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where ∥x∥0 is l0 norm of the vector x ∈ Rn, i.e., the number of nonzero entries in x (this
is not a true norm, as ∥ · ∥0 is not positive homogeneous), and A ∈ Rm×n. This is just the
model of the compressed sensing (CS) with nonnegative constraints, while CS has obtained
rapid developments in recent years after the fundamental and pioneering work by Donoho
[6], and Candés, Romberg and Tao [4, 5]. It is NP-hard in general even without the positive
semidefinite constraints [1, 9, 10, 19].

A popular approach for solving problem (1.1) in the systems and control community is
to minimize the trace of a positive semidefinite matrix variable instead of its rank (see, e.g.,
[17]). This yields the convex relaxation of problem (1.1), i.e., semidefinite program (SDP)
relaxation:

min tr(X) s.t. AX = b, X ≽ 0, (1.2)

where tr(X) is the trace of matrix X. In the vector case, the above problem becomes the
linear program (LP) relaxation of SNR

min
n∑

i=1

xi s.t. Ax = b, x ≥ 0. (1.3)

Thus, the above LP problem is the l1 norm minimization problem with nonnegative con-
straints.

In control, statistics, signal and image processing, econometrics, quantum information,
and many other fields, many applications can be formulated as problem (1.1). Below we list
some of them.

The Feedback Synthesis Problem Feedback synthesis problem is of importance in
control and system theory. Consider a continuous-time linear time-invariant dynamical
system

ẋ = Ax+Bu, y = Cx,

with matrices A ∈ Rn×n, and B,C are matrix of appropriate dimensions. A stabilizing
controller of order s for the above system is to specified as

ż = Asz +Bsy, u = Csz +Dsy,

where As ∈ Rs×s. The question is to check, for a given s, whether such a controller (of fixed
order) exists. Based on work by EI Ghaoui and Gahinet [8], Mesbahi and Papavassilopoulos
[17] reformulated it as a rank minimization with linear matrix inequality constraints:

min rank(X) s.t. M(X) + Q ≽ 0, X ≽ 0,

where M(X) = X −
∑k

i=1MiXM
T
i is a symmetry-preserving linear mapping on Sn with

matricesMi ∈ Rn×n for i = 1, 2, . . . , k, Q is a symmetric matrix (of appropriate dimensions).
The Multidimensional Scaling Multidimensional scaling (MDS) is to discover some

interesting and important information hidden in multidimensional data, see, e.g., [16]. Sup-
pose a matrix D = (dij) ∈ Sn is given, where dij is the distance between points i and j. We
aim to find n points {x1, . . . , xn} in a low-dimensional metric space such that the metric
distance between xi and xj matches the distance dij(or as close as possible in the noise case).
Recently, the MDS problem has been reformulated [21] as the following rank minimization
problem:

min rank(X) s.t. A(X) = D ◦D,X ≽ 0,



S-SEMIGOODNESS FOR LOW-RANK SEMIDEFINITE MATRIX RECOVERY 75

where A(X) = diag(X)eT + ediag(X)T − 2X is a linear operator, “◦” is the Hadamard
product of matrices. Clearly, the above MDS model is a special case of the problem (1.1).

The Phase Retrieval Problem Phase retrieval is the problem of finding the phase
that satisfies a set of constraints for a measured amplitude, which has many important ap-
plications in X-ray crystallography, transmission electron microscopy and coherent diffrac-
tive imaging, etc. Recently, Candès et al [2, 3] formulated the phase retrieval problem
as problem (1.1). Let x ∈ Cn be a discrete signal and the given observation bi be the
squared modulus of the inner product of the signal x and some known vectors zi, i.e.,
bi = |⟨zi, x⟩|2, i = 1, 2, . . . ,m. In other words, we only know the magnitude of ⟨zi, x⟩and
the phase information is lost. However, we want to recover both phase and magnitude
information of x from the known observation. Letting A : Hn×n → Rm be the linear trans-
formation, where Hn×n denotes the space of Hermitian matrices. By rewriting the data
collection |⟨zi, x⟩|2 = bi, i = 1, 2, . . . ,m as A(xx∗) = b. Then, letting X = xx∗, we can
represent the phase retrieval problem as a problem (1.1) (see [2, 3] for more details):

min rank(X) s.t. A(X) = b, X ≽ 0.

There has been some increasing effort and activities on the problem (1.1), see, e.g.,
[2, 3, 11, 20]. Candès et al [2, 3] proposed the so-called PhaseLift method to solve problem
(1.1) via SDP relaxation since it lifts up the problem of vector recovery from quadratic
constraints into that of recovering a rank-one matrix from affine constraints. Wang, Xu and
Tang [20] gave a necessary and sufficient condition under which the feasible set of problem
(1.1) is a singleton and it is just its solution. Gross, Liu, Flammia, Becker, and Eisert [11]
successfully used SDP relaxation to solve Quantum State Tomography. However, they did
not give the conditions which guarantee the exact low-rank positive semidefinite solution to
problem (1.1) via SDP relaxation. Besides the matrix case, there are much more attention
to SNR as well, see, e.g., [7, 14, 15, 20, 22] to name a few.

The paper deals with recovery conditions for the low-rank semidefinite matrix recovery
via SDP relaxation. In Section 2, we give an important lemma by employing the decompo-
sition technique. Based on it, we prove the unitary property of the linear transformation
for problem (1.1). In Section 3, we introduce s-semigoodness and semiNSP for a linear
transformations in low-rank semidefinite matrix recovery, and show the equivalence between
s-semigoodness and semiNSP for problem (1.1). This develops the s-semigoodness results
coined by Juditsky and Nemirovski [13, 14] from the nonnegative cone to the nonpolytope
cone of positive semidefinite symmetric matrices. In Section 4, we establish the exact and
stable recovery results for problem (1.1) via SDP. We end this paper with some remarks.

2 The Unitary Property

We will present a unified technique to establish a bridge from the sparse nonnegative recov-
ery to low-rank semidefinite matrix recovery based on a useful lemma which is related to
eigenvalue inequality for positive semidefinite matrices. We start with defining an unitary
property of a linear transformation A, while Oymak, Mohan, Fazel, and Hassibi [18] named
it extension property. For a linear transformation A : Sn → Rm and a unitary U , AU is
called the restriction of A to unitary U if we define

AU (x) := A(UDiag(x)UT )

for all x ∈ Rn, where diag(x) stands for the diagonol matrix whose diagonal entries are the
components of the vector x.. In particular, AU can be represented by a matrix AU ∈ Rm×n.
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Definition 2.1. Let P be a property defined for matrices A ∈ Rm×n. We say that a linear
transformation A : Sn → Rm satisfies the unitary property, Pu, if its restriction AU has
property P for any unitary U .

For simplicity, let ∥ · ∥v be an arbitrary norm on Rn and let ∥ · ∥m be the corresponding
unitarily invariant matrix norm such that ∥X∥m = ∥λ(X)∥v where λ(X) is the vector of
the eigenvalues of X. For convenient statements regarding recovery of sparse nonnegative
vectors, we define the following notations

• v1: The matrix A : Rn → Rm satisfies a property P.

• v2: In problem (1.3), for any w, b = Aw+ ς with ∥ς∥ ≤ ε and any x as good as w with
respect to b (i.e., ∥Ax− b∥ ≤ ε and ∥x∥1 ≤ ∥w∥1), we have

∥x− w∥v ≤ h(w, ε)

for some real-valued function h : Rn × R → R.

• v3: For any nonzero x with Ax = 0, x satisfies a property Q.

Similarly, for statements regarding recovery of low-rank positive semidefinite matrices, we
define the corresponding notations in the matrix setting

• M1: The linear transformation A : Sn → Rm satisfies the extension property Pu.

• M2: In problem (1.2), for any W , b = AW + ς with ∥ς∥ ≤ ε and any X as good as W
with respect to b (i.e., ∥AX − b∥ ≤ ε and ∥X∥∗ ≤ ∥W∥∗), we have

∥X −W∥m ≤ h(λ(W ), ε).

• M3: For any nonzero X with AX = 0, λ(X) satisfies a property Q.

In order to study the unitary property of A, we need the following very useful lemma
related to eigenvalue inequality for positive semidefinite matrices. This lemma is different
from the useful Lemma 2 of [18] in low-rank matrix recovery and the key singular value
inequality in [12]. Our proof is mainly based on the spectral decomposition of a symmetric
matrix, space orthogonal decomposition of the set of all symmetric matrices, and the fact
∥X∥∗ = ⟨I,X⟩ for X ≽ 0.

Lemma 2.2. For a given matrix Z ∈ Sn with spectral decomposition Z = UDiag (λ(Z))UT ,
suppose that there is a positive semidefinite matrix W ≽ 0 satisfying W + Z ≽ 0 and
∥W + Z∥∗ ≤ ∥W∥∗. Then there exists X = UDiag (d)UT with d ≥ 0 such that X + Z ≽ 0
and ∥X + Z∥∗ ≤ ∥X∥∗.

Proof. From the assumption that Z = UDiag (λ(Z))UT . Without loss of generality, letting
U = [q1, q2, . . . , qn] be the corresponding orthogonal matrix, we then have Z =

∑n
i=1 λi(Z)qiq

T
i .

Fix the rank-one matrices {q1qT1 , q2qT2 , . . . , qnqTn }. Let

Ω := span {q1qT1 , q2qT2 , . . . , qnqTn }.

Clearly, Ω = {X : X = UDiagUT , d ∈ Rn} is a subspace in Sn and I ∈ Ω. It holds from
space decomposition theorem, Sn = Ω

⊕
Ω⊥ with Ω⊥ is the orthogonal subspace of Ω. Thus,

for W , we have

W =

n∑
i=1

wiqiq
T
i +M
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with M ∈ Ω⊥. Then ⟨qiqTi ,M⟩ = 0 and ⟨I,W ⟩ = 0. Since W ≽ 0, it holds by self-duality
properties of the the cone of positive semidefinite matrices,

⟨qiqTi ,W ⟩ = wi ≥ 0 for i ∈ {1, 2, . . . , n}.

Similarly, by W + Z ≽ 0, ⟨qiqTi ,W + Z⟩ = wi + λi(Z) ≥ 0 for i ∈ {1, 2, . . . , n}. Take

X =

n∑
i=1

wiqiq
T
i = UDiag (d)UT ,

where d = (w1, w2, . . . , wn)
T and d ≥ 0. It is easy to see that X ≽ 0 and

∥X∥∗ =
n∑

i=1

wi = ⟨X, I⟩ = ⟨X +M, I⟩ = ∥W∥∗.

Moreover, from X + Z =
∑n

i=1(wi + λi(Z))qiq
T
i , we immediately obtain that X + Z ≽ 0

and
∥X + Z∥∗ = ∥W + Z∥∗.

Therefore, the conclusion ∥X+Z∥∗ ≤ ∥X∥∗ follows directly, and we complete the proof.

We are ready to state our main theorem of the unitary property of A.

Theorem 2.3. For a given property P, the following implications hold:

(v1 ⇒ v2) ⇒ (M1 ⇒M2), (2.1)

(v1 ⇒ v3) ⇒ (M1 ⇒M3). (2.2)

Proof. For a given property P, we first prove (v1 ⇒ v2) ⇒ (M1 ⇒ M2). Let v1 ⇒ v2 and
that M1 holds. For problem (1.2), we set the measurements b0 = AW + ς0 with ∥ς0∥ ≤ ε.
Below we show that M2 holds. That is, we need show that for any positive semidefinite
matrix X which is as good as W with respect to b0, it holds

∥X −W∥m ≤ h(λ(W ), ε).

Consider any such X and let Z = X−W . This implies that W +Z ≽ 0, ∥W +Z∥∗ ≤ ∥W∥∗
and

∥A1(W + Z)− b0∥ ≤ ε,

since ∥A1X − b0∥ ≤ ε and ∥X∥∗ ≤ ∥W∥∗. Let Z have the spectral decomposition Z =
UDiag (λ(Z))UT . Then, from Lemma 4.1, there exists a positive semidefinite matrix X =
UDiag (d)UT with d ≥ 0 such that X + Z ≽ 0, ∥X + Z∥∗ ≤ ∥X∥∗. Taking b1 = AX + ς0,
we easily obtain

∥A(X + Z)− b1∥ = ∥A(W + Z)− b0∥ ≤ ε.

Therefore, X + Z is as good as X with respect to b1. Below we deal with problem (1.3)
where AU is the given measurement matrix, b1 is the measurement, x = d is unknown vector
and z = λ(Z) is the perturbation. Thus, we obtain that x+ z is as good as x with respect
to b1 since X + Z is as good as X with respect to b1. From the fact that A has Pu implies
that AU has P, we obtain that v1 holds for AU . Thus, noting v1 ⇒ v2, we claim

∥X −W∥m = ∥Z∥m = ∥z∥v ≤ h(d, ε) = h(λ(W ), ε).

Therefore, it holds that M1 ⇒M2.
We now prove (v1 ⇒ v3) ⇒ (M1 ⇒ M3). Similarly, let v1 ⇒ v3 and that M1 holds. For

any nonzero X with spectral decomposition X = UDiag (λ(X))UT such that AX = 0. Since
AU satisfies P and hence v1 holds. From v1 ⇒ v3, we immediately obtain λ(X) satisfies the
property Q. Then we complete the proof.
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3 S-Semigoodness

We next introduce several basic notions related to recovery conditions for problem (1.1) via
SDP. Then we give the characterization and intimate links between them. Let us begin
with the definitions of s-semigoodness and semiNSP, which are generalizations of NSP and
s-goodness from SNR to problem (1.1). As we mentioned in the introduction part, in view
of the optimality condition of (1.3), Juditsky, Karzan and Nemirovski [14] gave a necessary
and sufficient condition for SNR, which was called s-semigoodness. Here we extend it to the
matrix setting.

Definition 3.1 (s-semigoodness). We say that A is s-semigood, if for every matrix W ∈ Sn
with W ≽ 0 being a s-rank matrix, W is the unique solution to the following semidefinite
program

minX∈Sn{⟨I,X⟩ : AX = AW, X ≽ 0}. (3.1)

In order to characterize the above s-semigoodness of a linear transformation A, we intro-
duce the following useful s-semigoodness conditions related to some parameters which will
be useful to establish the stable recovery result for problem (1.1) via SDP.

Definition 3.2. Let A : Sn → Rm be a linear transformation and the sparsity s be given.
i) A satisfies the condition SGs(ζ, θ) with parameters ζ and θ: for every index set J ⊆

{1, 2, . . . , n} with |J | ≤ s and every nonzero matrixW ∈ Sn with the spectral decomposition
W = UDiag (λ(W ))UT and λ(W ) ∈ Rn such that AW = 0, one has

∑
i∈J

λi(W ) ≤ ζ

∑
i∈J̄

ψ(λi(W ))

 , ψ(t) = max[−t, θt],

or, equivalently: for all W ∈ Sn with the spectral decomposition W = UDiag (λ(W ))UT

and λ(W ) ∈ Rn such that AW = 0, Θ(λ(W )) ≤ ζΨ(λ(W )) where

Θ(λ(W )) := max
|J|≤s

[∑
i∈J

max[(1− ζ)λi(W ), (1 + θζ)λi(W )]

]
,

Ψ(λ(W )) :=
n∑

i=1

max[−λi(W ), θλi(W )].

ii) A satisfies the condition SGs,β(ζ, θ) with parameters ζ, θ and β: for every index set
J ⊆ {1, 2, . . . , n} with |J | ≤ s and any W ∈ Sn with the spectral decomposition W =
UDiag (λ(W ))UT and λ(W ) ∈ Rn, one has∑

i∈J

λi(W ) ≤ β∥AW∥+ ζ
∑
i∈J̄

ψ(λi(W )), ψ(t) = max[−t, θt].

iii) A satisfies the condition SGs,β(ζ) with parameters ζ and β: for every index set
J ⊆ {1, 2, . . . , n} with |J | ≤ s and any W ∈ Sn with the spectral decomposition W =
UDiag (λ(W ))UT and λ(W ) ∈ Rn with λi(W ) ≤ 0 for i ∈ J̄ , one has∑

i∈J

λi(W ) ≤ β∥AW∥+ ζ
∑
i∈J̄

|λi(W )|.
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We next give the following important equivalent results related to s-semigoodness con-
ditions.

Theorem 3.3. Let A : Sn → Rm be a linear transformation and the sparsity s be given.
Then the following statements hold equivalently:

a) A is s-semigood.
b) There exist ζ ∈ (0, 1) and θ ∈ [1,∞) such that A satisfies the condition SGs(ζ, θ).
c) There exist ζ ∈ (0, 1), θ ∈ [1,∞) and β ∈ [0,∞) such that A satisfies the condition

SGs,β(ζ, θ).
e) There exist ζ ∈ (0, 1) and β ∈ [0,∞) such that A satisfies the condition SGs,β(ζ).

Proof. Let A ∈ Rm×n be a sensing matrix and the sparsity s be given. As in the proof
of Theorem 3.3, by specifying Proposition 1 in [14] to the nonnegative vector case of all
sign restrictions, we establish the following equivalence for SNR, for details see [14] and the
reference therein. That is, the following statements are equivalent:

1) A is s-semigood.
2) There exist ζ ∈ (0, 1) and θ ∈ [1,∞) such that A satisfies the condition SGs(ζ, θ) as

follows: for every index set J ⊆ {1, 2, . . . , n} with |J | ≤ s and any w ∈ Rn such that Aw = 0
one has ∑

i∈J

wi ≤ ζ

∑
i∈J̄

ψ(wi)

 , ψ(t) = max[−t, θt],

or, equivalently: for all w ∈ Rn such that Aw = 0, Θ(w) ≤ ζΨ(w) where

Θ(w) := max
|J|≤s

[∑
i∈J

max[(1− ζ)wi, (1 + θζ)wi]

]
,Ψ(w) :=

n∑
i=1

max[−wi, θwi].

3) There exist ζ ∈ (0, 1), θ ∈ [1,∞) and β ∈ [0,∞) such that A satisfies the condition
SGs,β(ζ, θ) as follows: for every index set J ⊆ {1, 2, . . . , n} with |J | ≤ s and any w ∈ Rn,
one has ∑

i∈J

wi ≤ β∥Aw∥+ ζ
∑
i∈J̄

ψ(wi), ψ(t) = max[−t, θt].

4) There exist ζ ∈ (0, 1) and β ∈ [0,∞) such that A satisfies the condition SGs,β(ζ) as
follows: for every index set J ⊆ {1, 2, . . . , n} with |J | ≤ s and any w ∈ Rn with wi ≤ 0 for
i ∈ J̄ , one has ∑

i∈J

wi ≤ β∥Aw∥+ ζ
∑
i∈J̄

|wi|.

Together with the above arguments, the desired conclusion holds by Theorem 2.3 and
the definitions of s-semigoodness conditions.

As one of important applications, we will utilize our main Theorem 2.3 to transfer the
connections between s-semigoodness and semiNSP. We state the definition of semiNSP,
which is a generalization of null space property and s-goodness from SNR to PSLMR. In the
vector case, it reduces to the well-known (nonnegative) NSP in [7, 15, 20, 22], which provides
a necessary and sufficient condition for exactly recovering sparse nonnegative vectors via
linear programming (1.3).

Definition 3.4 (semiNSP). We say that A satisfies semiNSP of order s, if for any index
set J ⊆ {1, 2, . . . , n} with |J | = s and every nonzero matrix W ∈ Sn with the spectral
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decomposition W = UDiag(w)UT with w ∈ Rn such that AW = 0 and wi ≤ 0 for i ∈ J̄ ,
then it holds ∑

i∈J

wi <
∑
i∈J̄

|wi|.

We are ready to provide the equivalence between semiNSP and s-semigoodness condi-
tions.

Theorem 3.5. Let A : Sn → Rm be a linear transformation and the sparsity s be given.
Then, A is s-semigood if and only if A satisfies semiNSP.

Proof. In the vector case, let A ∈ Rm×n be a sensing matrix and the sparsity s be given.
Proposition 1 in [14] implies that A is s-semigood if and only if A satisfies semiNSP. Then, the
desired conclusion holds by Theorem 2.3 and the definitions of semiNSP, s-semigoodness.

4 Exact and Stable Recovery

In many applications, the problem (1.1) is not necessary to be solved exactly because of
noise measurement and the matrix variable W being not s-rank but rather compressible. In
this sense, we need approximate solutions which are robust to noise and can approximately
recover compressible matrices. Below, we consider approximation solutions to the problem

Opt(b∗) = min
X∈Sn

{∥X∥∗ : ∥AX − b∥ ≤ ε,X ≽ 0} (4.1)

where ε ≥ 0 and b = AX + ς, ς ∈ Rm with ∥ς∥ ≤ ε. In what follows, let W s stands for the
best s-rank approximation of W , i.e., the matrix obtained from W by replacing all but the
s largest in magnitude eigenvalues in W with zeros.

Theorem 4.1. Let A : Sn → Rm be a linear transformation. Let ε ≥ 0 and let W ≽ 0 and
b in (4.1) be such that ∥AW − b∥ ≤ ε. Let X be a (ϑ, υ)-optimal solution to the problem
(4.1), meaning that ∥AX − b∥ ≤ ϑ and ∥X∥∗ ≤ Opt(b) + υ.

1) If A satisfies the condition SGs,β(ζ, θ) with some ζ ∈ (0, 1), θ ∈ [1,∞) and β ∈ [0,∞),
then

∥X −W∥∗ ≤ 2β(ϑ+ ε) + 2(1 + ζθ)∥W −W s∥∗ + (1 + ζ)υ

1− ζ
.

2) If A satisfies the condition SGs,β(ζ) with some ζ ∈ (0, 1) and β ∈ [0,∞), then

∥X −W∥∗ ≤ 2β(ϑ+ ε) + 2(1 + βα)∥W −W s∥∗ + (1 + ζ)υ

1− ζ
,

where α := maxX∈Sn
∥AX∥
∥X∥∗

.

Proof. As in the proof of Proposition 3.5 , for the nonnegative vector case, we have the
following stable result from Proposition 2 in [14]. Let ε ≥ 0 and let w and b in the problem

Opt(b1) = min
x∈Rn

{∥x∥1 : ∥Ax− b∥ ≤ ε, x ≥ 0} (4.2)

where ε ≥ 0 and b = Aw + ς, ς ∈ Rm with ∥ς∥ ≤ ε. Let ws be the best s-sparse
approximation of w, i.e., the vector obtained from w by replacing all but the s largest in
magnitude entries in w with zeros. Let x be a (ϑ, υ)-optimal solution to the problem (4.2),
meaning that ∥Ax− b∥ ≤ ϑ and ∥x∥1 ≤ Opt(b) + υ.
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1) If A satisfies the condition SGs,β(ζ, θ) with some ζ ∈ (0, 1), θ ∈ [1,∞) and β ∈ [0,∞),
then

∥x− w∥1 ≤ 2β(ϑ+ ε) + 2(1 + ζθ)∥w − ws∥1 + (1 + ζ)υ

1− ζ
.

2) If A satisfies the condition SGs,β(ζ) with some ζ ∈ (0, 1) and β ∈ [0,∞), then

∥x− w∥1 ≤ 2β(ϑ+ ε) + 2(1 + βα)∥w − ws∥1 + (1 + ζ)υ

1− ζ
,

where α stands for the maximum of ∥ · ∥-norms of the columns in A.

Note that the above maximum of ∥·∥-norms of the columns in A is maxx∈Rn
∥Ax∥
∥x∥1

. In the

matrix case, it generalizes to maxX∈Sn
∥AX∥
∥X∥∗

. Then we obtain the desired stable recovery

result by applying Theorem 2.3.

The above result is a generalization of the corresponding one for SNR given by Juditsky,
Karzan and Nemirovski [14]. We showed that in the “non-ideal case”, when W is “nearly
s-rank” and (4.1) is solved to near-optimality, the error (via nuclear norm) of the problem
(1.1) can be bounded in terms of SGs,β(ζ, θ) or SGs,β(ζ), measurement error ε, “s-tail”
∥W −W s∥∗ and the accuracy (ϑ, υ).

When we set ϑ = 0, υ = 0, and let W ≽ 0 be a s-rank matrix such that AW = b,
from the above theorem, we immediately have the exact recovery result for problem (1.1)
via SDP.

Theorem 4.2. Let A : Sn → Rm be a linear transformation. Let W be a s-rank matrix
such that AW = b and W ≽ 0. Let X be a solution to the SDP problem (1.2). Then X =W
if and only if A is s-semigood.

Proof. If A is s-semigood, it is immediate to show X =W by Theorem 4.1. On the contrary,
ifX =W is the unique solution to the SDP problem (1.2), we then obtain that A is semiNSP
by Theorem 2 in [22]. This says that A is s-semigood from Theorem 3.5.

5 Conclusion

In this paper, we characterized the s-semigoodness for the linear transformations in low-
rank semidefinite matrix recovery. It is shown that both s-semigoodness and semiNSP are
necessary and sufficient conditions for exact s-rank semidefinite matrix recovery via SDP.
By applying the s-semigoodness characteristic, we present results in the exact and stable
low-rank semidefinite matrix recovery results via SDP.
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