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Abstract: In this paper, we provide some necessary and/or sufficient conditions of (linear or nonlinear) error
bounds for proper functions (not necessarily lower semicontinuous). As applications, we present some linear
and nonlinear metric regularity and subregularity results for the set-valued mappings with closed-graph.
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Introduction

Throughout the paper, let (X, d) be a complete metric space and (Y, d) be a metric space,
o € (0,+00). We recall that a set-valued mapping F' : X = Y is a mapping which assigns
to every x € X a subset (possibly empty) F(z) of Y. As usual, we use the notation
gphF = {(z;y) € X x Y : y € F(x)} for the graph of F and F~!: Y = X for the inverse
of F. This inverse (which always exists) is defined by F~1(y) := {z € X : y € F(z)}. And,
(x,y) € gphF if and only if (y,x) € gphF~L.

A set-valued mapping F' is said to be nonlinear metrically regular, if there exists a
nondecreasing function v : (0, +00) — (0, 4+00) such that

Yd(z, F~H(y))) < d(y, F(2)), Y(z,y) with d(z, F~'(y)) >0, (1.1)

where d(z, F~(y)) = inf d(z,2) and d(z, F(z)) = inf d(y,z). When v(s) := 7s for
zEF~1(y) 2EF (x)

some 7 > 0, we say that F is (linear) metrically regular (with modulus 7), which has been
much discussed in the literature (see [3, 4, 14, 19, 20] and the references therein). Several
authors have studied nonlinear metric regularity (see [5, 11, 15, 25]). Ioffe [15] presented a
systematic study of nonlinear regularity theory in metric spaces.

A weaker property (than the metric regularity of F) is that of the metric subregularity
concerning generalized equations of the form

be F(x), (1.2)
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where and throughout we assume that b € Y is a given point. (1.2) is said to be nonlinear
metrically subregular, if there exists a nondecreasing function v : (0, +00) — (0, +00) such
that

y(d(z, F~1(b))) < d(b, F(z)), Va with d(z, F~1(b)) > 0. (1.3)

When ~(s) := 7s for some 7 > 0, we say that (1.2) is (linear) metrically subregular (with
modulus 7). This property provides an estimate of how far a candidate x can be from the
solution set F~1(b) of the generalized equation (1.2). There exists a wide literature on linear
metric subregularity (see [12, 18, 22, 23] and the references therein).

The notion of error bound is closely related to metric regularity and subregularity. Let
f X = RU{+oc} be a proper function, and S := {z € X|f(x) < 0}. Recall (cf. [7])
that f is said to have a nonlinear error bound if there exists a nondecreasing function
~:(0,400) = (0,400) such that

v(d(z,S)) < f(z) Va with d(x,S) > 0. (1.4)

When 7(s) := 7s for some 7 > 0, we say that f has a linear error bound. Linear error
bounds were studied by many authors (e.g. [1, 2, 13, 10, 17, 24]). We refer the interested
reader to the surveys by Azé [1], Fabian- Henrion-Kruger-Outrata [10],Lewis-Pang [17], and
Pang [24].

Our main objective in this paper is to use the theory of error bounds to study the
linear and nonlinear metric regularity and metric subregularity of set-valued mappings.
Applications of the theory of error bounds to the investigation of metric regularity of set-
valued mappings have been recently studied and developed by many authors, see for instance
[3, 4, 19, 20]. Especially in the survey paper [4], it was shown that this approach is powerful
to provide a unified theory of the metric regularity.

The idea of this paper is mainly motivated by Ngai and Théra [19], where they used
the error bound of the lower semicontinuous hull of the function  — d(y, F'(x)) to get two
criteria for linear metric regularity (see [19, Theorem 3.2]). Indeed, Ngai and Théra [19,
Theorem 3.2] gave two error bounds criteria for the function z — d(y, F((x)) (not necessarily
lower semicontinuous). Theorem 3.2 in [19] and its proof indicate that one can formulate
the error bounds criteria by employing the lower semicontinuous hull.

This paper goes in the same direction. In Section 2, we establish some necessary and/or
sufficient conditions of linear and nonlinear error bounds for proper (not necessarily lower
semicontinuous) functions, and extend some results on error bounds in [2, 6, 7] to proper
functions. By using the ideas similar to [19] and the results obtained in Section 2, we derive
characterizations of the linear and nonlinear metric regularity and subregularity in Section
3.

Next, we recall some notions and results. The lower semicontinuous hull of a function
f is defined by clf(z) := min{liin_glf f(), f(x)}. As usual, domf := {z € X|f(z) < +oo}

denotes the effective domain of f, fi(z) := max{f(z),0}. B,(z) := {y € X|d(z,y) < p}
and B,(z) := {y € X|d(z,y) < p}, where p > 0. Let 3 :=0, 0% 00 :=0. Fora € R, 8 €
RJ{+oc} with a < B, let [f < a] :={z € X|f(z) <a}land [a < f < ] :=={r € X|a <
fx) < B}

In the rest of this section, unless otherwise specified, we assume that f : X — R|J{+o0}
is a (proper) lower semicontinuous function. Let a € R, 8 € R|J{+o0o} with a < .

Definition 1.1 ([8]). The strong slope of f at 2 € dom f is defined by

0, if xis a local minimum of f,
IVfl(z) = limsup 2810 otherwise.

Yo d(z,y)
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For x ¢ domf, let |V f|(z) = +o0 .

To the best of our knowledge, the following notion (called nonlocal slope in [21] and
global slope in [6]) was first introduced by Ngai and Théra [19, Theorem 2.1].

Definition 1.2. For z € dom f, let

f(x) —max{f(y),a}
d(z,y) '

For z ¢ domf, let °|V f|o(z) = +o00. The extended real number °|V f|,(x) is called the
global slope of f at x about level .

IV fla(z) = sup
Y

By the definitions of strong slope and global slope, one has the following proposition.
Proposition 1.3. If f(z) > «, then °|V f|o(z) > |V f|(z).
Let 04,s(f) denote the supremum of the 7 € [0, +00) such that
7d(z,[f < a]) < f(x) — a whenever f(z) € (a, 5).

Then
oap(f)d(z, [f <a]) < f(z) —a whenever f(z) € (o, 5). (1.5)

The following theorem gives two linear error bound criteria for lower semicontinuous
functions.

Theorem 1.4 ([6]). (i inf Vilz) <oa . (il inf  °|Vfla(z) =04 .
(O)- ©) _inf_ (V1) < ouplf). () _int _ OI¥lala) = 00af)
Proof. We give a quick proof for completeness and for the reader’s convenience. Since
[V F|(z) <°|Vf|a(x) whenever f(z) > «, one only needs to prove (ii).
Let 7 < 04,8(f). By the definition of o, g(f), for any = € [a < f < ], there exists

Yz € [f < a] such that f(z) — a > 7d(x,y,). Thus °|V fla(z) > m%w > 7. By

the arbitrariness of z and 7, one has  inf = °|Vf|a(z) > 04 5(f).
z€[a< f<]

On the other hand, for any 7 > o4,(f), there exists Z € [o < f < ] such that
f(@) —a < 7dZ,[f < a]). Let r € (0,d(z,[f < a])) be such that f(Z) — a < 7r. Let
g(x) := (f(z) — @)+ > 0. One has

9@)=f(Z)—a< i§f g+Tr.

By virtue of the Ekeland variational principle [9], there exists z € B,.(Z) such that g(z) <
9(Z) and g(x) < g(y)+7d(x,y) for every y € X\{z}. Since z € B,(Z) and r < d(Z, [f < a]),
one has g(z) = f(z) — « and

f(l’) —a< (f(y) - Oé)+ +7’d(l’,y), Vy € X\{ZL‘},

f(x) < (f(y) - a)+ +a+ Td(.’L',y) = maX{f(?J)v a} + Td(.’l?,y), Vy €X \ {3?}
Thus °|Vfla(z) < 7. By the arbitrariness of  and 7, one has [in§ IB]Q\Vﬂa(az) >
zelalf<
Ta,p(f)- 0

Through the above theorem and (1.5), one can easily get the following corollary.
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Corollary 1.5. (i) If €[ir<1§c<ﬁ] [Vf(z) > o, then f(zx) —a > od(z,[f < a]), Vz € [a <
;< B

(i)  inf  °|Vf|a(x) > 0 if and only if f(z) —a > od(z,[f < a]), Vx € [a < f < f].
z€[a< f<]

The following theorem is needed for our purposes.

Theorem 1.6 ([13]). Let f : X — R|J{+oo} be a proper function (not necessarily lower
semicontinuous). Then the following two statements are equivalent.

(i) od(z,[f <0]) < fy(z) forall ze X.

(ii) cl[f < 0] = [clf < 0] and od(x, [clf <0]) < (clf)4(x) for all z € X.

Linear and Nonlinear Error Bounds for Proper Functions

In this section, we establish some necessary and/or sufficient conditions of linear and non-
linear error bounds for proper (not necessarily lower semicontinuous) function f : X —
R (J{+0oc}. By the definitions of f; and lower semicontinuous hull, one can easily get the
following lemma.

Lemma 2.1. clfy(z) = (clf)4(x).
To simplify the expression, we prove the following two propositions.

Proposition 2.2. The following statements are equivalent.
clf(z)—f(un) > .

(i) There exists a sequence {un tnen converging to x such that lim o)

clf(z)—f(un) >

d(z,un)

Proof. (i)=-(ii). Let {uy, }nen be as in the statement (i). It follows from lim
n—

+oo
o > 0 that z is not a local minimum of clf. Since clf < f,

|Velf|(z) > lim M> lim cf(@) — flun)

>
n—+o0 d(x,uy) T notoo  d(z,up) =7

(i)<(i). If |Velf|(z) > o, then there exists a sequence {z,}nen converging to z such
that
clf(z) — clf(zn)
d(zx, z,)

For each fixed n € N, if clf(z,) = f(zn), then we can set u, = z,. And if clf(z,) =
lirr_1>inff(y) < f(zn), then there exists a sequence {yx}reny converging to z, such that
Y—2zn

1
>0 — — foralln e N, (2.1)
n

clf(zn) = kEwa(yk) < f(zn). According to (2.1), there exists a natural number K such

that
clf (@) — f(yx)
d(l’, yk)

Choose k, > K, and let u,, = yg,. Thus, the sequence {u,}nen converges to x such that

i S @) = )

n—-+00 d(a:, un)

1 1
>0 — — and d(zn,yx) < —, Vk > K.
n n

> 0.



NONLINEAR METRIC REGULARITY AND SUBREGULARITY 279

Proposition 2.3. The following statements are equivalent.
(i) For each € > 0 and each sequence {x,}nen converging to x, there exists a sequence
{tn Fnen with lir+n d(x,uy) > 0 such that
n—-+oo

ligilgw >0 —€.

(ii) For each € > 0, there exists a sequence {uy, }nen with lir_irrl d(z,upn) > 0 such that
n—-+00

clf () — f1 (un)

li —c.
n=rtoo d(z,uy) ZoTE
(i) °|Velflo(z) > o.
: df(@)—flun)  _  cdf(@)—f(zn) f(@n)=f(un) —
Proof. According to == = o) = T i and clf(z) =

min{liminf f(y), f(x)}, one can easily show that (i)<(ii).
y—x

(ii)=-(iii). Let € > 0 and {un }nen be as in the statement (ii). According to Lemma 2.1
and cl(f}) < fy4, it follows that

°|Velflo(z) = sup clf(z) — (clf)+(un)

neN,u, #x d(.’l?, un)
S - A () - (@) — fi ()
2 ngrfoo d(x, uy) 2 ngrfoo d(z,uy) Zo-s

By the arbitrariness of £ > 0, one has ¢|Vclf|o(x) > 0.
(ii)<«=(iii). If °|Velf|o(z) > o and € > 0, then there exists u # = such that

clf (x) — cl(f4)(w)
d(z,u)

>0 —E€.

It follows from the definition of cl(f) that there exists a sequence {uy, }nen converging to
u such that lir_~r_1 fi(uy) = el(f4)(u). Thus, the sequence {uy, }nen satisfies the following
n—-+0o0

conditions

1 —
lim d(z,u,) >0and lim df (@) = f+(un) >0 —e.
n—~+00 n——+00 d($, un)

Lemma 2.4. If °|Vclf|o(z) > o for every x € X \ cl[f < 0], then cl[f < 0] = [clf <0].

Proof. cl[f <0] C [clf <0] is obvious.
On the other hand, if = ¢ cl[f < 0], then °|Velf|o(x) = sup% > o > 0.
Thus clf(xz) > 0. This implies that = ¢ [clf < 0]. O

With the help of the preceding results, we obtain characterizations of the linear error
bound for the proper function f.

Theorem 2.5. Consider the following statements.
(i) od(a,[f < 0)) < fi(x) for all € X.
(ii) °|Velflo(z) > o for all z € X \ cl[f <0].
(iii) |Velf|(z) > o for all z € X \ cl[f < 0].
Then, one has (i) < (ii) < (iii).
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Proof. According to Proposition 1.3, it follows that (ii) < (iii).
According to Theorem 1.6, Lemma 2.4 and Corollary 1.5, it follows that (i)<(ii). O

The following theorem gives characterizations of nonlinear error bounds for the proper
function f.

Theorem 2.6. Let p € (0,4+00), C = cl[f < 0], and let 0 : (0,4+00) — (0,+00) be a
continuous and nondecreasing function. Consider the following statements.

N B > i d(w,[f<0))
(i) For all z € B,(C)\ C, one has f(x) > szl(Ié)\cf + /5 0(s)ds.

(ii) For all x € By,(C) \ C, one has |Vclf|(z) > 0(d(z,C)).
(ili) Let © € Ba,(C)\C. Then there exists a sequence {un }nen converging to x such that

. le(l‘) - f(un)
B e

Then, one has (1)<=(ii)<(iii).

Proof. According to Proposition 2.2, it follows that (ii)< (iii).
(i)<=(ii): According to [7, Theorem 4.1], the statement (ii) implies that

d(z,C)
clf(xz) > i(n Ly clf +/ 0(s)ds, for every x € B,(C)\ C.
0

Since C' = cl[f < 0] is a closed set, d(z,C) = d(z, [f < 0]) and By,(C) \ C is an open

set. Thus inf «clf = inf f. And, taking clf < f into account, one has
By (C\C By (C\C

(z,[£<0])
> i .
f(z) > szl(ncf)\cf —|—/0 0(s)ds, for every x € B,(C)\ C

Thus (i)<=(ii) < (iii). O

Linear and Nonlinear Metric Regularity and Subregularity

In this section, we apply the results established in Section 2 to the investigation of metric
regularity and subregularity. Throughout this section, we assume that gphF is closed. For
y € Y, we define the function f¥(-) := d(y, F(-)). For simplicity of presentation, we prove
the following lemma.

Lemma 3.1. (i) F~1(y) = [f¥ < 0] =cl[f¥ < 0] = [clf¥ <0].
(ii) If °|Velf¥|o(x) > o for every x € X with y ¢ F(x), then F~1(y) # 0.
(iii) If |VelfY|(x) > o for every x € X with y ¢ F(z), then F~1(y) # 0.

Proof. (i) Since [clf¥ < 0] is closed and clf¥ < f¥, [f¥ < 0] Cc

x € F71(y), then f¥(z) = 0. Thus F~1(y) C [f¥ < 0] Ccl[f¥ <0] C [clf¥ <0].
Conversely, suppose that = € [clf¥Y < 0]. Since fY(z) > 0 1 fY(x) = 0. There exists a

sequence {z, }neny C X converging to x with hrnOo d(y, F(x )) 0. Thus, one can find a se-

1[fv < 0] C [elfv <0]. If
| €

quence {z,}nen C Y such that z, € F(x,) and hm d((z,y), (xn, 2n)) = hIJIrl d(y, zn) =
n—-+oo
0. Since the graph of F' is closed, (z,y) € gphF, i.e., x E F~1(y). Thus F~1(y) 2 [clf¥ < 0].
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(ii) According to (i), one only needs to show [clf¥ < 0] # 0. Assume, for contradiction,
that [clf¥ < 0] = 0. For Z € [0 < clf¥ < 400], there exists ¢’ € (0,0) and r € (0,400) such
that

clfy(z) < 1nf clfy +a'r.

By virtue of the Ekeland variational principle [9], one can find x € B,(z) such that (0 <
Jelf¥(z) < clf¥(z) and clf¥(z) < clf¥(z) 4+ o’d(z, z) for every z € X \ {z}. It follows that

°|Velf¥|o(x) < 0’ < o,

which contradicts °|VelfY|o(z) > o. Thus F~1(y) # 0.
(iii) By Proposition 1.3, one knows that the conclusion (iii) is correct. O

Metric Subregularity

In this subsection, we consider the metric subregularity of (1.2). According to Lemma 3.1
(i), one has

FH0) =[f* <0 =cl[f* < 0] = [elf* <0].

By Theorem 2.5, one can easily get the following theorem, which gives characterizations of
the linear metric subregularity.

Theorem 3.2. Consider the following statements.
(i) For all z € X, one has od(x, F~(b)) < d(b, F(z)).
(ii) °|Velfllo(z) > o for all z € X \ F~1(b).
(iil) |Velfb|(z) > o for all x € X \ F~1(b).

Then, one has (i) < (i) < (iii).

The following theorem gives characterizations of the nonlinear metric subregularity.

Theorem 3.3. Let 6 : (0,400) — (0,+00) be a continuous and nondecreasing function,
and p > 0. Consider the following statements.
(i) For all z € B,(F~1(b)) \ F~*(b), one has

. d(xz,F~ ( )
(b, F > nf d(b, F()) + 0(s)d
bF@) 2 Bl e 4O J (s)ds

d(z,F~ (b
> fo( ®) 0(s)ds.

(ii) For all z € Ba,(F~1(b)) \ F~1(b), one has |Velft|(z) > 0(d(x, F~1(b))).
(iii) Let x € Ba,(F~1(b)) \ F~1(b). Then there exists a sequence {u, }nen converging to
x such that
b\ _ b

n—-+00 d(x, un)

> 0(d(z, F~H(b))).
Then, one has (i) < (ii) < (iii).
Proof. Since d(b, F(-)) > 0, the second inequality in the statement (i) is always true. Ac-

>
cording to Lemma 3.1 (i), one knows that F~1(b) is a closed set. According to Theorem 2.6,
one has (i) < (ii) < (iii). O
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Metric Regularity

By Theorem 3.2, one can get the following theorem, which gives characterizations of the
linear metric regularity.

Theorem 3.4. Consider the following statements.
(i) For all (x,y) € X x Y, one has od(z, F~1(y)) < d(y, F(z)).
(ii) Let (z,y) € X x Y with y ¢ F(x). Then °|Vclf¥|o(x) > o.
(iii) Let (z,y) € X XY withy ¢ F(x). Then |Vclf?|(z) > 0.
Then, one has (i) < (i) < (iii).

By Theorem 3.3, one can get the following theorem, which gives characterizations of the
nonlinear metric regularity.

Theorem 3.5. Let 6 : (0,+00) — (0,+00) be a continuous and nondecreasing function,
and p > 0. Consider the following statements.
(i) For all (x,y) € X xY withy ¢ F(x), one has
. d(z,F ()
d(y, F(x > inf d(y, F(+)) + 0(s)ds
P 2, i A0 FO) (5
> fod(x’F (y))G(s)ds.

(i) Let (v,y) € X x Y withy ¢ F(z). Then |VclfY|(z) > 0(d(x, F~1(y))).
(iii) Let (z,y) € X XY with y ¢ F(x). Then there exists a sequence {untnen € X
converging to x such that

clf?(z) — f¥(un)

T a2 O )

Then, one has (i) < (ii) < (iii).
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