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where and throughout we assume that b ∈ Y is a given point. (1.2) is said to be nonlinear
metrically subregular, if there exists a nondecreasing function γ : (0,+∞) → (0,+∞) such
that

γ(d(x, F−1(b))) ≤ d(b, F (x)), ∀x with d(x, F−1(b)) > 0. (1.3)

When γ(s) := τs for some τ > 0, we say that (1.2) is (linear) metrically subregular (with
modulus τ). This property provides an estimate of how far a candidate x can be from the
solution set F−1(b) of the generalized equation (1.2). There exists a wide literature on linear
metric subregularity (see [12, 18, 22, 23] and the references therein).

The notion of error bound is closely related to metric regularity and subregularity. Let
f : X → R

∪
{+∞} be a proper function, and S := {x ∈ X|f(x) ≤ 0}. Recall (cf. [7])

that f is said to have a nonlinear error bound if there exists a nondecreasing function
γ : (0,+∞) → (0,+∞) such that

γ(d(x, S)) ≤ f(x) ∀x with d(x, S) > 0. (1.4)

When γ(s) := τs for some τ > 0, we say that f has a linear error bound. Linear error
bounds were studied by many authors (e.g. [1, 2, 13, 10, 17, 24]). We refer the interested
reader to the surveys by Azé [1], Fabian- Henrion-Kruger-Outrata [10],Lewis-Pang [17], and
Pang [24].

Our main objective in this paper is to use the theory of error bounds to study the
linear and nonlinear metric regularity and metric subregularity of set-valued mappings.
Applications of the theory of error bounds to the investigation of metric regularity of set-
valued mappings have been recently studied and developed by many authors, see for instance
[3, 4, 19, 20]. Especially in the survey paper [4], it was shown that this approach is powerful
to provide a unified theory of the metric regularity.

The idea of this paper is mainly motivated by Ngai and Théra [19], where they used
the error bound of the lower semicontinuous hull of the function x → d(y, F (x)) to get two
criteria for linear metric regularity (see [19, Theorem 3.2]). Indeed, Ngai and Théra [19,
Theorem 3.2] gave two error bounds criteria for the function x → d(y, F (x)) (not necessarily
lower semicontinuous). Theorem 3.2 in [19] and its proof indicate that one can formulate
the error bounds criteria by employing the lower semicontinuous hull.

This paper goes in the same direction. In Section 2, we establish some necessary and/or
sufficient conditions of linear and nonlinear error bounds for proper (not necessarily lower
semicontinuous) functions, and extend some results on error bounds in [2, 6, 7] to proper
functions. By using the ideas similar to [19] and the results obtained in Section 2, we derive
characterizations of the linear and nonlinear metric regularity and subregularity in Section
3.

Next, we recall some notions and results. The lower semicontinuous hull of a function
f is defined by clf(x) := min{lim inf

y→x
f(y), f(x)}. As usual, domf := {x ∈ X|f(x) < +∞}

denotes the effective domain of f , f+(x) := max{f(x), 0}. Bρ(x) := {y ∈ X|d(x, y) < ρ}
and B̄ρ(x) := {y ∈ X|d(x, y) ≤ ρ}, where ρ > 0. Let 0

0 := 0, 0 ∗ ∞ := 0. For α ∈ R, β ∈
R
∪
{+∞} with α < β, let [f ≤ α] := {x ∈ X|f(x) ≤ α} and [α ≤ f < β] := {x ∈ X|α ≤

f(x) < β}.
In the rest of this section, unless otherwise specified, we assume that f : X → R

∪
{+∞}

is a (proper) lower semicontinuous function. Let α ∈ R, β ∈ R
∪
{+∞} with α < β.

Definition 1.1 ([8]). The strong slope of f at x ∈ dom f is defined by

|∇f |(x) =

{
0, if x is a local minimum of f,

lim sup
y→x

f(x)−f(y)
d(x,y) , otherwise.
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For x /∈ domf , let |∇f |(x) = +∞ .

To the best of our knowledge, the following notion (called nonlocal slope in [21] and
global slope in [6]) was first introduced by Ngai and Théra [19, Theorem 2.1].

Definition 1.2. For x ∈ dom f , let

⋄|∇f |α(x) = sup
y

f(x)−max{f(y), α}
d(x, y)

.

For x /∈ domf , let ⋄|∇f |α(x) = +∞. The extended real number ⋄|∇f |α(x) is called the
global slope of f at x about level α.

By the definitions of strong slope and global slope, one has the following proposition.

Proposition 1.3. If f(x) > α, then ⋄|∇f |α(x) ≥ |∇f |(x).

Let σα,β(f) denote the supremum of the τ ∈ [0,+∞) such that

τd(x, [f ≤ α]) ≤ f(x)− α whenever f(x) ∈ (α, β).

Then
σα,β(f)d(x, [f ≤ α]) ≤ f(x)− α whenever f(x) ∈ (α, β). (1.5)

The following theorem gives two linear error bound criteria for lower semicontinuous
functions.

Theorem 1.4 ([6]). (i) inf
x∈[α<f<β]

|∇f |(x) ≤ σα,β(f). (ii) inf
x∈[α<f<β]

⋄|∇f |α(x) = σα,β(f).

Proof. We give a quick proof for completeness and for the reader’s convenience. Since
|∇f |(x) ≤ ⋄|∇f |α(x) whenever f(x) > α, one only needs to prove (ii).

Let τ < σα,β(f). By the definition of σα,β(f), for any x ∈ [α < f < β], there exists

yx ∈ [f ≤ α] such that f(x) − α > τd(x, yx). Thus ⋄|∇f |α(x) ≥ f(x)−max{f(yx),α}
d(x,yx)

≥ τ. By

the arbitrariness of x and τ , one has inf
x∈[α<f<β]

⋄|∇f |α(x) ≥ σα,β(f).

On the other hand, for any τ > σα,β(f), there exists x̄ ∈ [α < f < β] such that
f(x̄) − α < τd(x̄, [f ≤ α]). Let r ∈ (0, d(x̄, [f ≤ α])) be such that f(x̄) − α ≤ τr. Let
g(x) := (f(x)− α)+ ≥ 0. One has

g(x̄) = f(x̄)− α ≤ inf
X

g + τr.

By virtue of the Ekeland variational principle [9], there exists x ∈ B̄r(x̄) such that g(x) ≤
g(x̄) and g(x) < g(y)+τd(x, y) for every y ∈ X \{x}. Since x ∈ B̄r(x̄) and r < d(x̄, [f ≤ α]),
one has g(x) = f(x)− α and

f(x)− α < (f(y)− α)+ + τd(x, y), ∀y ∈ X \ {x},

f(x) < (f(y)− α)+ + α+ τd(x, y) = max{f(y), α}+ τd(x, y), ∀y ∈ X \ {x}.

Thus ⋄|∇f |α(x) ≤ τ. By the arbitrariness of x and τ , one has inf
x∈[α<f<β]

⋄|∇f |α(x) ≥

σα,β(f). �

Through the above theorem and (1.5), one can easily get the following corollary.
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Corollary 1.5. (i) If inf
x∈[α<f<β]

|∇f |(x) ≥ σ, then f(x) − α ≥ σd(x, [f ≤ α]), ∀x ∈ [α <

f < β].
(ii) inf

x∈[α<f<β]

⋄|∇f |α(x) ≥ σ if and only if f(x)− α ≥ σd(x, [f ≤ α]), ∀x ∈ [α < f < β].

The following theorem is needed for our purposes.

Theorem 1.6 ([13]). Let f : X → R
∪
{+∞} be a proper function (not necessarily lower

semicontinuous). Then the following two statements are equivalent.
(i) σd(x, [f ≤ 0]) ≤ f+(x) for all x ∈ X.
(ii) cl[f ≤ 0] = [clf ≤ 0] and σd(x, [clf ≤ 0]) ≤ (clf)+(x) for all x ∈ X.

2 Linear and Nonlinear Error Bounds for Proper Functions

In this section, we establish some necessary and/or sufficient conditions of linear and non-
linear error bounds for proper (not necessarily lower semicontinuous) function f : X →
R
∪
{+∞}. By the definitions of f+ and lower semicontinuous hull, one can easily get the

following lemma.

Lemma 2.1. clf+(x) = (clf)+(x).

To simplify the expression, we prove the following two propositions.

Proposition 2.2. The following statements are equivalent.

(i) There exists a sequence {un}n∈N converging to x such that lim
n→+∞

clf(x)−f(un)
d(x,un)

≥ σ.

(ii) |∇clf |(x) ≥ σ.

Proof. (i)⇒(ii). Let {un}n∈N be as in the statement (i). It follows from lim
n→+∞

clf(x)−f(un)
d(x,un)

≥
σ > 0 that x is not a local minimum of clf . Since clf ≤ f ,

|∇clf |(x) ≥ lim
n→+∞

clf(x)− clf(un)

d(x, un)
≥ lim

n→+∞

clf(x)− f(un)

d(x, un)
≥ σ.

(i)⇐(ii). If |∇clf |(x) ≥ σ, then there exists a sequence {zn}n∈N converging to x such
that

clf(x)− clf(zn)

d(x, zn)
> σ − 1

n
for all n ∈ N. (2.1)

For each fixed n ∈ N, if clf(zn) = f(zn), then we can set un = zn. And if clf(zn) =
lim inf
y→zn

f(y) < f(zn), then there exists a sequence {yk}k∈N converging to zn such that

clf(zn) = lim
k→+∞

f(yk) < f(zn). According to (2.1), there exists a natural number K such

that
clf(x)− f(yk)

d(x, yk)
> σ − 1

n
and d(zn, yk) <

1

n
, ∀k ≥ K.

Choose kn > K, and let un = ykn . Thus, the sequence {un}n∈N converges to x such that

lim
n→+∞

clf(x)− f(un)

d(x, un)
≥ σ.

�
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Proposition 2.3. The following statements are equivalent.
(i) For each ε > 0 and each sequence {xn}n∈N converging to x, there exists a sequence

{un}n∈N with lim
n→+∞

d(x, un) > 0 such that

lim sup
n→+∞

f(xn)− f+(un)

d(x, un)
> σ − ε.

(ii) For each ε > 0, there exists a sequence {un}n∈N with lim
n→+∞

d(x, un) > 0 such that

lim
n→+∞

clf(x)− f+(un)

d(x, un)
> σ − ε.

(iii) ⋄|∇clf |0(x) ≥ σ.

Proof. According to clf(x)−f(un)
d(x,un)

= clf(x)−f(xn)
d(x,un)

+ f(xn)−f(un)
d(x,un)

and clf(x) =

min{lim inf
y→x

f(y), f(x)}, one can easily show that (i)⇔(ii).

(ii)⇒(iii). Let ε > 0 and {un}n∈N be as in the statement (ii). According to Lemma 2.1
and cl(f+) ≤ f+, it follows that

⋄|∇clf |0(x) ≥ sup
n∈N,un ̸=x

clf(x)− (clf)+(un)

d(x, un)

≥ lim
n→+∞

clf(x)− cl(f+)(un)

d(x, un)
≥ lim

n→+∞

clf(x)− f+(un)

d(x, un)
> σ − ε.

By the arbitrariness of ε > 0, one has ⋄|∇clf |0(x) ≥ σ.
(ii)⇐(iii). If ⋄|∇clf |0(x) ≥ σ and ε > 0, then there exists u ̸= x such that

clf(x)− cl(f+)(u)

d(x, u)
> σ − ε.

It follows from the definition of cl(f+) that there exists a sequence {un}n∈N converging to
u such that lim

n→+∞
f+(un) = cl(f+)(u). Thus, the sequence {un}n∈N satisfies the following

conditions

lim
n→+∞

d(x, un) > 0 and lim
n→+∞

clf(x)− f+(un)

d(x, un)
> σ − ε.

�

Lemma 2.4. If ⋄|∇clf |0(x) ≥ σ for every x ∈ X \ cl[f ≤ 0], then cl[f ≤ 0] = [clf ≤ 0].

Proof. cl[f ≤ 0] ⊆ [clf ≤ 0] is obvious.

On the other hand, if x /∈ cl[f ≤ 0], then ⋄|∇clf |0(x) = sup clf(x)−(clf)+(y)
d(x,y) ≥ σ > 0.

Thus clf(x) > 0. This implies that x /∈ [clf ≤ 0]. �

With the help of the preceding results, we obtain characterizations of the linear error
bound for the proper function f .

Theorem 2.5. Consider the following statements.
(i) σd(x, [f ≤ 0]) ≤ f+(x) for all x ∈ X.
(ii) ⋄|∇clf |0(x) ≥ σ for all x ∈ X \ cl[f ≤ 0].
(iii) |∇clf |(x) ≥ σ for all x ∈ X \ cl[f ≤ 0].

Then, one has (i) ⇔ (ii) ⇐ (iii).
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Proof. According to Proposition 1.3, it follows that (ii) ⇐ (iii).
According to Theorem 1.6, Lemma 2.4 and Corollary 1.5, it follows that (i)⇔(ii). �

The following theorem gives characterizations of nonlinear error bounds for the proper
function f .

Theorem 2.6. Let ρ ∈ (0,+∞), C = cl[f ≤ 0], and let θ : (0,+∞) → (0,+∞) be a
continuous and nondecreasing function. Consider the following statements.

(i) For all x ∈ Bρ(C) \ C, one has f(x) ≥ inf
B2ρ(C)\C

f +
∫ d(x,[f≤0])

0
θ(s)ds.

(ii) For all x ∈ B2ρ(C) \ C, one has |∇clf |(x) ≥ θ(d(x,C)).
(iii) Let x ∈ B2ρ(C)\C. Then there exists a sequence {un}n∈N converging to x such that

lim
n→+∞

clf(x)− f(un)

d(x, un)
≥ θ(d(x,C)).

Then, one has (i)⇐(ii)⇔(iii).

Proof. According to Proposition 2.2, it follows that (ii)⇔ (iii).
(i)⇐(ii): According to [7, Theorem 4.1], the statement (ii) implies that

clf(x) ≥ inf
B2ρ(C)\C

clf +

∫ d(x,C)

0

θ(s)ds, for every x ∈ Bρ(C) \ C.

Since C = cl[f ≤ 0] is a closed set, d(x,C) = d(x, [f ≤ 0]) and B2ρ(C) \ C is an open
set. Thus inf

B2ρ(C)\C
clf = inf

B2ρ(C)\C
f . And, taking clf ≤ f into account, one has

f(x) ≥ inf
B2ρ(C)\C

f +

∫ d(x,[f≤0])

0

θ(s)ds, for every x ∈ Bρ(C) \ C.

Thus (i)⇐(ii)⇔(iii). �

3 Linear and Nonlinear Metric Regularity and Subregularity

In this section, we apply the results established in Section 2 to the investigation of metric
regularity and subregularity. Throughout this section, we assume that gphF is closed. For
y ∈ Y , we define the function fy(·) := d(y, F (·)). For simplicity of presentation, we prove
the following lemma.

Lemma 3.1. (i) F−1(y) = [fy ≤ 0] = cl[fy ≤ 0] = [clfy ≤ 0].
(ii) If ⋄|∇clfy|0(x) ≥ σ for every x ∈ X with y /∈ F (x), then F−1(y) ̸= ∅.
(iii) If |∇clfy|(x) ≥ σ for every x ∈ X with y /∈ F (x), then F−1(y) ̸= ∅.

Proof. (i) Since [clfy ≤ 0] is closed and clfy ≤ fy, [fy ≤ 0] ⊆ cl[fy ≤ 0] ⊆ [clfy ≤ 0]. If
x ∈ F−1(y), then fy(x) = 0. Thus F−1(y) ⊆ [fy ≤ 0] ⊆ cl[fy ≤ 0] ⊆ [clfy ≤ 0].

Conversely, suppose that x ∈ [clfy ≤ 0]. Since fy(x) ≥ 0, clfy(x) = 0. There exists a
sequence {xn}n∈N ⊆ X converging to x with lim

n→+∞
d(y, F (xn)) = 0. Thus, one can find a se-

quence {zn}n∈N ⊆ Y such that zn ∈ F (xn) and lim
n→+∞

d((x, y), (xn, zn)) = lim
n→+∞

d(y, zn) =

0. Since the graph of F is closed, (x, y) ∈ gphF , i.e., x ∈ F−1(y). Thus F−1(y) ⊇ [clfy ≤ 0].
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(ii) According to (i), one only needs to show [clfy ≤ 0] ̸= ∅. Assume, for contradiction,
that [clfy ≤ 0] = ∅. For x̄ ∈ [0 < clfy < +∞], there exists σ′ ∈ (0, σ) and r ∈ (0,+∞) such
that

clfy(x̄) ≤ inf
X

clfy + σ′r.

By virtue of the Ekeland variational principle [9], one can find x ∈ B̄r(x̄) such that (0 <
)clfy(x) ≤ clfy(x̄) and clfy(x) < clfy(z) + σ′d(x, z) for every z ∈ X \ {x}. It follows that

⋄|∇clfy|0(x) ≤ σ′ < σ,

which contradicts ⋄|∇clfy|0(x) ≥ σ. Thus F−1(y) ̸= ∅.
(iii) By Proposition 1.3, one knows that the conclusion (iii) is correct. �

3.1 Metric Subregularity

In this subsection, we consider the metric subregularity of (1.2). According to Lemma 3.1
(i), one has

F−1(b) = [f b ≤ 0] = cl[f b ≤ 0] = [clf b ≤ 0].

By Theorem 2.5, one can easily get the following theorem, which gives characterizations of
the linear metric subregularity.

Theorem 3.2. Consider the following statements.

(i) For all x ∈ X, one has σd(x, F−1(b)) ≤ d(b, F (x)).

(ii) ⋄|∇clf b|0(x) ≥ σ for all x ∈ X \ F−1(b).

(iii) |∇clf b|(x) ≥ σ for all x ∈ X \ F−1(b).
Then, one has (i) ⇔ (ii) ⇐ (iii).

The following theorem gives characterizations of the nonlinear metric subregularity.

Theorem 3.3. Let θ : (0,+∞) → (0,+∞) be a continuous and nondecreasing function,
and ρ > 0. Consider the following statements.

(i) For all x ∈ Bρ(F
−1(b)) \ F−1(b), one has

d(b, F (x)) ≥ inf
B2ρ(F−1(b))\F−1(b)

d(b, F (·)) +
∫ d(x,F−1(b))

0
θ(s)ds

≥
∫ d(x,F−1(b))

0
θ(s)ds.

(ii) For all x ∈ B2ρ(F
−1(b)) \ F−1(b), one has |∇clf b|(x) ≥ θ(d(x, F−1(b))).

(iii) Let x ∈ B2ρ(F
−1(b)) \ F−1(b). Then there exists a sequence {un}n∈N converging to

x such that

lim
n→+∞

clf b(x)− f b(un)

d(x, un)
≥ θ(d(x, F−1(b))).

Then, one has (i) ⇐ (ii) ⇔ (iii).

Proof. Since d(b, F (·)) ≥ 0, the second inequality in the statement (i) is always true. Ac-
cording to Lemma 3.1 (i), one knows that F−1(b) is a closed set. According to Theorem 2.6,
one has (i) ⇐ (ii) ⇔ (iii). �
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3.2 Metric Regularity

By Theorem 3.2, one can get the following theorem, which gives characterizations of the
linear metric regularity.

Theorem 3.4. Consider the following statements.
(i) For all (x, y) ∈ X × Y , one has σd(x, F−1(y)) ≤ d(y, F (x)).
(ii) Let (x, y) ∈ X × Y with y /∈ F (x). Then ⋄|∇clfy|0(x) ≥ σ.
(iii) Let (x, y) ∈ X × Y with y /∈ F (x). Then |∇clfy|(x) ≥ σ.

Then, one has (i) ⇔ (ii) ⇐ (iii).

By Theorem 3.3, one can get the following theorem, which gives characterizations of the
nonlinear metric regularity.

Theorem 3.5. Let θ : (0,+∞) → (0,+∞) be a continuous and nondecreasing function,
and ρ > 0. Consider the following statements.

(i) For all (x, y) ∈ X × Y with y /∈ F (x), one has

d(y, F (x)) ≥ inf
B2ρ(F−1(y))\F−1(y)

d(y, F (·)) +
∫ d(x,F−1(y))

0
θ(s)ds

≥
∫ d(x,F−1(y))

0
θ(s)ds.

(ii) Let (x, y) ∈ X × Y with y /∈ F (x). Then |∇clfy|(x) ≥ θ(d(x, F−1(y))).
(iii) Let (x, y) ∈ X × Y with y /∈ F (x). Then there exists a sequence {un}n∈N ⊆ X

converging to x such that

lim
n→+∞

clfy(x)− fy(un)

d(x, un)
≥ θ(d(x, F−1(y))).

Then, one has (i) ⇐ (ii) ⇔ (iii).
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[21] H.V. Ngai, A.Y. Kruger and M. Théra, Slopes of multifunctions and extensions of
metric regularity, V ietnam J. Math. 40 (2012) 355–369.

[22] K.F. Ng and X.Y. Zheng, Metric subregularity and calmness for nonconvex generalized
equations in Banach spaces,. SIAM J. Optim. 20 (2010) 2119–2136.

[23] K.F. Ng and X.Y. Zheng, Metric subregularity for proximal generalized equations in
Hilbert spaces, Nonlinear Anal. 75 (2012) 1686–1699.



284 M.T. CHAO AND C.Z. CHENG

[24] J.S. Pang, Error bounds in mathematical programming, Math. Program. 79 (1997)
299–332.

[25] J.P. Penot, Metric regularity, openness and Lipschitzean behavior of multifunctions.
Nonlinear Anal. 13 (1989) 629–643.

Manuscript received 1 May 2013
revised 11 Jun 2013, 30 Jun 2013, 24 July 2013

accepted for publication 27 July 2013

Mian-tao Chao
Department of Mathematics, Beijing University of Technology
Beijing 100124, P.R. China
E-mail address: chaomiantao@126.com

Cao-zong Cheng
Department of Mathematics, Beijing University of Technology
Beijing 100124, P.R. China
E-mail address: czcheng@bjut.edu.cn


