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a long time ago (see, e.g., the basic monograph [15] or [9], [10]). We emphasize that, in
contrast to most related papers, we consider the more appropriate and more difficult case
of joint probabilistic constraints rather than individual ones which would allow for simple
quantile-based reformulations of the chance constraints via linear programming (see Section
3).

One option to deal with mixed-integer problems under probabilistic constraints would be
to discretize the random vector (e.g., sample average approximation as in [16]), which itself
leads to a mixed-integer problem and thus does not suffer from additional binary decision
variables. However, it is not evident how large the sample size for discretization has to
be chosen in order to guarantee that the solution found recovers the theoretical solution
(relating to an assumed continuous distribution) with a given precision. An example in [12]
shows that even in dimension two a prohibitively large sample size may be required. That
is why we follow in this paper the classical approach of treating probabilistic constraints
under continuous distribution in the framework of nonlinear (possibly convex) optimization
as pioneered by Prékopa. Corresponding models for the control of water reservoirs are found,
for instance, in the early papers [17] and [18].

Progress in the efficient computation of multivariate distribution functions (e.g., [11])
offers the perspective of solving similar problems for dimensions of the random vector which
are of interest in real life applications such as power management (e.g., [3]). A key issue
here is the possibility to analytically reduce gradients of probability functions to function
values themselves as it was demonstrated for different models (separated random vector
under possibly singular linear transformation or bilinear model) under Gaussian distribution
([13],[4]). This approach has the potential to be extended to alternative distributions (e.g.,
multivariate log-normal or t-distribution) as well as to nonlinear models. So far, however,
the focus in this context was directed on purely continuous problems. In this paper we add
the consideration of binary decisions .

2 A Coupled Hydro-Wind Power Management Model

We consider a power management model consisting of a hydro plant coupled with a wind
farm. Electricity produced by both components serves first to meet the local power demand
of some area of interest and second to sell any surplus electricity on the market. In principle,
there are several sources of uncertainty present in such model: uncertain inflow to the hydro
plant, uncertain market prices, uncertain demand and uncertain wind force. We will apply
the model for a short time planning period (2 days) which justifies to assume a constant
(known) inflow of water to the hydro plant. We will also assume that the time profiles for
the market price and for the demand are known (though not restricted to be constant) for
this short period. In contrast, we do not neglect the randomness of the wind force which
may be imagined to be much stronger than that of the previously mentioned sources. The
wind farm supported by a part of the hydro power generation is supposed to meet the local
demand of electricity. The remaining part of the hydro power generation is sold at the
market with the aim of maximizing profit according to the given price signal. The hydro
reservoir may be used to store water and thus to better adapt the water release strategy
to the time profiles of price and demand. In order to exclude production strategies which
are optimal for the given time horizon but at the expense of future ones (e.g., maximum
production within capacity limits), a so-called end level constraint is imposed for the final
water level in the hydro reservoir.

The decision variables of our problem are the profiles for hydro power generation over
the considered time horizon used to support demand satisfaction or to sell electricity. The
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objective function is profit maximization. The constraints are simple bounds on the total
water release (given by operational limits of the turbine), lower and upper bounds for the
filling level of the hydro reservoir and demand satisfaction. The latter is a random constraint
because the demand is met by the sum of a deterministic component of hydro energy and a
stochastic component of wind energy. Now, the planning decision on optimal hydro power
generation has to be taken before the beginning of the considered time horizon and without
knowing future realizations of the random parameter (wind force). As mentioned in the in-
troduction, random constraints in which a decision has to be taken prior to the observation
of the random variable are not well-defined in the context of an optimization problem. This
motivates the formulation of a corresponding probabilistic constraint in which a decision is
defined to be feasible if the underlying random constraint is satisfied under this decision at
least with a certain specified probability.

For longer time horizons, dynamic (closed loop) decisions could be set up as functions
of past observations of the random parameter while time is running. This would lead to so-
called dynamic probabilistic constraints as presented, for instance, in [6]. Such constraints
are, however, very difficult to deal with numerically. In our application, the sale of energy
at a spot market is part of the decision. As this is usually realized by a day-ahead bid-
ding, decisions can not react on observations of the random parameter during the short time
horizon we are considering. Therefore, we will assume a static (open loop) strategy for our
decisions.

At this point one may wonder about the use of probabilistic (and not guaranteed) de-
mand satisfaction. Indeed, in power management the customer may apply for so-called
interruptible tariffs which allow him to pay a much lower price if he is willing to accept a
well-defined (small) portion of non-delivered energy at certain unannounced periods of time.
For a treatment of such models in the context of stochastic optimization (but different from
the one considered in our paper), we refer to [7].

Apart from the constraints discussed before, we impose an additional so-called end level
constraint for the hydro reservoir. Without such constraint, optimization - in our case: profit
maximization - over the given time period could be carried out at the expense of future time
periods. A trivial solution of profit maximization would be to release as much water from
the reservoir as technically possible. Then, however, the reservoir might run empty and thus
result in initial conditions for future time intervals which are worse than the ones we were
starting with. Therefore, a minimum end level is required for the reservoir. The choice of
this end level is up to the decision maker, it could be defined as some average level or as
the initial level or any other level justified by anticipation of future events (increasing prices
etc.).

A further characteristic of the model we want to consider is the incorporation of binary
decision variables. These are necessary because turbines cannot be operated at an arbitrar-
ily small level: either they are in off state or they have to work at some positive minimum
level. Such on/off constraints are easily modeled by binary variables.

Discretizing the time horizon into T intervals, the resulting optimization problem reads
as follows:

max
∑T

t=1 πtyt (2.1)

subject to

P(xt + ξt ≥ dt ∀t = 1, . . . , T ) ≥ p (2.2)

ztv ≤ xt + yt ≤ ztv̄ ∀t = 1, . . . , T (2.3)

xt, yt ≥ 0 ∀t = 1, . . . , T (2.4)

zt ∈ {0, 1} ∀t = 1, . . . , T (2.5)
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l ≤ l0 + tw − 1
κ
∑t

τ=1(xτ + yτ ) ≤ l̄ ∀t = 1, . . . , T (2.6)

l0 + Tw − 1
κ
∑T

τ=1(xτ + yτ ) ≥ l∗ (2.7)

Here, yt is the amount of hydro energy produced in time interval t and sold at the market.
With πt referring to the time dependent price signal, the profit to be maximized over the
given time horizon equals the objective function (2.1).

Next, xt is the amount of hydro energy produced in time interval t and used to satisfy
the local energy demand dt in the same interval. In addition to hydro energy, demand
satisfaction is supported by a random amount ξt of energy produced by the wind farm in
time interval t. Hence, demand satisfaction can be described by the random inequality
system

xt + ξt ≥ dt ∀t = 1, . . . , T. (2.8)

As discussed above, we decide on the complete profiles (x1, . . . , xT ) and (y1, . . . , yT ) at the
beginning of the time horizon when the random values ξt have not been observed yet. This
makes the random inequality system (2.8) meaningless in the context of our optimization
problem and thus leads us to set up the probabilistic constraint (2.2). Here, it is required
that, given the entire strategy (x1, . . . , xT ), the probability of satisfying the demand over
the whole future time horizon is at least some specified level p ∈ (0, 1).

The constraints (2.3) take care of a minimum operation level for the turbine. Indeed,
given the binary variables zt in (2.5), there exist exactly two possibilities: either zt = 0 in
which case (2.3) along with the nonnegativity constraints (2.4) yields that xt = yt = 0, i.e.,
no water is released at all; or zt = 1 in which case (2.3) enforces the total amount xt + yt of
released water to stay between the lower and upper operation limits v and v̄ of the turbine.

Next, (2.6) represents the level constraints for the hydro reservoir: here, l0 is the initial
water level at the beginning of the horizon, l and l̄ are the lower and upper water levels in
the reservoir to be respected at any time, w denotes the constant amount of water inflow to
the reservoir in each time interval t and κ represents a conversion factor between released
water and turbined energy: 1 unit of water released corresponds to κ units of hydro power
generated. Consequently, the term between inequality signs in (2.6) represents excatly the
filling level of the reservoir at time interval t.

Finally, taking into account that the filling level of the reservoir at time interval T
equals the left-hand side of (2.7), we recognize this last constraint as an end level constraint
imposing a minimum end level l∗ for the reservoir.

3 Simplifying Approaches

If in our optimization problem (2.1)-(2.7) the probabilistic constraint (2.2) was not present
then we would deal with a conventional mixed-integer linear program the numerical solu-
tion of which could be easily determined by standard methods even in comparatively large
dimension. The challenging part of the problem is the probabilistic constraint (2.2) which
is not only nonlinear but even lacks an explicit formula. Before discussing its numerical
treatment, we briefly digress with the presentation of two simplified approaches avoiding
these difficulties.

The first approach consists in simply replacing the random vector ξ in the inequality
system (2.8) by its expectation ξ̄. In this way one obtains a deterministic inequality system

xt + ξ̄t ≥ dt ∀t = 1, . . . , T (3.1)
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which upon replacing (2.2) perfectly fits to the linearity of the remaining constraints. How-
ever, solving the corresponding mixed-integer linear program yields solutions that are not
at all robust as will be demonstrated in Section 5.

The second approach consists in formulating so-called individual probabilistic constraints
which differ from (2.2) by extracting the ’∀t’- quantifier from the probability term:

P(xt + ξt ≥ dt) ≥ p ∀t = 1, . . . , T. (3.2)

At first glance, (3.2) might look more difficult than (2.2) because now, instead of one single
probabilistic constraint one deals with a system of T probabilistic constraints. The interpre-
tation of (3.2) is significantly different from that of (2.2): it is required here that, for each
time interval t individually, the probability of demand satisfaction is at least p. In contrast,
in (2.2) one insists on the fact that the probability of demand satisfaction over the whole
time horizon is at least p. The latter is clearly a much stronger reuirement. That is why
(3.2) is also referred to as indvidual probabilistic constraints whereas (2.2) is called a joint
probabilistic constraint. Thanks to the ξt being one-dimensional random variables, one may
invert their distribution function (which is no longer possible in the multivariate case) in
order to establish the equivalence

P(xt + ξt ≥ dt) ≥ p ⇐⇒ xt ≥ dt + qpt ∀t = 1, . . . , T, (3.3)

where for t = 1, . . . , T
qpt := inf {τ |P(−ξt ≤ τ) ≥ p}

denote the p-quantiles of the one-dimensional random variables −ξt. The latter are eas-
ily determined numerically or tabulated for most prominent one-dimensional distributions.
Clearly, the right-hand side of (3.3) is a system of linear inequalities again which is very
similar to but more stringent than the expectation constraints (3.1). Hence, the same stan-
dard mixed-integer linear program (with partially different data) can be solved as in the case
of expectation constraints. However, while guaranteeing demand satisfaction at the chosen
probability level p at each time interval individually, the corresponding solutions may lead
with high probability to demand violations at some times in the entire horizon. Again, this
will be demonstrated in Section 5.

4 Numerical Solution

4.1 Dealing with the Probabilistic Constraint

Problem (2.1)-(2.7) is a mixed-integer stochastic nonlinear optimization problem. Without
the binary constraint (2.5) one would deal with a nonlinear optimization problem where the
only nonlinearity arises from the probabilistic constraint α(x) ≥ p where

α(x) := P(xt + ξt ≥ dt ∀t = 1, . . . , T ). (4.1)

Thanks to the convexity theory of probabilistic constraints developed by Prékopa [19, Theo-
rem 2.1] it is well-known that one may rewrite the original probabilistic constraint α(x) ≥ p
in the equivalent form φ (x) ≤ 0 with

φ (x) := log p− logα(x) (4.2)

such that φ is a convex function whenever the random vector ξ := (ξ1, . . . , ξT ) obeys a
so-called log-concave distribution. The latter is true for many prominent multivariate dis-
tributions including the multivariate normal distribution [19, Chapter 4]. Hence, problem
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(2.1)-(2.7) without (2.5) is a nonlinear convex optimization problem which in principle can
be solved by any favourite method of this area. One has to take into account, however, that
the function α and, hence, the convex function φ is not given by an explicit formula because
the probability involved is defined by improper multivariate integrals.

On the other hand, there exist efficient codes to approximate distribution functions, for
instance, of the multivariate normal, t- or Gamma distributions sufficiently well even in
interesting dimension ([11],[8],[24],[23]). Observe, that the probabilistic function defined in
(4.1) can be written in terms of the distribution function of ξ which is defined as

Fξ(z) := P(ξt ≤ zt ∀t = 1, . . . , T ). (4.3)

Indeed, one gets that
α(x) = F−ξ(x− d). (4.4)

Hence, if one is able to approximate the distribution function of −ξ, then one gets an
approximation for α and thus for the convex function φ.

Usually, function values alone do not provide sufficient information to apply nonlinear
optimization methods. One also has to be able to calculate their gradients. According to
the previous remarks, the computation of the gradient of φ can be reduced to that of the
gradient ∇F−ξ of the distribution function. However, given that there is no explicit formula
for function values F−ξ, much less this is true for the gradients. Approximating ∇F−ξ by
finite differences isn’t a good idea because the inaccuracy of function values F−ξ will lead
to highly unreliable estimations of partial derivatives when driving the step size of the finite
differences towards zero. Fortunately, for the case of the multivariate normal distribution,
there exists an analytical relation between function values and gradients of the distribution
function [19, p. 204]. This means that no additional inaccuracy - beyond the one already
present in function values - is introduced when it comes to calculate gradients.

Postponing the discussion of the inaccuracy aspect to Section 4.3, function values and
gradients of φ may be used in order to set up, for instance, a supporting hyperplane method
as introduced by Veinott for convex optimization problems. This approach, which is classical
in probabilistic programming (see, e.g., [19]) may not be the most efficient one but it fits
well into the scheme of incorporating binary decisions as it will be presented in Section 4.2.
To briefly present the idea of the supporting hyperplane method, we write our continuous
optimization problem (2.1)-(2.7) without (2.5) in the following compact form:

min
{
cTu|u ∈ U, φ (u) ≤ 0

}
. (4.5)

Here u encompasses the original continuous decision variables (x, y), φ (u) ≤ 0 represents
the convex probabilistic constraint according to the discussion above and U represents a
polyhedron defined by the linear constraints (2.3),(2.4),(2.6),(2.7). Then, the supporting
hyperplane method is defined as follows:

1. Find a point ū ∈ U such that φ (ū) < 0 (Slater point). Determine a polyhedron Ũ
such that

{u|φ (u) ≤ 0} ⊆ U0 := Ũ ∩ U

and the linear objective of (4.5) is bounded below on U0. Put k := 0.

2. Let uk be a solution of the linear program min
{
cTu|u ∈ Uk

}
. If φ

(
uk

)
≤ 0, then uk

is a solution of (4.5) and the algorithm is terminated.

3. Bisect the function φ on the line segment
[
uk, ū

]
in order to find a point vk such that

φ
(
vk

)
= 0 (recall that φ

(
uk

)
> 0 and φ (ū) < 0).
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4. Add a linear inequality in order to define a new polyhedron

Uk+1 := Uk ∩
{
u|

⟨
∇φ

(
vk

)
, u

⟩
≤

⟨
∇φ

(
vk

)
, vk

⟩}
and put k := k + 1. Go to 2.

If this algorithm generates an infinite number of iterations (which is usually the case) then
each cluster point u∗ of the sequence uk is a solution to problem (4.5). The same holds
true for each cluster point of the sequence vk. By convexity of φ the cuts defined in step 4
generate a decreasing sequence

{u ∈ U, φ (u) ≤ 0} ⊆ · · · ⊆ Uk+1 ⊆ Uk ⊆ · · · ⊆ U0 (4.6)

of polyhedra all of them containing the feasible set of (4.5). In particular, uk generated in
step 2 provides a lower bound of the optimal value c∗ of (4.5), whereas vk being feasible for
(4.5) provides an upper bound for c∗:

cTuk ≤ c∗ ≤ cT vk (4.7)

Moreover, the gap between upper and lower bound converges to zero and may be used as a
termination criterion for the algorithm.

4.2 Taking into Account Binary Decision Variables

In order to take binary conditions (2.5) into account, the supporting hyperplane method from
the previous section is embedded into a branch-and-bound algorithm [14]. This algorithm
creates a tree of optimization problems (2.1)-(2.7) with additional conditions on the binary
variables zt.

For the root of this tree, which corresponds to the original problem, the continuous
relaxation (4.5) is solved by the previously outlined supporting hyperplane method, thereby
constructing an equivalent linear relaxation Uk. If the solution of the relaxation Uk satisfies
the binary conditions on the variables, an optimal solution for the original problem has been
found. Otherwise, the algorithm selects a binary variable zt∗ , t

∗ ∈ {1, . . . , T}, that takes a
fractional value in the solution of Uk and creates two subproblems (branching) by adding
the constraints zt∗ = 0 and zt∗ = 1, respectively. For both subproblems, a very similar
algorithm is applied again. That is, the relaxation Uk, inherited from the parent problem
and augmented by the subproblem specific fixations of binary variables, is resolved. If the
relaxation solution violates the probabilistic constraint (2.2), a supporting hyperplane can be
constructed as specified above, added to the relaxation, and the relaxation can be resolved.
If the relaxation solution violates (2.5) for some t∗ ∈ {1, . . . , T} two new subproblems
are created by branching on zt∗ . If both (2.2) and (2.5) are violated, either a supporting
hyperplane can be constructed or a branching can be performed. In our implementation,
we do up to five rounds of the supporting hyperplane method before we branch on a binary
variable.

When the solution of a subproblem relaxation satisfies both (2.2) and (2.5), a feasible
solution for the original problem (2.1)-(2.7) has been found. The objective function value
of this solution yields a lower bound on the optimal value of (2.1)-(2.7). Further, since the
feasible space of subproblems associated to the child nodes in the branching tree yield a
partition of the feasible space of the original problem, the highest optimal value of the linear
relaxations among all these subproblems yields an upper bound on the optimal value of the
original problem (bounding). This upper bound allows to estimate the quality of the best
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known feasible solution. Further, if the optimal value of a linear relaxation in a subproblem
falls below the current lower bound, it is proven that this subproblem cannot contain an
improving feasible solution, thus it does not need to be considered further (fathoming).

4.3 Safe Cuts

An important step in the supporting hyperplane algorithm described in Section 4.1 is the
bisection of the function φ on a line segment [x, y] in order to find a point z such that
φ (z) = 0. Here y := ū denotes the Slater point satisfying φ (y) < 0 and x := uk is the
current iterate with φ (x) > 0. By virtue of (4.2) this may also be understood as a bisection
of the function α defined in (4.1) on the line segment [x, y] in order to find a point z such
that α(z) = p. Here, α (y) > p and α (x) < p. When realizing the bisection, one has to
take into account that the distribution function α can be calculated with a given precision
only. Accordingly, we denote by αc the function assigning to each argument z the calculated
probability αc(z). Usually, αc is a random function (it may be obtained by Monte Carlo
simulation or more sophisticated methods like randomized Quasi Monte Carlo). Often, a
confidence interval for the true value can be provided:

P (|α(z)− αc(z)| ≤ ε) > γ (4.8)

(in Genz’ code [11], for instance, the user may select a precision ε > 0 for γ = 0.99). This
implies, that an ideal bisection of αc may result in a point z such that αc (z) = p whereas,
for instance, the true probability amounts to α (z) = p + ε or to α (z) = p − ε. In order to
maintain the character of the sandwiching sequence (4.7) yielding lower and upper bounds
for the true optimal value, one may relax the definition of a bisection point as follows:
instead of insisting in the equality α (z) = p we are looking for a couple z1, z2 of points such
that:

1. α(z1) < p (with large probability)

2. α(z2) > p (with large probability)

3. z1, z2 are as close as possible.

The first property guarantees that the cut generated in step 4 of the supporting hyperplane
algorithm with vk := z1 still provides an outer approximation of the feasible set in (4.5)
as stated in (4.6). As a consequence, the sequence uk will continue to yield a lower bound
of the optimal value (left-hand side of (4.7)). The second property guarantees that with
vk := z2 the point vk remains feasible in (4.5). Hence, the sequence vk will continue to
yield an upper bound of the optimal value (right-hand side of (4.7)). The third property
guarantees that the gap between lower and upper bound in (4.7) converges to a value which
is small, though not zero as in the case of precise computations. How small this value is,
depends on the precision ε for the computation of αc in (4.8). This precision depends on
the computational effort we are willing to spend. In the following we propose a bisection
algorithm which yields points z1, z2 such that with large probability

p− 5ε < α(z1) < p < α(z2) < p+ 5ε. (4.9)

Evidently, these points satisfy the three requirements above with closeness between z1, z2
controlled by the term |α(z1)− α(z2)| < 10ε which is a function of the chosen precision and
probability in (4.8). To this aim, we set up the following bisection algorithm on the line
segment [x, y]:
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1. a0 := x, b0 := y, k := 0

2. If αc
(

ak+bk

2

)
< p − 4ε then ak+1 := ak+bk

2 , bk+1 := bk. If αc
(

ak+bk

2

)
> p − ε then

ak+1 := ak, bk+1 := ak+bk

2 .

3. If p− 4ε ≤ αc
(

ak+bk

2

)
≤ p− ε then stop else k := k + 1, go to step 2.

4. Define z1 := ak+bk

2 .

In the next Lemma it will be shown that this algorithm yields the desired z1 in (4.9) after
an explicitly determinable finite number of iterations. A completely symmetric bisection
algorithm can be formulated to determine the point z2.

Lemma 4.1. Let ξ have a multivariate normal distribution according to ξ ∼ N (µ,Σ), where
µ denotes the vector of expected values of ξ and Σ is the covariance matrix. Let x, y be such
that α(x) < p < α(y) for α defined in (4.1) (this is the situation of step 3 in the supporting

hyperplane algorithm). In (4.8) fix a probability γ and a precision ε ∈
(
0, p−α(x)

5

)
. Then,

the bisection algorithm introduced above terminates after at most

k0 :=

⌈
− log2

(
ε
√
2π min

i=1,...,s
Σii

)
∥x− y∥1

⌉
steps with a point z1 satisfying the relation p − 5ε < α(z1) < p (left part of (4.9)) with
probability at least 6γ − 5.

Proof. The assumptions α(x) < p < α(y) and ε ∈
(
0, p−α(x)

5

)
yield by virtue of (4.8) that

αc (x) < p− 4ε < p− ε < αc (y) (4.10)

with probability at least 2γ − 1 (note that we used (4.8) twice, where each single estimate
is guaranteed with probability γ, so that the probability of satisfying both estimates si-
multaneously is at least 2γ − 1). Now, given (4.10), it follows from step 2 in the bisection
algorithm above that for all iterates k one has

αc
(
ak

)
< p− 4ε < p− ε < αc

(
bk
)
. (4.11)

Moreover, evidently
∥∥ak − bk

∥∥ = 2−k
∥∥a0 − b0

∥∥ = 2−k ∥x− y∥.
Our assumption ξ ∼ N (µ,Σ) entails that −ξ ∼ N (−µ,Σ). According to Corollary 6.2

to Theorem 6.1 proved in the Appendix, the distribution function F−ξ (for the definition
see (4.3)) is globally Lipschitz continuous with respect to the 1-norm and with modulus

M :=
1√

2π min
i=1,...,s

Σii

.

From (4.4) it follows that α is globally Lipschitz continuous too with respect to the 1-norm
and with the same modulus M . It follows that∣∣α (

ak
)
− α

(
bk
)∣∣ ≤ M

∥∥ak − bk
∥∥
1
= 2−kM ∥x− y∥1 (4.12)

for all iterates k of the bisection algorithm. Assume that the number of these iterates reaches
the value k0 defined in the statement of this Lemma. Then, by (4.12),∣∣α (

ak0
)
− α

(
bk0

)∣∣ ≤ ε.
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Now, invoking (4.8) again twice, we see that∣∣αc
(
ak0

)
− αc

(
bk0

)∣∣ ≤ ∣∣α (
ak0

)
− α

(
bk0

)∣∣+ 2ε ≤ 3ε (4.13)

with probability at least 2γ − 1. This, however, contradicts (4.11). Therefore, the bisection
algorithm stops after at most k0 steps with probability at least 4γ − 3. Here we have taken
into account that the correctness of this statement relies on the correctness of (4.10) and of
(4.13) both of which were given with probability of at least 2γ − 1. Hence the probability
that both statements are correct simultaneously is at least 4γ−3. By step 3 of the bisection
algorithm, the final point z1 obtained after at most k0 steps satisfies the relation

p− 4ε ≤ αc (z1) ≤ p− ε.

Invoking (4.8) a third time (for both of the two inequalities above) we infer that

p− 5ε ≤ α (z1) ≤ p (4.14)

with probability at least 2γ − 1. Now the statement of the Lemma follows upon taking
into account that we need two partial statements to be satisfied, one of them being the
termination of the algorithm after at most k0 steps - which was ensured with probability at
least 4γ − 3 and the second one being (4.14) which is guaranteed with probability at least
2γ − 1. Hence the overall probability for the statement of the Lemma is at least 6γ − 5.

Example 4.1. In the setting of Lemma 4.1 let γ = 0.99, ε = 10−4, µ = 0,Σ = I (identity
matrix) and x, y such that ∥x− y∥ = 1. Then, k0 :=

⌈
− log2

(
10−4

√
2π

)⌉
= ⌈11.962⌉ = 12

and 6γ − 5 = 0.94. Hence, with probability of at least 0.94, the point z1 satisfying the
relation p− 5 · 10−4 < α(z1) < p is found in at most 12 iterations.

4.4 Implementation

The algorithms from the previous section have been implemented in the branch-cut-and-price
framework SCIP† [1, 2]. SCIP includes a full-scale solver for mixed-integer linear programs,
but can be extended to other types of problems via plugins. One of the most powerful plugin
types is the constraint handler, which defines the semantics and the algorithms to process
constraints of a certain class. A single constraint handler is responsible for all the constraints
belonging to its constraint class. Each constraint handler has to implement an enforcement
method. In enforcement, the handler has to decide whether a given solution, e.g., the
optimum of a linear relaxation satisfies all of its constraints. If the solution violates one
or more constraints, the handler may resolve the infeasibility by adding another constraint,
performing a domain reduction, or a branching.

For our purposes, we extended SCIP by a plugin to handle the probabilistic constraint
(2.2). Whenever SCIP has solved the linear relaxation of a current subproblem, it either
branches on a binary variable which takes a fractional value or asks our plugin to construct
a linear inequality that cuts off the current relaxation solution. If neither happens, SCIP
knows that it found a new feasible solution and thus updates the lower bound on the optimal
value.

The algorithm is extended by primal heuristics to find feasible solutions early in the
search, cutting plane separators that cut off fractional solution from the relaxation without
branching, and domain propagation routines that try to derive tighter variable bounds from
current variable bounds and the constraints. For details, we refer to [1, 2].

†http://scip.zib.de
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5 Results

We consider optimization problem (2.1)-(2.7) with the following data: the time horizon
equals 2 days subdivided in T = 48 hourly intervals; the probability level for demand
satisfaction was chosen as p = 0.9; the profiles π = (π1, . . . , πT ) and d = (d1, . . . , dT ) for
price and demand were adapted from real life data of a power spot market and an electricity
provider, respectively, found in the internet; the minimum and maximum operation limits
of the turbines were chosen such that v = 0.25v̄; the final filling level l∗ was defined as the
mean of lower and upper levels: l0 = l∗ = 0.5

(
l + l̄

)
. In contrast, the initial filling level l0

was assumed to be slightly inferior to that average. Hence, one additional purpose of the
optimization problem was to slightly increase the filling level in the reservoir at the end of
the time horizon. This objective might reflect some strategic considerations by the decision
maker.

The model for the discrete random process ξ = (ξ1, . . . , ξT ) of wind speed (scaled to
wind energy produced) was assumed to be multivariate normal according to ξ ∼ N (µ,Σ),
where µ denotes the vector of expected values of ξ and Σ is the covariance matrix associated
with the components of ξ. As observed in [5], raw data for wind speed are not normal but
can be transformed into normal by raising them to a certain power. The main purpose of
this paper being an illustration of how binary decisions can be integrated into probabilistic
constraints, we kept for simplicity the normality assumption in our example. A constant
mean wind speed with relative standard deviation of 1/3 was assumed along with correlation
coefficients ρt1,t2 := 0.85|t1−t2| between components ξt1 and ξt2 . In this way, dependencies
between components are taken into account which is an essential issue in modeling wind
speed [5, p. 2114]. Of course, assuming independent components would allow for a much
simpler computation of probabilities and their gradients in the constraint (2.2).

For the numerical solution we applied the methodology presented in Section 4. For the
sake of comparison, we provide not only the results for the case of a joint probabilistic
constraiqnt (2.2) but also for the two simplifying approaches (expected value constraint
(3.1) and individual probabilistic constraints (3.2) with same probability level p = 0.9 as
for the joint case) discussed in Section 3 which are easily solved by as mixed-integer linear
programs.

Figure 1 illustrates the optimal turbining profile (i.e., the sum xt + yt) for the three
models. The plots show connected parts in which turbines operate within their positive
technical limits 0 < v ≤ v̄ as well as disrupted parts due to shut down or switch on decisions
implying zero energy production at certain times.

Figure 1: Optimal turbining profiles for the hydro reservoir in case of using expected values (left),
individual probabilistic constraints (middle) or a joint probabilistic constraint (right). Turbines are
either switched off (zero level) or work within positive operation limits (dotted lines).

Figure 2 shows the price signal πt and the part yt of the total hydro energy production
from Figure 1 which is sold at the market. It can be seen that the expected value solution
follows best the price signal, whereas the solution based on the joint probabilistic constraint
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deviates most in shape from the price signal. Accordingly, the optimal values (profits) of
the three different models are: 25.698 (expected values), 21.143 (individual probabilistic
constraints) and 10.473 (joint probabilistic constraint). However, we will see next that the
better profits obtained by the simplified approaches come at the price of lacking robustness.

Figure 2: Part of hydro energy sold at the market in case of using expected values (left), individual
probabilistic constraints (middle) or a joint probabilistic constraint (right). The (common) price
signal is plotted in gray color.

In Figure 3, the satisfaction of local energy demand by the sum of wind energy ξt and the
remaining (unsold) part of hydro energy xt is represented. The demand profile exhibits
the typical two-days shape with a low during night time. In order to visualize demand
satisfaction, given the optimal solutions xt, yt, zt of the corresponding problems, a number
of one hundred scenarios ξt for wind energy were simulated according to the assumed
distribution parameters ξ ∼ N (µ,Σ). We emphasize that these scenarios were not used to
solve the optimization problems but just serve the purpose of an à posteriori check of the
previously calculated solutions. Each figure shows the plots of supplied energy ξt + xt for
the different scenarios ξt. The generated wind energy scenarios ξt are the same for all three
models but, of course, the visualized scenarios of supplied energy ξt+xt differ by their hydro
energy component ξt+xt. It can be seen that the expected value solution frequently violates
demand satisfaction. Indeed, it turns out that only nine out of one hundred scenarios satisfy
the demand through the whole time horizon. This empirical estimate corresponds very well
with the theoretical probability of 8.9% calculated according to

P(xt + ξt ≥ dt ∀t = 1, . . . , T )

as in the constraint(2.2). This total lack of robustness demonstrates why the expected
value solution is meaningless despite its attractive profit. Inspection of the solution based
on individual probabilistic constraints reveals that for each point in time separately, only
approximately 10 scenarios (or less) fall below the demand line. This is coherent with the
chosen probability level p = 0.9 in the model (3.2). However, this does not tell anything
about the probability of meeting the demand uniformly because different scenarios may
violate the demand at different times. Indeed, an enumeration of the generated scenarios
yields that only 41 out of 100 scenarios satisfy the demand through the whole time horizon
(theoretical probability: 35.2%). In contrast, 93 scenarios pass thorugh the whole time
horizon without demand violation in case of the joint probabilistic constraint which fits well
to the chosen probability level of p = 0.9 (of course, with another set of 100 generated
scenarios, the empirical number of succes can differ from 93 but is likely to stay around 90).
Evidently, the demand is not only satisfied in a robust sense but due to the randomness of
wind speed, even a considerable surplus in the energy supply is observed in general. This
surplus may be thought of being sold as well or used for an additional pumped storage
plant. Anyhow, the surplus is not affected by our decisions, so it is purely random and can
be ignored in the optimization problem.
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Figure 3: Simulated energy supply (wind plus unsold hydro energy) for 100 simulated wind energy
scenarios in case of using expected values (left), individual probabilistic constraints (middle) or
a joint probabilistic constraint (right). The (common) demand profile is plotted as a thick black
curve.

Finally, Figure 4 proves that all three solutions satisfy the level constraints (2.6) and (2.7):
in all cases, the filling levels stay between the critical values l and l̄. Moreover, in all cases
the required end level l∗ is reached.

Figure 4: Water level for the hydro reservoir in case of using expected values (left), individual
probabilistic constraints (middle) or a joint probabilistic constraint (right). The critical lower and
upper level of the reservoir are represented by a solid line and the end level to be reached by a
dotted line, respectively.
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6 Appendix

The following result is based on the idea of proof in [21, Prop. 3.8].

Theorem 6.1. Let the s-dimensional random vector ξ have a density fξ. Then, the distribu-

tion function Fξ of ξ is globally Lipschitz continuous if and only if all marginal densities f
(i)
ξ

(i = 1, . . . , s) are essentially bounded. Moreover, the largest of these bounds is a Lipschitz
modulus for Fξ with respect to the 1-norm.

Proof. Let x, y ∈ Rs be arbitrary. Put

zi := (y1, . . . , yi, xi+1, . . . , xs) ∀i ∈ {0, . . . , s} .
Then, z0 = x and zs = y. It follows that

|Fξ(x)− Fξ(y)| ≤
s∑

i=1

∣∣Fξ(z
i)− Fξ(z

i−1)
∣∣

=
s∑

i=1

|P(ξ1 ≤ y1, . . . , ξi ≤ yi, ξi+1 ≤ xi+1, . . . , ξs ≤ xs)−

P(ξ1 ≤ y1, . . . , ξi−1 ≤ yi−1, ξi ≤ xi, . . . , ξs ≤ xs)|

=
s∑

i=1

P(ξ1 ≤ y1, . . . , ξi−1 ≤ yi−1, ξi ∈ (min {xi, yi} ,max {xi, yi}],

ξi+1 ≤ xi+1, . . . , ξs ≤ xs)

≤
s∑

i=1

P(ξi ∈ (min {xi, yi} ,max {xi, yi}])

=
s∑

i=1

(
F

(i)
ξ (max {xi, yi})− F

(i)
ξ

(
min {xi, yi}

))
.

Assume that there exist Mi ∈ R such that f
(i)
ξ (τ) ≤ Mi for almost all τ ∈ R and for

i = 1, . . . , s. Then, for all i = 1, . . . , s,

F
(i)
ξ (max {xi, yi})− F

(i)
ξ (min {xi, yi}) =

max{xi,yi}∫
min{xi,yi}

f
(i)
ξ (τ)dτ ≤ Mi |xi − yi| .

Along with the previous estimate, the global Lipschitz continuity of F with modulus M :=
maxi Mi with respect to the 1-norm results :

|Fξ(x)− Fξ(y)| ≤
s∑

i=1

Mi |xi − yi| ≤ M ∥x− y∥1 .

By equivalence of all norms in Rs the global Lipschitz continuity of F with respect to any
norm follows.

Let conversely Fξ be globally Lipschitz continuous with modulus M . Then, the marginal

distribution functions F
(i)
ξ are Lipschitz continuous with the same modulus. To see this,

choose arbitrary r, v ∈ R, i ∈ {1, . . . , s} and ε > 0. Defining

At :=
{
z ∈ Rs

∣∣∣z ≤ (t, . . . , t, r
i
, t, . . . , t)

}
(t ∈ R) ,
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it holds that At forms an increasing sequence with respect to set inclusion. Therefore,

lim
t→∞

Fξ(t, . . . , t, r, t, . . . , t) = lim
t→∞

P(ξ ∈At) = P
(
ξ ∈

∪
t∈R

At

)
= P(ξ ∈ Ri−1 × (−∞, r]× Rs−i)

= P(ξi≤r) = F
(i)
ξ (r).

Consequently, for t̄ sufficiently large, one has that∣∣∣Fξ(t̄, . . . , t̄, r, t̄, . . . , t̄)− F
(i)
ξ (r)

∣∣∣ , ∣∣∣Fξ(t̄, . . . , t̄, v, t̄, . . . , t̄)− F
(i)
ξ (v)

∣∣∣ < ε.

We infer that ∣∣∣F (i)
ξ (r)− F

(i)
ξ (v)

∣∣∣ ≤ 2ε+M |r − v| .

As ε > 0 was arbitrary, one arrives at the asserted global Lipschitz continuity of F
(i)
ξ with

modulus M . Furthermore, it holds that

F
(i)
ξ (r) =

r∫
−∞

f
(i)
ξ (τ)dτ.

By the Fundamental Theorem of calculus for the Lebesgue Integral, we know that
[
F

(i)
ξ

]′
(r) =

f
(i)
ξ (r) for almost all r ∈ R. Hence the Lipschitz continuity of F

(i)
ξ with modulus M yields

that

f
(i)
ξ (r) = lim

h↓0

F
(i)
ξ (r + h)− F

(i)
ξ (r)

h
≤ M for almost all r ∈ R.

It results that the f
(i)
ξ are essentially bounded.

Corollary 6.2. Let ξ ∼ N (µ,Σ). Then, Fξ is globally Lipschitz continuous such that

1√
2π min

i=1,...,s
Σii

is a Lipschitz modulus with respect to the 1-norm.
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