ X is well defined. In this section, we will show that the Clarke’s
Jacobian of ∇Φc at the feasible points satisfying the constraint nondegeneracy and the
strong second-order sufficient condition is positive definite. Then, the semismooth Newton
method [20, 24, 25] can be applied to solve this problem with superlinear or quadratic
convergence under mild conditions.

First, we introduce some notations that will be used in this section. For any given
A ∈ Sn, assume that A has the spectral decomposition

A = PΛPT , (4.1)

where Λ is the diagonal matrix of eigenvalues λ1 ≥ · · · ≥ λn of A and P is a corresponding
orthogonal matrix of orthogonal eigenvectors. Then ΠSn+(A) = PΠSn+(Λ)P

T . Define three
index sets associated to the positive, zero and negative eigenvalues of A, respectively, as

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =

 Λα 0 0
0 0 0
0 0 Λγ

 and P = [Pα Pβ Pγ ] ,

with Pα ∈ IRn×|α|, Pβ ∈ IRn×|β| and Pγ ∈ IRn×|γ|. Let x ∈ X be an optimal solution to
(1.1). Denote M(x) by the set of points (µ, Y ) ∈ IRm × Sn such that (x, µ, Y ) is a KKT
triple. Let (µ, Y ) ∈ M(x) and A := g(x)− Y . Denote A+ by ΠSn+(A). The critical cone of
Sn+ at A is defined as

C(A; Sn+) := TSn+(A+) ∩ (A+ −A)⊥,

where (A+ − A)⊥ := {B ∈ Sn : ⟨B,A+ − A⟩ = 0}. Denote aff
(
C(A;Sn+)

)
by the affine hull

of C(A; Sn+). Define

app(µ, Y ) :=
{
ξ : J h(x)ξ = 0, J g(x)ξ ∈ aff

(
C(A;Sn+)

)}
.

Noting that Sn+ ∋ g(x)⊥Y ∈ Sn+, by [29] it is not hard to deduce that

app(µ, Y ) =
{
ξ : J h(x)ξ = 0, PT

β (J g(x)ξ)Pγ = 0, PT
γ (J g(x)ξ)Pγ = 0

}
. (4.2)

Next, we recall the strong second-order sufficient condition introduced by Sun [29].
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Definition 4.1. Let x be a stationary point of (1.1). We say that the strong second-order
sufficient condition holds at x if for any nonzero ξ ∈

∩
(µ,Y )∈M(x)

app(µ, Y ),

sup
(µ,Y )∈M(x)

{
⟨ξ,∇2

xxL(x, µ, Y )ξ⟩ −Υg(x)(−Y,J g(x)ξ)
}
> 0, (4.3)

where, for any given B ∈ Sn, ΥB : Sn × Sn → IR is the linear-quadratic function

ΥB(S,H) := 2⟨S,HB†H⟩ ∀(S,H) ∈ Sn × Sn

with B† denoting the Moore-Penrose pseudoinverse of B.

Let x∗ be an arbitrary stationary point of (1.1). For any given c > 0, the following
proposition characterizes the expression of ∂∇Φc(x

∗).

Proposition 4.2. Let (x∗, µ∗, Y ∗) be a KKT triple of (1.1). Then, for any given c > 0
and V ∈ ∂B∇Φc(x

∗) (respectively, V ∈ ∂∇Φc(x
∗)), there exists R ∈ ∂BΠSn+(Y

∗ − cg(x∗))

(respectively, R ∈ ∂ΠSn+(Y
∗ − cg(x∗)) such that

V = ∇2
xxL(x

∗, µ∗, Y ∗) + J h(x∗)T (J µ(x∗) + cJ h(x∗)) + J µ(x∗)TJ h(x∗)

−c−1J Y (x∗)TJ Y (x∗) + c−1(J Y (x∗)− cJ g(x∗))TR(J Y (x∗)− cJ g(x∗)).

Proof. It suffices to argue that the result holds for V ∈ ∂B∇Φc(x
∗). By the expression of

Φc, it is easy to see that ∇Φc(x) is locally Lipschitz continuous on X, and hence is almost
everywhere Frechet-differentiable in X. After an elementary computation, we can obtain
that for any V ∈ ∂B∇Φc(x), there exists R ∈ ∂BΠSn+(Y (x)− cg(x)) such that

V = ∇2
xxL(x, µ(x), Y (x)) + J h(x)T (J µ(x) + cJ h(x)) + J µ(x)TJ h(x)

−c−1J Y (x)TJ Y (x) + c−1(J Y (x)− cJ g(x))TR(J Y (x)− cJ g(x)) + φc(x),

where

φc(x) := [J 2Y (x)− cJ 2g(x)]T yc(x) + [J 2µ(x) + cJ 2h(x)]Th(x).

For the stationary point x∗, we have h(x∗) = 0, and yc(x
∗) = 0 by Lemma 3.2. Substituting

the two equalities into the last equality, we get the desired result.

Let (x∗, µ∗, Y ∗) be a KKT triple of (1.1). By Proposition 4.2, the expression of the
elements in ∂∇Φc(x

∗) can be obtained from that of the elements in ∂ΠSn+(Y
∗− cg(x∗)). We

next present the explicit expression of the elements in ∂ΠSn+(Y
∗− cg(x∗)). For this purpose,

we assume that cg(x∗) − Y ∗ has the spectral decomposition as in (4.1). Then, g(x∗) and
−Y ∗ take the form of

g(x∗) = P

 Dα 0 0
0 0 0
0 0 0

PT , −Y ∗ = P

 0 0 0
0 0 0
0 0 Dγ

PT

where Dα is the diagonal matrix of eigenvalues d1 ≥ · · · ≥ dα > 0 of g(x∗) and Dγ is the
diagonal matrix of eigenvalues 0 > dα+β+1 ≥ · · · ≥ dn of −Y ∗. Obviously, Λα = cDα and
Λγ = Dγ . Then ∂ΠSn+(Y

∗ − cg(x∗)) can be characterized as follows.
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Proposition 4.3. Let (x∗, µ∗, Y ∗) be a KKT triple of (1.1) and A = cg(x∗) − Y ∗ for any
given c > 0. Suppose that A has the spectral decomposition as in (4.1). Then, for any R ∈
∂BΠSn+(−A) (respectively, R ∈ ∂ΠSn+(−A)), there exists a R|β| ∈ ∂BΠS|β|

+

(0) (respectively,

R|β| ∈ ∂ΠS|β|
+
(0)) such that

R(H) = P

 0 0 Uαγ ◦ H̃αγ

0 R|β|(H̃ββ) H̃βγ

H̃T
αγ ◦ UT

αγ H̃T
βγ H̃γγ

PT , ∀H ∈ Sn.

where H̃ := PTHP , “ ◦” denotes the Hadamard product and Uαγ is a α×γ real matrix with
entries

uij =
max{−cdi, 0}+max{−dj , 0}

|cdi|+ |dj |
, i = 1, . . . , α, j = α+ β + 1, . . . , n,

where 0/0 is defined to be 1.

Proof. It is straightforward from [29].

Definition 4.1, Proposition 4.2 and 4.3 allow us to give the following important result.

Theorem 4.4. Let x∗ ∈ X be a stationary point of (1.1). Suppose that the strong second-
order sufficient condition (4.3) holds at x∗ and x∗ is constraint nondegenerate. Then, for
sufficiently large c > 0, any element in ∂∇Φc(x

∗) is positive definite.

Proof. Suppose on the contrary that the conclusion does not hold. Then there exist se-
quences {ck} ⊂ IR++ with ck → +∞ and {Vk} with Vk ∈ ∂∇Φck(x

∗) such that Vk is not
positive definite for all k. So, there exists {ξk} ⊂ X with ∥ξk∥ = 1 such that ⟨Vkξ

k, ξk⟩ ≤ 0
for all k. Notice that {Vk} and {ξk} are bounded. Then both of them have convergent
subsequences, without loss of generality, we denote the two subsequences by {Vk} and
{ξk}, respectively. Moreover, suppose that Vk → V and ξk → ξ with ∥ξ∥ = 1. Thus,
⟨Vkξ

k, ξk⟩ → ⟨V ξ, ξ⟩ ≤ 0. Next, we prove that ⟨V ξ, ξ⟩ > 0 which will be a contradiction to
⟨V ξ, ξ⟩ ≤ 0. To this end, we first claim that ξ ∈ app(µ∗, Y ∗) characterized below.

Since x∗ ∈ X is a stationary point of (1.1), there exists (µ∗, Y ∗) ∈ IRm × Sn+ such that
(x∗, µ∗, Y ∗) is a KKT triple of (1.1). Let A := g(x∗) − Y ∗. Without loss of generality, we
assume that A has the spectral decomposition as in (4.1),

g(x∗) = P

 Λα 0 0
0 0 0
0 0 0

PT , and − Y ∗ = P

 0 0 0
0 0 0
0 0 Λγ

PT .

By (4.2), we have

app(µ∗, Y ∗) =
{
ξ : J h(x∗)ξ = 0, PT

β (J g(x∗)ξ)Pγ = 0, PT
γ (J g(x∗)ξ)Pγ = 0

}
.

For each k, from Proposition 4.2 by replacing V, c with Vk, ck respectively, it follows that

⟨Vkξ
k, ξk⟩ = ⟨∇2

xxL(x
∗, µ∗, Y ∗)ξk, ξk⟩+ 2⟨J µ(x∗)ξk,J h(x∗)ξk⟩+ ck∥J h(x∗)ξk∥2 (4.4)

+c−1
k

(
⟨Rk(J Y (x∗)ξk),J Y (x∗)ξk⟩ − ∥J Y (x∗)ξk∥2

)
−2⟨Rk(J Y (x∗)ξk),J g(x∗)ξk⟩+ ck⟨Rk(J g(x∗)ξk),J g(x∗)ξk⟩,
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whereRk ∈ ∂ΠSn+(Y
∗−ckg(x

∗)). Dividing the equation by ck and taking the limit k → ∞, we

conclude that J h(x∗)ξ = 0 and ⟨Rk(J g(x∗)ξk),J g(x∗)ξk⟩ → 0. Furthermore, noting that
ck > 0 and Sn+ ∋ g(x∗)⊥Y ∗ ∈ Sn+, we get that ckg(x

∗)− Y ∗ has the spectral decomposition

ckg(x
∗)− Y ∗ = P

 ckΛα 0 0
0 0 0
0 0 Λγ

PT .

Write Hk = J g(x∗)ξk, by Proposition 4.3, there exists Rk
|β| ∈ ∂ΠS|β|

+

(0) such that

Rk(H
k) = P

 0 0 Uk
αγ ◦ H̃k

αγ

0 Rk
|β|(H̃

k
ββ) H̃k

βγ

(H̃k
αγ)

T ◦ (Uk
αγ)

T (H̃k
βγ)

T H̃k
γγ

PT ,

where H̃k := PTHkP and Uk
αγ is a α×γ matrix with entries uk

ij =
max{−ckλi,0}+max{−λj ,0}

|ckλi|+|λj | ,

i = 1, . . . , α, j = α+ β + 1, . . . , n. Thus,

⟨Rk(J g(x∗)ξk),J g(x∗)ξk⟩ = 2tr
(
Uk
αγ ◦ H̃k

αγ(H̃
k
αγ)

T
)
+ tr

(
Rk

|β|(H̃
k
ββ)H̃

k
ββ

)
(4.5)

+2tr
(
H̃k

βγ(H̃
k
βγ)

T
)
+ tr

(
H̃k

γγH̃
k
γγ

)
.

Note that every term on the right-hand side is nonnegative in (4.5). Recalling that
⟨Rk(J g(x∗)ξk),J g(x∗)ξk⟩ → 0, it follows that PT

β (J g(x∗)ξ)Pγ = 0, PT
γ (J g(x∗)ξ)Pγ = 0.

So, we have ξ ∈ app(µ∗, Y ∗).
Now we claim that ⟨V ξ, ξ⟩ > 0. In a similar way to (4.4) and recalling that J h(x∗)ξ = 0,

we can write

⟨Vkξ, ξ⟩ = ⟨ξ,∇2
xxL(x

∗, µ∗, Y ∗)ξ⟩ −Υg(x∗) (−Y ∗,J g(x∗)ξ)− c−1
k ∥J Y (x∗)ξ∥2 (4.6)

+c−1
k ⟨Rk(J Y (x∗)ξ),J Y (x∗)ξ⟩ − 2⟨Rk(J Y (x∗)ξ),J g(x∗)ξ⟩

+ck⟨Rk(J g(x∗)ξ),J g(x∗)ξ⟩+Υg(x∗)(−Y ∗,J g(x∗)ξ).

For the first two terms in (4.6), note that

M(x∗) = {(µ∗, Y ∗)}

since the constraint nondegeneracy condition (2.3) is assumed to hold at x∗ then, we get
ξ ∈

∩
(µ,Y )∈M(x∗)

app(µ, Y ) \ {0}, in addition,

⟨ξ,∇2
xxL(x

∗, µ∗, Y ∗)ξ⟩ −Υg(x∗)(−Y ∗,J g(x∗)ξ) > 0

from the strong second-order sufficient condition (4.3).
For the last three terms on the right-hand side in (4.6), letH := J g(x∗)ξ, G := J Y (x∗)ξ,

H̃ := PTHP with entries h̃ij , i, j = 1, · · · , n and G̃ := PTGP with entries g̃ij , i, j = 1, . . . , n,
we have that

−2⟨Rk(J Y (x∗)ξ),J g(x∗)ξ⟩ = −2⟨J Y (x∗)ξ,Rk(J g(x∗)ξ)⟩

= −2tr
(
G̃αγ(H̃

T
αγ ◦ (Uk

αγ)
T )
)
− 2tr

(
G̃ββR

k
|β|(H̃ββ)

)
−2tr

(
G̃T

αγ(U
k
αγ ◦ H̃αγ)

)
= 4Σn

j=α+β+1Σ
α
i=1

λj

ckλi − λj
h̃ij g̃ij − 2⟨G̃ββ , R

k
|β|(H̃ββ)⟩,
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ck⟨Rk(J g(x∗)ξ),J g(x∗)ξ⟩ = cktr
(
H̃αγ(H̃

T
αγ ◦ (Uk

αγ)
T )
)
+ cktr

(
H̃ββR

k
|β|(H̃ββ)

)
+cktr

(
H̃T

αγ(U
k
αγ ◦ H̃αγ)

)
= 2Σn

j=α+β+1Σ
α
i=1

−ckλj

ckλi − λj
h̃2
ij + ck⟨Rk

|β|(H̃ββ), H̃ββ⟩,

and

Υg(x∗) (−Y ∗,J g(x∗)ξ) = 2⟨−Y ∗,J g(x∗)ξ(g(x∗))†J g(x∗)ξ⟩

= 2tr
(
ΛγH̃

T
αγ(Λα)

−1H̃αγ

)
= 2Σn

j=α+β+1Σ
α
i=1

λj

λi
h̃2
ij .

Thus, the last three terms on the right-hand side in (4.6) can be simplified to be

4Σn
j=α+β+1Σ

α
i=1

λj

ckλi − λj
h̃ij g̃ij − 2Σn

j=α+β+1Σ
α
i=1

λ2
j

λi(ckλi − λj)
h̃2
ij

−c−1
k ⟨Rk

|β|(G̃
k
ββ), G̃

k
ββ⟩+ ck

[
⟨Rk

|β|(H̃
k
ββ − c−1

k G̃k
ββ), (H̃

k
ββ − c−1

k G̃k
ββ)⟩

]
.

Take the limit k → 0 on above, it is obvious that the first three terms converge to zero and

the last term is nonnegative since Rk
|β| ∈ S|β|+ .

For the rest terms in (4.6), it is easy to get

lim
k→+∞

(c−1
k ⟨Rk(J Y (x∗)ξ),J Y (x∗)ξ⟩ − c−1

k ∥J Y (x∗)ξ∥2) = 0.

Now, we can summarize the discussion above to have

⟨Vkξ, ξ⟩ → ⟨V ξ, ξ⟩ > 0 (k → +∞)

which gives the desired contradiction. The proof is completed.

The positive definite property of ∂∇Φc(x
∗) entails the semismooth Newton algorithms

based on this exact penalty function for solving nonlinear semidefinite programming prob-
lems. In addition, it deserves to be mentioned that the strong-second sufficient condition can
be weakened as the dual constraint nondegeneracy when f and g are linear matrix functions
(see. [8]), which will be discussed below.

4.1 Linear Semidefinite Programming

When f and g are linear matrix functions, the problem (1.1) becomes linear semidefinite
programming

min ⟨C,X⟩
s.t. AX = b, (4.7)

X ∈ Sn+,

where C ∈ Sn,A : Sn → IRm is a linear operator and b ∈ IRm. For this problem, the exact
penalty function takes the form of

Φc(X) = ⟨C,X⟩+ ⟨AX − b, µ(X)⟩+ c

2
∥AX − b∥2 + 1

2c
(∥ΠSn+(Y (X)− cX)∥2F − ∥Y (X)∥2F ),
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where µ : Sn → IRm and Y : Sn → Sn are multiplier functions defined in (2.2). Obviously,
Theorem 4.4 holds for the problem (4.7). However, due to the special structure of the
problem (4.7) and its dual, the strong second-order sufficient condition can be weakened as
the dual constraint nondegeneracy defined below. This subsection is devoted to proving this
result.

For this purpose, we first recall from [1, 7, 8] the concept of primal and dual constraint
nondegeneracies and from [8] the link between the strong second-order sufficient condition
and the dual constraint nondegeneracy.

Definition 4.5. We say that the primal constraint nondegeneracy holds at a feasible solution
X to the linear semidefinite programming problem (4.7) if(

A
I

)
Sn +

(
{0}

lin
(
TSn+(X)

) )
=

(
IRm

Sn
)

(4.8)

or, equivalently,

A lin
(
TSn+(X)

)
= IRm.

Similarly, we say that the dual constraint nondegeneracy holds at a feasible solution (µ, Y )
to the dual problem of (4.7) if(

A∗ I
0 I

)(
IRm

Sn
)
+

(
{0}

lin
(
TSn+(Y )

) )
=

(
Sn
Sn

)
(4.9)

or, equivalently,

A∗IRm + lin
(
TSn+(Y )

)
= Sn.

Proposition 4.6 ([8]). Let X ∈ Sn+ be an optimal solution to problem (4.7). Under the

assumption M(X) = {(µ, Y )}, the following are equivalent:

(1) The strong second-order sufficient condition holds at X.

(2) The dual constraint nondegenerate condition holds at (µ, Y ).

Comparing problem (1.1) with (4.7) and Definition 2.1 with 4.5, we can easily obtain that
the constraint nodegenerate condition is equivalent to the primal constraint nondegeneracy
for linear semidefinite programming. Then, combining Proposition 4.6, we have the following
result.

Theorem 4.7. Let (X∗, µ∗, Y ∗) ∈ Sn× IRm×Sn be a KKT triple of the problem (4.7). As-
sume that the primal constraint nondegenerate condition (4.8) holds at X∗ and the dual con-
straint nondegenerate (4.9) holds at (µ∗, Y ∗), respectively. Then, any element in ∂∇Φc(X

∗)
is symmetric and positive definite for any c > 0.

Proof. For any given c > 0 and V ∈ ∂∇Φc(X
∗), from Proposition 4.2, we get

V = (A∗J µ(X) + +(J µ(X))∗A) + cA∗A

−1

c
(J Y (X))∗J Y (X) +

1

c
(J Y (X)− cI)∗R(J Y (X)− cI),

where R ∈ ∂ΠSn+(Y
∗ − cX∗). Then, it is easy to obtain that V is symmetric since R is

self-adjoint. On the other hand, the primal constraint nondegeneracy implies the constrain
nondegeneracy for the problem (4.7). Since M(X∗) = {(µ∗, Y ∗)}, we have from Proposition
4.6, that the strong second-order sufficient condition holds at X∗. Thus, from Theorem 4.4,
∂∇Φc(X

∗) is positive definite. The proof is completed.



THE DIFFERENTIABLE EXACT PENALTY FUNCTION FOR NLSDP 301

5 Conclusions

In this paper, we have established a differentiable exact penalty function for the nonlinear
semidefinite programming. Also, under the constraint nondegeneracy and the strong second-
order sufficient condition, we showed that the Clarke generalized Jacobian of the gradient of
this exact penalty function at the stationary point is positive definite. This property implies
the rate of superlinear (or quadratic) convergence when the semismooth Newton method
is applied for the minimization of this penalty function. The applications of this penalty
function in the development of algorithms will be our future topic.

Acknowledgements

In addition, I would like to thanks one anonymous referee for some helpful suggestions to
the revision of this paper.

References

[1] F. Alizadeh, J.-P. A. Haeberly and M. L. Overton, Primal-dual interior point methods
for semidefinite programming: convergence rates, stability and numerical results, SIAM
J. Optim. 8 (1998) 746–768.
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