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CG methods are very useful for solving problem (1.1), especially when the dimension n
of the problem is large. They are iterative methods, of the form

xk+1 = xk + αkdk, k = 1, 2, · · · , (1.3)

where dk is the search direction, and the stepsize αk > 0 is obtained by some line search
(This shall be discussed later). The next search direction dk+1 is generated as follows:

dk+1 = −gk+1 + βk dk, (1.4)

where gk+1 := ∇f(xk+1) and d1 = −g1. The scalar βk ∈ R in (1.4) should be chosen such
that (1.3)–(1.4) reduces to the linear CG method, which is originally developed for solving
problem (1.1) with the objective being a strictly convex quadratic function. For general
nonlinear objectives in (1.1), different choices of βk shall lead to different CG methods.
Well-known formulae for βk include the FR, PRP, HS, and DY formulae; (see [10]; [18], [19];
[15]; [6], respectively):

βFR
k =

∥gk+1∥2

∥gk∥2
, (1.5)

βPRP
k =

gTk+1 (gk+1 − gk)

∥gk∥2
, (1.6)

βHS
k =

gTk+1 (gk+1 − gk)

dTk (gk+1 − gk)
, (1.7)

βDY
k =

∥gk+1∥2

dTk (gk+1 − gk)
. (1.8)

The convergence rate of the CG methods is linear unless restart is invoked from time to
time. We could restart the CG methods every n iterations. However, it is known that the
better restart strategy should be related to the objective function. For instance, Powell [20]
suggested a restart strategy, which checks the quantity |gTk gk+1|/∥gk+1∥2 at each iteration.
If this quantity is greater than 0.2, then the Beale’s three-term CG method is restarted.
In such a way, satisfactory numerical results have been observed in [20]. The same restart
strategy was also used by Shanno and his collaborators [22, 23] in building the CONMIN
software.

There are other variants of CG methods which check the quantity gTk gk+1 in an implicit
fashion at each iteration and changes the computations of the formulae βk based on the
ratio gTk gk+1/∥gk+1∥2. One of them is the DYHS method [8] with

βk = max
{
0, min

{
βHS
k , βDY

k

}}
. (1.9)

If gTk gk+1 > ∥gk+1∥2, then βk in (1.9) is equal to zero, and the DYHS method is actually
restarted. Another variant is the FRPRP method [11] with the choice of βk being

βk =


−βFR

k , if βPRP
k < −βFR

k ;

βPRP
k , if βPRP

k ≤ βFR
k ;

βFR
k , if βPRP

k > βFR
k .

(1.10)

As can be seen from (1.10), the FRPRP method chooses βk to be βPRP
k if the quantity

gTk gk+1/∥gk+1∥2 lies in the interval [0, 2]; the method chooses βk to be −βFR
k if the quantity

is greater than 2; and the method chooses βk to be βFR
k if the quantity is less than 0.
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In this paper, we propose to apply Powell’s restart strategy to the four classical CG meth-
ods corresponding to (1.5)–(1.8). The motivations for the use of Powell’s restart strategy
to these classical CG methods are as follows. First, as is known, the FR and DY methods
are globally convergent when they are used for solving problem (1.1). However, these two
methods may generate many short steps without making productive progress to the min-
imum (See Section 4 for detailed discussions). In this case, restarting these two methods
is an effective way of overcoming this numerical problem. Second, when applying the CG
methods to solve problem (1.1) with quadratic objective functions, it holds

gTk gk+1 = 0; (1.11)

while, for general nonlinear objective functions, the value gTk gk+1 may not be zero. Therefore,
it is natural to use the quantity

∣∣gTk gk+1

∣∣ /∥gk+1∥2 to measure the loss of orthogonality

between gk and gk+1, and restart the CG methods if
∣∣gTk gk+1

∣∣ /∥gk+1∥2 is far away from
zero.

As can be seen from (1.3), a stepsize αk needs to be determined along the direction dk
at each iteration of CG methods. For example, it is often required to satisfy the Wolfe
conditions

f(xk + αdk) ≤ f(xk) + δαdTk gk, (1.12)

dTk g(xk + αdk) ≥ σdTk gk, (1.13)

or some of its variants such as the strong Wolfe conditions that is (1.12) and

|dTk g(xk + αdk)| ≤ −σdTk gk, (1.14)

and the generalized strong Wolfe conditions introduced in [3]. Theoretically, there must exist
some positive αk satisfying the Wolfe conditions (and its variants) if dk is a descent direction.
While in practical implementations, the first Wolfe condition (1.12) may never be satisfied
due to the existence of numerical errors. This numerical drawback of the Wolfe condition
was analyzed by using a one-dimension quadratic function in [13], and was also observed on
a problem called JENSMP from the CUTEr collection in [3].

The main contributions of this paper are as follows. First, we propose to apply Powell’s
restart strategy to improve the computational efficiency of the four classical CG methods.
We show that the directions generated by the corresponding variants of the classical CG
methods satisfy the sufficient descent property at each iteration; namely,

dTk gk ≤ −C∥gk∥2, ∀ k ≥ 1, (1.15)

where C > 0 is some constant. The above property (1.15) plays a key role in the global
convergence of the CG methods [11]. In addition, we propose generalized improved Wolfe
conditions to overcome the numerical drawback of the Wolfe conditions, which shall be in-
troduced in Section 2. By combining the sufficient descent property (1.15) and the proposed
generalized improved Wolfe conditions, we establish the global convergence of the variants
of all four classical CG methods. Second, numerical results are very promising, showing that
all four CG methods after equipping with Powell’s restart strategy significantly outperform
the classical ones. In particular, the numerical performance of the HS method with Powell’s
restart strategy compares favorably with the one of the Dai-Kou’s CGOPT in [3]. To the
best of our knowledge, the Dai-Kou’s CGOPT is one of the best CG methods in terms of
the numerical performance.
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The rest of the paper is organized as follows. The generalized improved Wolfe conditions
are first introduced in Section 2. Then, the application of Powell’s restart strategy to the HS
and PRP methods is presented in Section 3, and the application to the FR and DY methods
is presented in Section 4. Also, we shall show, in Sections 3 and 4, that the directions
generated by the variants of the four classical CG methods satisfy the sufficient descent
property (1.15) and the iterates generated by these variants are global convergent if the
proposed line search conditions in Section 2 are satisfied. Numerical results are reported in
Section 5. Finally, conclusion is drawn in Section 6.

2 The Generalized Improved Wolfe Conditions

As is known to us, the line search strategy plays an important role in CG methods. In this
paper, we propose the following line search strategy:

f(xk + αdk) ≤ f(xk) + min
{
ϵ|f(xk)|, δαdTk gk + ηk

}
, (2.1)

σ1d
T
k gk ≤ dTk gk+1 ≤ −σ2d

T
k gk, (2.2)

where ϵ > 0, 0 < δ < σ1 < 1, σ2 > 0, and the positive sequence {ηk} satisfies
∑

ηk < +∞.
The condition (2.2) is firstly used in [5]. In particular, if the parameter σ2 in (2.2) is set to be
+∞, then the conditions (2.1)–(2.2) reduce to the Dai-Kou’s improved Wolfe conditions [3].
We thus call the conditions (2.1)–(2.2) the generalized improved Wolfe conditions. It is
worthwhile remarking that, if dTk gk < 0, then there must exist a suitable positive stepsize
αk satisfying (2.1) and (2.2), since these two conditions are weaker than the strong Wolfe
conditions (1.14).

Throughout this paper, we shall use the line search strategy (2.1)–(2.2). The motivation
for the use of the line search conditions (2.1)–(2.2) lies in its numerical efficiency. Specifically,
at the beginning of the iterations, the value of |f(xk)| is often relatively large, condition (2.1)
allows the stepsize αk satisfying the first Wolfe condition (1.12), which can give a sufficient
descent to the objective function. While, when the iterate point is close to the minimum, it
often occurred that the trial point is close to the current point xk, in which case,

f(xk + αdk) ≤ f(xk) + ϵ|f(xk)|, (2.3)

then the condition (2.1) becomes

f(xk + αdk) ≤ f(xk) + δαdTk gk + ηk. (2.4)

Comparing the above condition with the first Wolfe line search condition (1.12), it can be
seen that the extra positive term ηk allows a slight increase in the function value and thus is
helpful in avoiding the numerical drawback of the line search condition (1.12). At the same
time, the fact that the sequence {ηk} is summable can guarantee the global convergence of
the method.

On the other hand, in typical implementations of the Wolfe conditions (1.12)-(1.13), it
is often desirable to choose σ to be close to 1. However, Dai and Yuan [7] showed that
when σ > 1/2, the FR method may not yield a descent direction even for the function
f(x) = λ∥x∥2. As can be seen later, the FR method is globally convergent under the
proposed generalized improved Wolfe conditions (2.1)–(2.2) with the parameters satisfying
σ1 + σ2 ≤ 1. Therefore, using condition (2.2) instead of (1.13) makes it possible to take σ1

arbitrarily close to 1, by taking σ2 close to 0.
Using the similar argument as in [3], we can obtain the following lemma.
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Lemma 2.1. Assume that f satisfies Assumption 1.1. Consider the iterative method of
the form (1.3) where the direction dk satisfies gTk dk < 0 and the step size αk satisfies the
generalized improved Wolfe conditions (2.1) and (2.2). Then we have

∑
k≥1

(gTk dk)
2

∥dk∥2
< ∞. (2.5)

From the lemma above, it follows that the generalized improved Wolfe line search also
satisfies the Zoutendijk condition (see [24]), which is the basis in showing the global conver-
gence of CG methods.

In the end of this section, we present the following lemma, which is often used to prove
the global convergence of CG methods.

Lemma 2.2 ([11, 14]). Suppose the CG method (1.3) and (1.4) satisfies the following con-
ditions:

(a) βk ≥ 0.

(b) The search directions satisfy the sufficient descent condition (1.15).

(c) The Zoutendijk condition (2.5) holds.

(d) Property (*) holds. That is, assume that 0 < γ ≤ ∥gk∥ ≤ γ̄ for all k ≥ 1, then there
exist constants b > 1 and λ > 0 such that for all k:

|βk| ≤ b,

and

∥sk∥ ≤ λ ⇒ |βk| ≤
1

b
,

where sk := xk+1 − xk. If, additionally, Assumption 1.1 holds, then the corresponding CG
method is globally convergent.

3 On HS and PRP methods

In this section, Powell’s restart strategy is applied to the HS and PRP methods. The
sufficient descent property and the global convergence are also established for the HS and
PRP methods equipped with Powell’s restart strategy.

The PRP and HS methods (corresponding to (1.6) and (1.7) respectively) share the
common numerator gTk+1(gk+1 − gk). If xk+1 − xk is small, the factor yk := gk+1 − gk in the
numerator of βk is close to zero, and the new search direction dk+1 is essentially the steepest
descent direction −gk+1. Thus, the PRP and HS methods possess a built-in restart feature
that addresses the jamming problem. That is, they take a large number of small steps
without making productive progress to the minimum (Detailed discussions can be found in
Section 4). This actually explains why the performance of the PRP and HS methods is
generally better than the performance of the FR and DY methods. However, the PRP and
HS methods are not globally convergent. In this paper, we consider modifying the PRP and
HS methods to guarantee their global convergence.
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We modify the classical HS method as follows:

βHS∗
k =

{
βHS
k , if |gTk gk+1| ≤ chs∥gk+1∥2;

0, otherwise,
(3.1)

where chs is a constant satisfying

0 < chs < min

{
1,

1

σ2

}
. (3.2)

This formula for βk basically says that if |gTk gk+1| is greater than chs∥gk+1∥2, then the HS
method should be restarted.

Next, we establish the sufficient descent property for the search direction dk+1 in (1.4)
with βk chosen according to (3.1).

Lemma 3.1. Consider the CG method (1.3)–(1.4), where βk is given by (3.1), and the
stepsize αk satisfies (2.2). If the parameter chs in (3.1) satisfies (3.2), then the sufficient

descent condition (1.15) holds with C = 1− σ2(1 + chs)

1 + σ2
.

Proof. It suffices to consider the case where βk ̸= 0. In the sequential, we establish the
lemma by induction. First of all, the lemma holds true for k = 1 due to d1 = −g1. Suppose
that dTk gk ≤ −C∥gk∥2 holds true, we show that dTk+1gk+1 ≤ −C∥gk+1∥2 is also true. By
(3.1), the direction (1.4) always satisfies

|gTk gk+1| ≤ chs∥gk+1∥2 with 0 < chs < 1, (3.3)

which, together with the choice of chs, further implies

0 ≤ (1− chs)∥gk+1∥2 ≤ gTk+1yk ≤ (1 + chs)∥gk+1∥2. (3.4)

From the condition (2.2) and the assumption dTk gk ≤ −C∥gk∥2, it follows that

−σ2 ≤ dTk gk+1

dTk gk
≤ σ1. (3.5)

Consequently, there holds

dTk gk+1

dTk yk
=

dT
k gk+1

dT
k gk

dT
k gk+1

dT
k gk

− 1
≤ σ2

1 + σ2
. (3.6)

By combining (3.4) and (3.6), we immediately obtain

dTk+1gk+1 = −∥gk+1∥2 +
dTk gk+1

dTk yk
gTk+1yk

≤
(
−1 +

σ2(1 + chs)

1 + σ2

)
∥gk+1∥2, (3.7)

which completes the proof. Notice that the positivity of C is due to the fact 0 < chs <
1
σ2
.

A detailed description of the proposed modified HS method is given as follows.
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Algorithm 3.2 (The Sufficient Descent HS* Method).

Step 0. Given x1 ∈ Rn, ε > 0, 0 < δ ≤ σ1 < 1, σ2 > 0, and chs satisfies (3.2).

Step 1. Set k = 1. If ∥g1∥ ≤ ε, terminate the algorithm; else set d1 = −g1.

Step 2. Compute the stepsize αk > 0 such that conditions (2.1) and (2.2) are satisfied.

Step 3. Let xk+1 = xk + αkdk. If ∥gk+1∥ ≤ ε, terminate the algorithm.

Step 4. If |gTk gk+1| > chs∥gk+1∥2, set dk+1 = −gk+1, k = k + 1, and go to Step 2.

Step 5. Compute βk by (1.7) and dk+1 by (1.4). Set k = k + 1, and go to Step 2.

Applying the sufficient descent HS* method in Algorithm 3.2 to solve problem (1.1) with
uniformly convex functions, i.e., there exists a constant µ > 0 such that

(∇f(x)−∇f(x̄))T (x− x̄) ≥ µ∥x− x̄∥2, ∀ x, x̄ ∈ Rn, (3.8)

we have the following global convergence result.

Theorem 3.3. Assume that f satisfies Assumption 1.1. Apply the sufficient descent HS*
method in Algorithm 3.2 to solve problem (1.1) with uniformly convex functions. Then, we
have

lim
k→∞

∥gk∥ = 0. (3.9)

Proof. It follows from (1.2) and (3.8) that

∥yk∥ ≤ L ∥sk∥, (3.10)

dTk yk ≥ µ ∥dk∥ ∥sk∥. (3.11)

By using (3.10) and (3.11), we have

∥dk+1∥ ≤ ∥gk+1∥+
∣∣∣∣yTk gk+1

dTk yk

∣∣∣∣ ∥dk∥ ≤
(
1 +

L

µ

)
∥gk+1∥. (3.12)

Since the sufficient descent property (1.15) holds true, it follows from Lemma 2.1 that∑
k≥1

∥gk∥4

∥dk∥2
< ∞. (3.13)

Combining (3.12) and (3.13) yields
∑

k≥1 ∥gk∥2 < ∞, which implies (3.9).

Theorem 3.4. Assume f satisfies Assumption 1.1. If the generated sequence {xk} is
bounded, then the sufficient descent HS* method given in Algorithm 3.2 is globally con-
vergent.

Proof. To prove the global convergence of the HS* method for general nonlinear functions,
we only need to check that all conditions in Lemma 2.2 are satisfied.

First of all, we show that βHS∗
k ≥ 0. Note that, to show this, we only need to consider

the case where βHS∗
k = βHS

k . In this case, it follows from (2.2) and (3.7) that

dTk yk ≥ (σ1 − 1)dTk gk ≥ (1− σ1)

(
1− σ2(1 + chs)

1 + σ2

)
∥gk∥2 ≥ 0. (3.14)
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This, together with (3.4), implies βHS
k in (1.7) is nonnegative.

Second, it follows from Lemma 3.1 and Lemma 2.1 that the search directions satisfy the
sufficient descent properties and the Zoutendijk condition (2.5) holds true.

Finally, we show that Property (*) is also true. Assume that there exists γ > 0 such that

∥gk∥ ≥ γ, ∀ k ≥ 1. (3.15)

By the continuity of ∇f and the boundedness of {xk}, there must exist some positive
constant γ̄ such that

∥xk∥ ≤ γ̄, ∥gk∥ ≤ γ̄, ∀ k ≥ 1. (3.16)

Moreover, by combining (2.2), (1.15), and (3.15), we obtain

dTk yk ≥ −(1− σ1)d
T
k gk ≥ C(1− σ1)γ

2. (3.17)

This, together with (1.2) and (3.16), further implies

βk =
gTk+1yk

dTk yk
≤ γ̄∥yk∥

C(1− σ1)γ2
≤ Lγ̄∥sk∥

C(1− σ1)γ2
:= cβ∥sk∥. (3.18)

Define b = 2cβ γ̄ and λ = 1
2c2β γ̄

. It follows from (3.18) and (3.16) that

|βk| ≤ b, (3.19)

and

∥sk∥ ≤ λ ⇒ |βk| ≤
1

b
. (3.20)

The relations (3.19) and (3.20) show that βk in (1.7) has Property(*) (See Lemma 2.2).

We modify the classical PRP method in a similar fashion as follows:

βPRP∗
k =

{
βPRP
k if |gTk gk+1| ≤ cprp∥gk+1∥2;

0, otherwise,
(3.21)

where cprp is a positive constant in (0, 1) satisfying

σ1(1− cprp) + σ2(1 + cprp) < 1. (3.22)

Here we choose the parameters σ1 and σ2 in (2.2) satisfying 0 < σ1, σ2 < 1.
The following lemma gives the sufficient descent property of the search direction (1.4)

with βk chosen according to (3.21).

Lemma 3.5. Consider the CG method (1.3)–(1.4), where βk is given by (3.21), and the
stepsize αk satisfies (2.2). If the parameter cprp in (3.21) satisfies (3.22), then the sufficient

descent condition (1.15) holds with C = 1− σ2(1 + cprp)

1− σ1(1− cprp)
> 0.

Proof. To show the Lemma, it is sufficient to consider the case where β ̸= 0. Similar to the
proof of Lemma 3.1, we can show that (3.4) remains true if chs there is replaced with cprp,
which, together with (1.6), further implies that

−1 + (1− cprp)
dTk gk+1

∥gk∥2
≤

dTk+1gk+1

∥gk+1∥2
≤ −1 + (1 + cprp)

dTk gk+1

∥gk∥2
. (3.23)
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By combining the above relation and the second inequality of (2.2), we can show

dTk+1gk+1

∥gk+1∥2
≤ −1− σ2(1 + cprp)

dTk gk
∥gk∥2

.

Inductively using the above inequality and the first inequality of (2.2) yields

dTk+1gk+1

∥gk+1∥2
≤ −1 + σ2(1 + cprp)

k−1∑
j=0

σj
1(1− cprp)

j ≤ −1 +
σ2(1 + cprp)

1− σ1(1− cprp)
. (3.24)

Finally, it follows from (3.22) that C := 1− σ2(1 + cprp)

1− σ1(1− cprp)
> 0.

For convenience, we present the modified PRP method as follows:

Algorithm 3.6 (The Sufficient Descent PRP* Method). Replace Step 5 of Algorithm 3.2
with

Step 5. Compute βk by (3.21) and dk+1 by (1.4). Set k = k + 1, and go to Step 2.

By the definition (3.21) of βPRP∗
k , we see that either βPRP∗

k = 0 or it satisfies

(1− cprp)
∥gk+1∥2

∥gk∥2
≤ βPRP∗

k ≤ (1 + cprp)
∥gk+1∥2

∥gk∥2
. (3.25)

Since cprp ∈ (0, 1), it follows that
βPRP∗
k ≥ 0. (3.26)

Furthermore, we know from [11] that the PRP* method has Property(*). Specifically, using
the constants γ and γ̄ in (3.15) and choosing b = 2γ̄2/γ2 and λ = γ2/(2Lγ̄b), we have

|βPRP
k | ≤ (∥gk∥+ ∥gk+1∥)∥gk+1∥

∥gk∥2
≤ 2γ̄2

γ2
= b, (3.27)

and

∥sk∥ ≤ λ ⇒ |βPRP
k | ≤ ∥yk∥∥gk+1∥

∥gk∥2
≤ Lλγ̄

γ2
=

1

2b
. (3.28)

The above analysis shows that βPRP∗
k is positive, satisfies Property(*), and guarantees

the sufficient descent condition (Lemma 3.5). By Lemma 2.2, we immediately obtain the
following convergence theorem.

Theorem 3.7. Assume f satisfies Assumption 1.1. The sufficient descent PRP* method
given in Algorithm 3.6 is globally convergent.

4 On FR and DY methods

In this section, we apply Powell’s restart strategy to the FR and DY methods. We shall
also establish the sufficient descent property and the global convergence of the variants of
the corresponding methods for solving problem (1.1) with general nonlinear objectives.

As can be seen from (1.5) and (1.8), the FR and DY methods have a common term
∥gk+1∥2 in the numerator. Different from the PRP and HS methods, the global convergence
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of these two methods can be guaranteed without any modification on βk. Zoutendijk [24]
firstly proved the FR method is globally convergent with exact line search. Powell [20]
pointed out that the FR method with exact line search will produce many short steps
without making significant progress to the minimum in practical computations. Actually,
this phenomenon can also be observed when the inexact line search is performed. Denoting
the angle between −gk and dk by θk, then

cos θk = − dTk gk
∥dk∥∥gk∥

. (4.1)

If the inexact line search is performed, then there exist positive constants c1, c2 such that

c1
∥gk∥
∥dk∥

≤ cos θk ≤ c2
∥gk∥
∥dk∥

. (4.2)

Suppose that an unfortunate search direction dk is generated in terms that cos θk ≈ 0 at
some iteration k. In this case, it is likely that xk+1 ≈ xk. If this happens, then we have
∥gk+1∥ ≈ ∥gk∥, and

βFR
k+1 ≈ 1. (4.3)

Moreover, by (4.2), we obtain

∥gk+1∥ ≈ ∥gk∥ ≪ ∥dk∥. (4.4)

Combining the above relation and (4.3) shows ∥dk+1∥ ≈ ∥dk∥ ≫ ∥gk+1∥, which further
implies cos θk+1 ≈ 0 according to (4.2). Therefore, this behavior can start all over again and
a large number of subsequent steps are small, unless the method is restarted. Gilbert and
Nocedal in [11] gave a numerical example illustrating this behavior. The poor performance
of the FR method in applications are often due to this jamming phenomenon.

To overcome the numerical drawback of the FR method, we consider applying Powell’s
restart idea to it. We modify the FR method as follows:

βFR∗
k =

{
βFR
k when |gTk gk+1| ≤ cfr∥gk+1∥2;

0, otherwise,
(4.5)

where the parameter cfr is set to be in the interval (0, 1).
In the FR* method, we also use the generalized improved Wolfe conditions (2.1) and

(2.2), where the parameters σ1 and σ2 are chosen such that

σ1 + σ2 ≤ 1.

Under the generalized improved Wolfe line search, we can establish the sufficient descent
property for the FR* method. In fact, in a similar fashion as showing (3.24), we can show,
by combining (1.4) and (2.2), that

dTk+1gk+1

∥gk+1∥2
≤ −1 + σ2

k−1∑
j=0

σj
1 ≤ −1 +

σ2

1− σ1
. (4.6)

Lemma 4.1. Suppose that the generalized improved Wolfe line search conditions are satisfied
at every iteration. Then, the direction generated by the FR∗ method satisfies the sufficient

descent property (1.15) with C = 1− σ2

1− σ1
> 0.
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A specification of the FR* method is given as follows.

Algorithm 4.2 (The Sufficient Descent FR* Method). Replace Step 5 of Algorithm 3.2
with

Step 5. Compute βk by (1.5) and dk+1 by (1.4). Set k = k + 1, and go to Step 2.

Lemma 4.1 shows that the FR* method always generates the sufficient descent directions.
The similar argument as in [7] shows the following convergence result of the FR* method.

Theorem 4.3. Assume that f satisfies Assumption 1.1. The sufficient descent FR* method
given in Algorithm 4.2 is globally convergent.

Now, we apply Powell’s restart strategy to the DY method developed in [6]. With a stan-
dard Wolfe line search, the DY method always generates the descent directions. In addition,
global convergence of the DY method is guaranteed if Assumption 1.1 holds true. The mo-
tivation here for applying Powell’s restart strategy is to improve its numerical performance.
The βk in the DY method (c.f. (1.8)) is modified as follows:

βDY ∗
k =

{
βDY
k , when |gTk gk+1| ≤ cdy∥gk+1∥2;

0, otherwise,
(4.7)

where the parameter cdy lies in the interval (0, 1). Under the generalized improved Wolfe
line search, the DY* method can obtain the search directions satisfying the sufficient descent
property. In fact, it follows from the generalized improved Wolfe line search conditions that

dTk gk+1

dTk gk
≥ −σ2. (4.8)

Thus, we have

dTk+1gk+1

∥gk+1∥2
= −1 +

βDY
k dTk gk+1

∥gk+1∥2
=

dTk gk
dTk gk+1 − dTk gk

≤ −1

1 + σ2
. (4.9)

Lemma 4.4. Suppose that the generalized improved Wolfe line search conditions are satisfied
at each iteration. Then the directions generated by the DY ∗ method satisfy the sufficient
descent property with C = 1/(1 + σ2).

Algorithm 4.5 (The Sufficient Descent DY* Method). Replace Step 5 of Algorithm 3.2
with

Step 5. Compute βk by (1.8) and dk+1 by (1.4). Set k = k + 1 and go to Step 2.

Similar to the DY method, the DY* method is also globally convergent for problem (1.1)
with general nonlinear objectives.

Theorem 4.6. Assume that f satisfies Assumption 1.1. Then the sufficient descent DY*
method given in Algorithm 4.5 is globally convergent.
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5 Numerical Results

In this section, we present some simulation results to show the efficiency of the use of Powell’s
restart strategy to the FR, PRP, HS, and DY methods. For convenience, we compare the
performance of the following methods:

• FR*: Algorithm 4.2 with the parameters δ = 0.1, σ1 = 0.8, σ2 = 0.1, and cfr = 0.8.

• FR: The FR method using the same line search as in the FR* method.

• PRP*: Algorithm 3.6 with the parameters δ = 0.1, σ1 = 0.8, σ2 = 0.1, and cprp = 0.8.

• PRP+: The PRP method allows only positive βprp
k and uses strong Wolfe line search

with the parameters δ = 10−4 and σ = 0.1. This variant of the PRP method is
proposed by Gilbert and Nocedal [11].

• HS*: Algorithm 3.2 with the parameters δ = 0.1, σ1 = σ2 = 0.9, and chs = 0.8.

• HS+: A similar variant of the HS method as the PRP+ method.

• DY*: Algorithm 4.5 with the parameters δ = 0.1, σ1 = 0.9, σ2 = +∞, and cdy = 0.8.

• DY: The Dai-Yuan method in [6] using the same line search as in the DY* method.

• DYHS: The method in [8] using the same line search as in the HS* method.

• FRPRP: The method in [11] using the same line search as in the PRP* method.

All of the above algorithms were implemented in C language and tested in Fedora 12
Linux environment. The computer used is a Lenovo X200 laptop with 2G RAM memory and
Centrino2 processor. The termination criterion of all algorithms is set to be ∥∇f(xk)∥∞ ≤
10−6.

The test problems are 135 unconstrained optimization problems drawn from the CUTEr
[12] collection. For each comparison, we excluded those problems for which different solvers
converge to different solutions.

The performance profile [9] is used to display the performance of the algorithms. Define
P as the whole set of np test problems and S the set of the interested solvers. Let

lp,s = nf + 3ng

be the cost required by solver s for solving problem p, where nf and ng denote the number
of objective function and gradient evaluations, respectively. Define the performance ratio as

rp,s =
lp,s
l∗p

,

where l∗p = min {lp,s : s ∈ S}. It is obvious that rp,s ≥ 1 for all p and s. If the solver s
fails to solve problem p, then rp,s is set to be a large number M . The performance profile
for each solver s is defined as the following cumulative distribution function based on the
performance ratio rp,s :

ρs(τ) =
size{p ∈ P : rp,s ≤ τ}

np
.

Obviously, ρs(1) represents the percentage of problems for which the solver s is the best.
See [9] for more details about the performance profile.
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Firstly, we test the efficiency of using Powell’s restart strategy to the HS method. Figure
1 plots the perfomance profile of the HS* and HS+ methods on the number of function and
gradient evaluations. After eliminating the problems for which the two algorithms converge
to different solutions, there are 129 problems left. It can be seen from Figure 1 that the
HS* method is faster for about 80% of test problems, while the HS+ method is faster for
about 35% of test problems, which indicates that Powell’s restart strategy gives a substantial
improvement on the HS method.

Figures 2-4 show the comparison of the PRP* method with the PRP+ method, the FR*
method with the FR method, and the DY* method with the DY method, respectively. After
eliminating the problems for which the two algorithms converge to different solutions, 130,
135 and 133 problems are left, respectively. It can be observed from these figures that the
use of Powell’s restart strategy can significantly improve the computational efficiency of the
corresponding methods.

In Figure 5, we compare the Algorithm 3.2, which ranks the first among the four variants
of the CG methods, with CGOPT on function and gradient evaluations. After eliminating
the problems for which the two algorithms converge to different solutions, 132 problems
are left. Observe that the HS* method is faster for about 65% of the test problems, while
CGOPT is faster for less than 45% of the test problems. This shows that the HS method
with Powell’s restart strategy is competitive with the CGOPT method.

In Figure 6, we compare the HS* method with Dai-Kou’s CGOPT where the same
generalized improved Wolfe line search is used. We abbreviated CGOPT with Generalized
Improved Wolfe line search to CGOPT-GIW. Figure 6 shows that the HS* method still has
a better performance.

Figure 7 and 8 plot comparisons of the proposed HS* with the DYHS method [8] and
the proposed PRP* method with the FRPRP method [11], respectively. These two figures
show that the proposed methods outperform the DYHS and FRPRP methods.

6 Conclusion

In this paper, we apply Powell’s restart strategy to the FR, PRP, HS, and DY methods,
and obtain the corresponding variants of the four classical CG methods. Also, we propose a
generalized improved Wolfe line search condition, which can be regarded as an extension of
the Dai-Kou’s improved Wolfe line search condition in [3]. Based on the proposed general-
ized improved Wolfe line search condition, we show that the variants of all aforementioned
CG methods enjoy the sufficient descent property and are globally convergent. Numerical
simulation results show that the use of Powell’s restart strategy can significantly improve
the numerical performance of the four classical CG methods. In particular, the HS* method
performs as well as the Dai-Kou’s CGOPT method [3], which is, by far, one of the best CG
methods.

As we know, the performance improvement of the variants over the classical CG methods
is a result of the use of Powell’s restart strategy, i.e., using the quantity |gTk gk+1| measures
nonlinear extent of the objective function, and restarting the corresponding CG methods if
this quantity is sufficiently large. In the CGOPT method, there is another dynamical restart
strategy based on rk−1 defined by (3.4) in [3], which reflects the similarity of an objective
with some quadratic function. Such restart strategy accelerates the CGOPT method to a
great extent. Therefore, to extend this work, we may consider how to use these two restart
strategies to CGOPT. This will be one of our future works.
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Figure 1: Performance profile of Algorithm 3.2 (the HS* method) and the HS+ method for
the test problems from CUTEr set.
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Figure 2: Performance profile of Algorithm 3.6 (the PRP* method) and the PRP+ method
for the test problems from CUTEr set.
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Figure 3: Performance profile of Algorithm 4.2 (the FR* method) and the FR method for
the test problems from CUTEr set.
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Figure 4: Performance profile of Algorithm 4.5 (the DY* method) and the DY method for
the test problems from CUTEr set.



100 C.-X. KOU, W.-H. ZHANG, W.-B. AI AND Y.-F. LIU

1 1.5 2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

0.9

1

τ

p

nf + 3ng

 

 

HS*
CGOPT

Figure 5: Performance profile of Algorithm 3.2 (the HS* method) and the CGOPT method
for the test problems from CUTEr set.
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Figure 6: Performance profile of Algorithm 3.2 (the HS* method) and the CGOPT-GIW
method for the test problems from CUTEr set.



ON THE USE OF POWELL’S RESTART STRATEGY TO CG METHODS 101

1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

p

nf + 3ng

 

 

HS*
DYHS

Figure 7: Performance profile of Algorithm 3.2 (the HS* method) and the DYHS method
for the test problems from CUTEr set.
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Figure 8: Performance profile of Algorithm 3.6 (the PRP* method) and the FRPRP method
for the test problems from CUTEr set.
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Rev. Francaise Informat. Recherche Opértionelle 3 (1969) 35–43.
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