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where y ∈ Rm
+ and z ∈ Rp, is called a KKT point of (1.1). There are many numerical methods

for solving the nonlinear programming (1.1), including sequential quadratic programming
methods, augmented Lagrangian methods, interior point methods, homotopy methods and
so on. For solving nonconvex programming, the homotopy method is a good methodology
since its global convergence to a KKT point can be proven under fairly weak conditions. In
the last three decades, some results on the homotopy methods for nonlinear programming
have been given, see, [5,6,10–12,17,18]. In [12], Shang and Yu proposed a constraint shifting
combined homotopy method (abbreviated by CSCH) for nonlinear programming with only
inequality constraints, which could choose the initial point outside the feasible region, it
could solve some problems that did not satisfy the normal cone condition. In [9], Lin, Li
and Yu proposed a combined homotopy interior point method(CHIP) for solving nonconvex
programming with both equality and inequality constraints, as in (1.1). The homotopy
equation was defined as

H(x, y, z, t) =

 (1− t)(∇f(x) +∇g(x)y) +∇h(x)z + t(x− x(0))
Y g(x)− tY (0)g(x(0))

h(x)

 = 0, (1.3)

where (y, z) ∈ Rm
+ × Rp, Ω(0) = {g(x) < 0, h(x) = 0}, (x(0), y(0)) ∈ Ω(0) × Rm

++, t ∈ [0, 1],

Y = diag(y1, y2, . . . , ym), Y (0) = diag(y
(0)
1 , y

(0)
2 , . . . , y

(0)
m ). Under the nonemptiness and

boundedness of Ω(0), linear independence constraint qualification (LICQ) and a normal cone
condition on both inequality and equality constraints, existence and global convergence to
a KKT point of a smooth homotopy path were proven. Due to the last component, h(x) =
0, the homotopy equation (1.3) needs an interior starting point x(0) which satisfies also
equality constraints. Because finding a point satisfying both equality and strict inequality
constraints may be as difficult as the solving original problem, the CHIP is not convenient
to use. In [15], Yang, Yu and Xu proposed a combined homotopy infeasible interior point
method(CHIIP) for (1.1). It required only the starting point to be an interior point and
not to be a feasible point, so it was more practical than CHIP for (1.1). Under a normal
cone condition concerning only with the inequality constraints, as well as a stronger positive
linear independence assumption, existence and global convergence of the homotopy path
with probability one to a solution of the KKT system were proven. In [16], Yang, Yu and
Xu proposed a constraint shifting homotopy method(CSH) for (1.1). Under some conditions
including the nonemptiness and boundedness of parameterized feasible sets, positive-linear
independence and a normal cone condition about parameterized constraints, existence and
global convergence of the homotopy path were proven.

Homotopy methods are globally convergent under weak conditions and robust, however,
the efficiency of a homotopy method is closely related with the construction of the homotopy
map and the path tracing algorithm. Different homotopies may behave very different in
performance even though they are all theoretically convergent. In this paper, using cubic
spline which was introduced in [19] to smoothly approximate the min (or max) function, a
constraint shifting spline smoothing homotopy (abbreviated by CSSSH) is constructed and
an interior path following method—constraint shifting spline smoothing homotopy method
for general nonlinear programming is proposed. The spline smoothing technique uses a
smooth inequality constraint instead of m inequality parameterized constraints and acts
also as an active set technique, so it can improve the efficiency of the homotopy method.
Under the condition that the nonemptiness and boundedness of parameterized feasible sets,
positive-linear independence and the initial feasible set, not necessarily the original feasible
set, satisfies the normal cone condition, existence and global convergence of the homotopy
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path are proven. In addition, CSSSH does not require starting from an interior point, so it
is convenient to be implemented.

The rest of this paper is organized as follows. In section 2, we give the constraint shifting
spline smoothing homotopy and prove some propositions and main theorem on the existence
and global convergence of the homotopy path. In section 3, a procedure for tracking the
homotopy path is listed and several numerical examples are given.

2 The Homotopy and Homotopy Path

To develop our main result, we need the following definitions and theorems which are from
differential topology. Let U ⊂ Rn be an open set, and f : U → Rp be a smooth mapping.
We say y ∈ Rp is a regular value for f , if

Range

[
∂f(x)

∂x

]
= Rp, ∀x ∈ f−1(y).

A map f ∈ Cr(Rn, Rm) is said to belong to Cr,1 if Drf is locally Lipschitz on Rn.
The Parameterized Sard theorem in [1] are commonly used for proving the regularity

of a homotopy. In this paper, in order to use a spline function with degree as low as
possible, namely S2

3 , in CSSSH, we use the following parameterized Sard theorem with Cr,1

smoothness.

Theorem 2.1 ([4]). Let U ⊂ Rm and V ⊂ Rn be two open sets, and f : U × V → Rk be an
Cr,1 differentiable map with r > max{0,m− k}. If 0 ∈ Rk is a regular value of f , then for
almost all a ∈ V , 0 is a regular value of fa = f(a, ·).

Let g̃(x, t) = g(x) − tαc, where α ≥ 1, c ∈ Rm
+ . For given x(0), let Ω(t) = {x ∈

Rn|g̃(x, t) ≤ 0, h(x) − th(x(0)) = 0}, Ω(0)(t) = {x ∈ Rn|g̃(x, t) < 0, h(x) − th(x(0)) = 0},
∂Ω(t) = Ω(t)\Ω(0)(t), Ω̃ =

∪
t∈[0,1] Ω(t), I(x, t) = {j ∈ {1, 2, . . . ,m}|g̃j(x, t) = 0}. It is

obvious that Ω(0) = Ω.
The following hypotheses will be used in this paper. There exist a vector c ∈ Rm

+ and
an open subset V of the set {x|g̃(x, t) < 0} satisfying following assumptions:

(A1) For any t ∈ [0, 1], Ω(0)(t) is nonempty, and Ω̃ bounded;
(A2) For any x ∈ V , the matrix ∇h(x) has full column rank. For any t ∈ [0, 1], and

x ∈ Ω(t),
∑

i∈I(x,t) αi∇g̃i(x, t) +
∑p

j=1 βj∇hj(x) = 0 for αi ∈ R+ and βj ∈ R implies

αi = βj = 0, i ∈ I(x, t), j = 1, . . . , p;
(A3) ∀x ∈ Ω(1),

{x+∇h(x)z +
∑

i∈I(x,1)

yi∇g̃i(x, 1) : z ∈ Rp, yi ≥ 0, i ∈ I(x, 1)} ∩ Ω(1) = {x}.

We know g̃(x, t) ≤ 0 is equivalent to g̃max(x, t) ≤ 0, where g̃max(x, t) = max1≤i≤m{g̃i(x, t)},
then the number of inequation is reduced to one, but g̃max(x, t) is nonsmooth. We consider
to uniformly approximate g̃max(x, t) by the smooth spline introduced in [19].

Let us first recall the formulation of multivariate spline. Let D be a polyhedral domain of
Rm which is partitioned with irreducible algebraic surfaces into cells △ = {△i|i = 1, . . . , N}.
A function s(z) defined on D is called a k-spline function with r-th order smoothness,
expressed for short as s(z) ∈ Sr

k(D,△), if s(z) ∈ Cr(D) and s(z)|△i = pi ∈ Pk, where Pk

is the set of all polynomial of degree k or less in m variables. Similar to the smooth spline
which uniformly approximate min{z1, z2, . . . , zm} given in [19], we can construct a spline
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function s23(z; ε) ∈ S2
3(R

m) to uniformly approximates max{z1, z2, . . . , zm} (as ε → +0) as
follows

s23(z1, z2, . . . , zm; ε) = zi1 +
k−1∑
l=1

cl

lzil+1
−

l∑
j=1

zij + ε

3

, for z ∈ △i1...ik(ε),

where c1 = 1/(6ε2), ck/ck+1 = (k + 2)/k, 1 ≤ k ≤ m, and the cell △i1,...,ik(ε), is the region
defined by the following inequalities

zil − zil+1
≥ 0, when 1 ≤ l < k,

(k − 1)zik −
k−1∑
j=1

zij + ε ≥ 0,

kzil −
k∑

j=1

zij + ε ≤ 0, when k + 1 ≤ l ≤ m.

The following composite function uniformly approximates max{g̃1(x, t),
g̃2(x, t), . . . , g̃m(x, t)} as t → +0.

ĝ(x, t) = s23(g̃1(x, t), g̃2(x, t), . . . , g̃m(x, t); t). (2.1)

For convenience, denote by ∇g̃(x, t) the gradient of g̃(x, t) with respect to the variable x.
To solve the KKT system (1.2), for a randomly chosen (x(0), ξ) ∈ V ×Rn and any given

η ∈ R++, we construct the following constraint shifting spline smoothing homotopy

H(w, t) =

 (1− t)(∇f(x) + λ∇ĝ(x, t)) +∇h(x)z + t(x− x(0)) + t(1− t)ξ
λĝ(x, t) + tη

h(x)− th(x(0))

 , (2.2)

where w = (x, λ, z) ∈ W = Ω̃×R+ ×Rp, t ∈ (0, 1].
For a given w(0) ∈ V × R++ × Rp, we rewrite H(w, t) in (2.2) as Hw(0)(w, t). Let

H−1
w(0)(0) = {(w, t) ∈ W × (0, 1]|Hw(0)(w, t) = 0}.

Proposition 2.2. Suppose that assumptions (A1), (A2) and (A3) hold, then for w ∈
W , the homotopy equation H(w, 1) = 0 has only one simple solution (x, λ, z) = w(0) =
(x(0), λ(0), z(0)) = (x(0),−ĝ(x, 1)−1η, 0).

Proof. By the condition (A1), suppose without loss of generality that (x̂, λ̂, ẑ) solves the

equation H(w, 1) = 0. It follows from H(x̂, λ̂, ẑ, 1) = 0, η ∈ R++ and λ ≥ 0 that ĝ(x, 1) < 0.
By proposition 3.1 in [4], we know g̃(x, 1) < 0, then we have x̂ ∈ Ω(0)(1). Hence I(x̂, 1) = ∅.
Let us proceed by contradiction and assume that x̂ ̸= x(0), which implies that ẑ ̸= 0. By
the first equality in (2.2), we have that x(0) = x̂+∇h(x̂)ẑ, which contradicts the condition
(A3). Hence, x̂ = x(0) and ∇h(x̂)ẑ = ∇h(x(0))ẑ = 0. From the condition (A2), we know

that ẑ = 0. From the second equality in (2.2), we have that λ̂ = −ĝ(x̂, 1)−1η. Hence, the
solution of H(w, 1) = 0 is unique. It follows from the nonsingularity of

∂H(w(0), 1)

∂w
=

 I 0 ∇h(x(0))
λ(0)∇ĝ(x(0), 1) ĝ(x(0), 1) 0
(∇h(x(0)))T 0 0


that the solution of H(w, 1) = 0 is simple. This completes the proof.
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Proposition 2.3. Suppose that f(x) ∈ C2,1, g(x) ∈ C2,1 and h(x) ∈ C2,1. Let the assump-
tions (A1) and (A2) hold and H be defined as (2.2), then for almost all (x(0), ξ) ∈ V ×Rn,
0 is a regular value of H : W × (0, 1) → Rn+1+p.

Proof. Let H̃(w, x(0), ξ, t) : Rn×R++×Rp×V ×Rn×(0, 1) → Rn+1+p be the same mapping
with H(w, t) but taking also x(0) and ξ as variates. Consider the following submatrix of the
Jacobian DH̃(w, x(0), ξ, t) of H̃(w, x(0), ξ, t):

∂H̃(w, x(0), ξ, t)

∂(x(0), λ, ξ)
=

 −tI (1− t)∇ĝ(x, t) t(1− t)I
0 ĝ(x, t) 0

−t(∇h(x(0)))T 0 0

 ,

From t ∈ (0, 1), η > 0 and λĝ(x, t) + tη = 0, we know that ĝ(x, t) ̸= 0. It follows from

(A2) that (∇h(x(0)))T is the matrix of full row rank. These imply that ∂H̃(w,x(0),ξ,t)
∂(x(0),λ,ξ)

and

DH̃(w, x(0), ξ, t) are the matrices of full row rank for any solution of H̃(w, x(0), ξ, t) = 0 in
Rn × R++ × Rp × V × Rn × (0, 1). Hence, 0 is a regular value of H̃(w, x(0), ξ, t). From
Proposition 3.4 in [4] and the Theorem 2.1, we know that for almost all (x(0), ξ) ∈ V ×Rn,
0 is a regular value of H : W × (0, 1) → Rn+1+p. This completes the proof.

Theorem 2.4. Suppose that f(x) ∈ C2,1, g(x) ∈ C2,1 and h(x) ∈ C2,1. Let the assumptions
(A1) and (A2) hold and H be defined as (2.2), then for almost all (x(0), ξ) ∈ V × Rn, 0 is
a regular value of H : W × (0, 1) → Rn+1+p. For given (x(0), ξ) ∈ V ×Rn, if 0 is a regular
value of H : W × (0, 1) → Rn+1+p, then there must be a smooth curve Γx(0) in H−1(0),
starting from (w(0), 1). In addition, if the assumption (A3) holds, then Γx(0) terminates in
or approaches to the hyperplane t = 0. If (x∗, λ∗, z∗, 0) is a limit point of Γx(0) , then x∗ is
a KKT point of the problem (1.1).

Proof. From the assumptions (A1), (A2) and Propositions 2.3, we know that for almost
all (x(0), ξ) ∈ V × Rn, 0 is a regular value of H : W × (0, 1) → Rn+1+p. For given
(x(0), ξ) ∈ V × Rn, if 0 is a regular value of H : W × (0, 1) → Rn+1+p, from the fact

that H(w, 1) = 0, the nonsingularity of ∂H(w(0),1)
∂(w) and the implicit function theorem, we

know that H−1(0) contains a smooth curve Γx(0) , which starts from (w(0), 1) and goes into
Ω(0)(1)×R++ ×Rp × (0, 1) and terminates in the boundary of Ω(t)×R+ ×Rp × [0, 1].

Let (w∗, t∗) = (x∗, λ∗, z∗, t∗) be an ending limit point of Γx(0) . Only the following five
cases are possible:

(1) w∗ ∈ Ω(1)×R+ ×Rp, t∗ = 1, ∥ (λ∗, z∗) ∥< ∞;

(2) w∗ ∈ Ω(t∗)×R+ ×Rp, t∗ ∈ [0, 1], ∥ (λ∗, z∗) ∥= ∞;

(3) w∗ ∈ Ω(t∗)× ∂R+ ×Rp, t∗ ∈ (0, 1), ∥ (λ∗, z∗) ∥< ∞;

(4) w∗ ∈ ∂Ω(t∗)×R++ ×Rp, t∗ ∈ (0, 1), ∥ (λ∗, z∗) ∥< ∞;

(5) w∗ ∈ Ω×R+ ×Rp, t∗ = 0, ∥ (λ∗, z∗) ∥< ∞.

It follows from (A1), (A2), (A3) and Proposition 2.2 that w(0) is the unique and simple
solution of H(w, 1) = 0, which implies that case (1) is impossible.

If the case (2) happens, then there exists a sequence of points {x(k), λ(k), z(k), tk} on
Γx(0) such that tk → t∗ ∈ [0, 1], xk → x∗ ∈ Ω(t∗), ∥ λ(k), z(k) ∥→ ∞, as k → ∞. By the fist
equality in the homotopy equation H(x(k), λ(k), z(k), t(k)) = 0, we have that

(1− tk)(∇f(x(k)) + λ(k)∇ĝ(x(k), tk)) +∇h(x(k))z(k)

+tk(x
(k) − x(0)) + tk(1− tk)ξ = 0

(2.3)



42 L. DONG, B. YU AND Z. ZHOU

And only the following two subcases are possible: (a) t∗ = 1; (b) t∗ ∈ [0, 1).
(a) t∗ = 1.
If ∥ ((1−tk)λ

(k), z(k)) ∥< ∞, suppose without loss of generality that ((1−tk)λ
(k), z(k)) →

(λ, z), then λ > 0 from the equality λ(k)ĝ(x(k), tk) + tkη = 0. By taking the limit in (2.3)
we get

x(0) = x(∗) + limk→∞[(1− tk)(∇f(x(k)) + λ(k)∇ĝ(x(k), tk)) +∇h(x(k))z(k)]
= x(∗) +∇h(x(∗))z + limk→∞(1− tk)λ

(k)∇ĝ(x(k), tk)

From the proposition 3.3 in [4], we have ∇ĝ(x(k), tk)) =
m∑
i=1

yi(x
(k), tk)∇g̃i(x

(k), tk) and

yi(x
(∗), 1) = 0 for i /∈ I(x(∗), 1). We have

x(0) = x∗ +∇h(x∗)z + λ
∑

i∈I(x∗,1) yi(x
∗, 1)∇g̃i(x

∗, 1)

which contradicts with the assumption (A3).
For the case ∥ ((1 − tk)λ

(k), z(k)) ∥→ ∞, the discussion is the same the case (b), which
will be done below.

(b) t∗ ∈ [0, 1).
Suppose without loss of generality that ((1−tk)λ

(k), z(k))/ ∥ ((1−tk)λ
(k), z(k)) ∥→ (α, β)

with ∥ (α, β) ∥= 1. Divide the both sides of (2.3) by ∥ ((1 − tk)λ
(k), z(k)) ∥ and take the

limit, we have that

α∇ĝ(x∗, t∗) +
l∑

i=1

βi∇hi(x
∗) = 0

From the proposition 3.3 in [4], we have ∇ĝ(x∗, t∗) =
m∑
i=1

yi(x
∗, t∗)∇g̃i(x

∗, t∗), yi(x
∗, t∗) = 0

for i /∈ I(x∗, t∗), yi(x
∗, t∗) ≥ 0, i ∈ I(x∗, t∗) and

∑
i∈I(x∗,t∗)

yi(x
∗, t∗) = 1. We have

α
∑

i∈I(x∗,t∗)

yi(x
∗, t∗)∇g̃i(x

∗, t∗) +
l∑

i=1

βi∇hi(x
∗) = 0

which contradicts with the assumption (A2).
From (a) and (b), we conclude that the case (2) is impossible.
From λ∗ĝ(x∗, t∗) + t∗η = 0, we know that t∗ > 0 and λ∗ ∈ ∂R+ cannot happen si-

multaneously, which implies that the case (3) is impossible. If λ∗ > 0 and t∗ > 0, from
λ∗ĝ(x∗, t∗)+ t∗η = 0, we have ĝ(x∗, t∗) < 0. By proposition 3.1 in [4], we know g̃(x∗, t∗) < 0,
which implies that the case (4) is impossible. As a result, the case (5) is the only possible
case. Hence, (x∗, λ∗, z∗) is a solution of the KKT system (1.2). This completes the proof.

3 The CSSSH-S-N Procedure and Numerical Experiments

3.1 The CSSSH-S-N Procedure

In this section, we give a predictor-corrector algorithm—CSSSH-S-N procedure to trace the
path generated by the Constraint Shifting Spline Smoothing Homotopy, in which Secant
predictor and Newton corrector steps are used.

The first predictor step is tangent predictor, other predictor steps are secant predictor.
Step length is adjusted according to the angle between current and previous predictor di-
rections and the times of iteration of previous corrector step. The corrector step is Newton
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corrctor along with the direction that vertical to the predictor director. At each predictor
step and corrector step, we need to check if the computed point is in Ω(t) or not. If not, we
take some damping step. Particularly, in order to improve the efficiency of CSSSH-S-N, the
algorithm includes an end game strategy, in which we use the standard Newton’s method
to solve

Ftc(x, λ, z) =

 ∇f(x) + λ∇ĝ(x, tc) +∇h(x)z
λĝ(x, tc)
h(x)

 = 0,

where tc is a small positive constant.
For convenience, Ω̂t denotes Ω(t) × R+ × Rp. From the expression of ĝ(x, t), we know

when t is smaller, then the number of gradient and Hessian calculations of the inequality
constrains is less. In order to improve the efficiency of the CSSSH method, for a given
θ ∈ (0, 1], we use θt instead of t of ĝ(x, t). Now we are ready to give a formal statement of
our algorithm.

Algorithm 3.1 (the CSSSH-S-N procedure).

Step 0: Give a random vector ξ, a positive vector η, θ ∈ (0, 1], θ1 ∈ (0, 1), tend and tc, the
starting point (w(0), 1), initial step length h1, step contraction factors Bmin, step ex-
pansion factors Bmax; tracking tolerances Htol and Hfinal for correction. Let w

(k,i) =
w(0), tk,i = 1, goto Step 1 and compute H ′

w(0)(w
(0), θt0). Let d(0) = (0, . . . , 0,−1) ∈

Rn+1+p+1, compute the predictor direction d by solving the following system of equa-
tion: (

H ′
w(0)(w

(0), θt0)

d(0)
T

)
d = −d(0),

set d(1) = d
∥d∥ , t0 = 1, k = 1, Ngood = 2, goto Step 4.

Step 1 (search the cell): Let Ī = {j|g̃max(x
(k,i), tk,i) − g̃j(x

(k,i), tk,i) < θtk,i}, k̄ be the

cardinality of Ī, and Ī = {i1, i2, . . . , ik̄}. Range {g̃ij (x(k,i), tk,i)}k̄j=1 according to

g̃i1(x
(k,i), tk,i) ≥ g̃i2(x

(k,i), tk,i) ≥ · · · ≥ g̃ik̄(x
(k,i), tk,i). If k̄ = 1, the cell is △i1(θtk,i).

Else, for every k̃ ∈ {k̄, k̄ − 1, . . . , 2}, if (k̃ − 1)g̃ik̃(x
(k,i), tk,i) −

∑k̃−1
j=1 g̃ij (x

(k,i), tk,i) +

θtk,i ≥ 0, we have k̃ ∈ I ⊆ {k̄, k̄− 1, . . . , 2}. Let k̂ be the maximum element of I, then
the cell is △i1...ik̂

(θtk,i).

Step 2 (predictor step): Compute the predictor direction d(k)= (w(k−1),tk−1)−(w(k−2),tk−2)

∥(w(k−1),tk−1)−(w(k−2),tk−2)∥
,

the angle between the current and the last predictor directions β(k) =

arccos((d(k))T d(k−1)).

Step 3: If corrector step fail or β(k) > π/4, set hk = Bmin(1)hk−1, Ngood = 0; If i ≥ 5,
set hk = Bmin(2)hk−1, Ngood = 0; if i = 4, set hk = hk−1, Ngood = Ngood + 1; if
i = 3, set Ngood = Ngood + 1, if Ngood > 2, set hk = min(1, Bmax(2)hk−1); if i ≤ 2, set
Ngood = Ngood + 1, if Ngood > 2, set hk = min(1, Bmax(1)hk−1).

Step 4: If hk < 10−20, stop the algorithm with an error flag; else determine the smallest
nonnegative integer j such that (w(k,0), tk,0) = (w(k−1), tk−1)+θj1hkd

(k) ∈ Ω̂tk,0
×(0, 1],

set hk = θj1hk, i = 0.
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Step 5: If tk,0 ≤ tend, adjust step length hk, compute a new predictor point (w(k,0), 0). If
w(k,0) is feasible, set l = 0, goto the end game.

Step 6 (corrector step): If i = 5, w(k) = w(k−1), tk = tk−1, d
(k+1) = d(k), replace k by

k+1, goto Step 3; else goto Step 1, compute H ′
w(0)(w

(k,i), θtk,i) and then compute the

corrector direction d(k,i+1) by(
H ′

w(0)(w
(k,i), θtk,i)

dk
T

)
d(k,i+1) =

(
−Hw(0)(w(k,i), θtk,i)

0

)
,

determine the smallest nonnegative integer j such that

(w(k,i+1), tk,i+1) = (w(k,i), tk,i) + θj1d
(k,i+1) ∈ Ω̂tk,i+1

× (0, 1),

replace i by i+ 1.

Step 7: If tk,i ≥ 1 or w(k,i) is infeasible, w(k) = w(k−1), tk = tk−1, d
(k+1) = d(k), replace

k by k + 1, the corrector step fails, goto Step 3. If tk,i < 0, adjust the step length,
compute a new predictor point (w(k,0), 0). If w(k,0) is feasible, set l = 0, goto the end
game; else set w(k) = w(k−1), tk = tk−1, d

(k+1) = d(k), replace k by k+1, the corrector
step fails, goto Step 3.

Step 8: If ∥d(k,i)∥ > Htol and ∥Hw(0)(w(k,i), θtk,i)∥inf > Htol, goto Step 6; else w(k) =
w(k,i), tk = tk,i, if tk < tc, return with x∗ = x(k−1), stop the algorithm, else set
Htol = min{Htol, tk}, replace k by k + 1, goto Step 2.

Step 9 (the end game): Let w(k,i) = w(k,l), tk,i = tc, goto Step 1, compute F(θtc)(w
(k,l)),

F ′
(θtc)

(w(k,l)) and then computer d(k,l+1) = −(F ′
(θtc)

(w(k,l)))−1F(θtc)(w
(k,l)), the cor-

rector point w(k,l+1) = w(k,l) + d(k,l+1), replace l by l + 1.

Step 10: If ∥F(θtc)(w
(k,l))∥inf ≤ Hfinal, ∥d(k,l)∥ ≤ Hfinal, return with x∗ = x(k,l), stop the

algorithm.

Step 11: If l = 5 or ∥d(k,l)∥ > ∥d(k,l−1)∥, set tend = 0.3 ∗ tend, w
(k) = w(k−1), tk = tk−1,

d(k+1) = d(k), replace k by k + 1, goto Step 3; else goto step 9.

3.2 Numerical Experiment

We have implemented the CSSSH-S-N algorithm using the MATLAB. In order to show the
efficiency of the algorithm, we also have implemented CHIP and CSH methods using similar
procedures. We compare these algorithms with KNITRO [14] which is a solver for large
nonlinear optimization, where KNITRO provides three state-of-art algorithms for solving
problems and active set algorithm is suitable for solving nonlinear programming problem
with many constraints. We choose it and it’s parameters as default values.

The test results were obtained by running MATLAB R2011a on a desktop with Windows
XP Professional operation system, Intel(R) Core(TM) i3-370 2.40 GHz processor and 2.92
GB of memory. The default parameters are chosen as follows:

· Set g̃(x, t) = g(x) − t2βe, β = 0 when g(x(0)) < 0, β = 10 + maxi gi(x
(0)) when

g(x(0)) ≮ 0, η = 10e;

· Parameter θ = 0.0001, θ1 = 0.9;
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· Parameters in end game section tc = 10−6, tend = 0.1;

· Step size parameters h0 = 0.1, Bmin = [0.5, 0.75], Bmax = [3, 1.5];

· Tracking tolerances Htol = 10−3, Hfinal = 10−12;

For different problems, we list the final approximate solution x∗, the objective function
f(x∗) and CPU time in seconds. For the problems that were not solved by the conservative
setting, we also give the reason for failure. The notation ”fail1” indicates the step length in
predictor step is smaller than 10−20 before t = 0, this is generally due to poor conditioned
Jacobian matrix. The notation ”fail2” means x(0) is not feasible interior point for CHIP
method. The notation ”fail3” means out of memory. The notation ”fail4” means no result
in 5000 Newton iterations or 7200 seconds.

Example 3.1.

f(x) = sin(x1 − 1 + 1.5π)

+
∑

2≤i≤100

100 sin(−xi + 1.5π + x2
i−1),

gi(x) =


x1 − π i = 1;
x2
i−1 − xi − π i = 2, . . . , 100;

−x1 − π i = 101;
−x2

i−1 + xi − π i = 102, . . . , 200,

hi(x) = xi − xi+1 i = 1, . . . , 99.

Table 1: Test result for Example 3.1.
x0 Method f(x∗) x∗ Time

(0.6,0.6,. . . ,0.6) CSH - - fail1

CHIP -9901 (1.0, · · · , 1.0) 4.4899
KNITRO -9901 (1.0, · · · , 1.0) 0.3440
CSSSH -9901 (1.0, · · · , 1.0) 3.5607

x1 = x10 = x20 = x30 = 0.9 CSH -9901 (1.0, · · · , 1.0) 11.5612
xi = 1, i ∈ {2, . . . , 9, 11, . . . , CHIP - - fail2

19, 21, . . . , 29, 31, . . . , 100} KNITRO -9901 (1.0, · · · , 1.0) 1.250
CSSSH -9901 (1.0, · · · , 1.0) 4.8499

Example 3.2.

f(x) = x2
3 + x2

4,

gi,j(x) = (ti − x1)
2/x2

3 + (t′j − x2)
2/x2

4 − 1,

ti = i/(
√
m− 1), i = 0, . . . ,

√
m− 1,

t′j = j/(
√
m− 1), j = 0, . . . ,

√
m− 1.

h1(x) = x1 − x2,

h2(x) = x3 − x4.
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Table 2.1: Test result for Example 3.2 with x(0) = (0, 0, 100, 100).
m Method f(x∗) x∗ Time

100 CSH 0.9999 (0.5000,0.5000,0.7071,0.7071) 0.5616
CHIP 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.5640

KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 0.0310
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.4938

400 CSH 0.9999 (0.5000,0.5000,0.7071,0.7071) 1.5540
CHIP 1.0000 (0.5000,0.5000,0.7071,0.7071) 1.1906

KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 0.0940
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.6075

900 CSH 0.9999 (0.5000,0.5000,0.7071,0.7071) 3.6011
CHIP 1.0000 (0.5000,0.5000,0.7071,0.7071) 2.6922

KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 0.1410
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.6875

10000 CSH - - fail1

CHIP 1.0000 (0.5000,0.5000,0.7071,0.7071) 55.6361
KNITRO 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.9530
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.7334

90000 CSH - - fail1

CHIP 1.0000 (0.5000,0.5000,0.7071,0.7071) 5606.9141
KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 25.6720
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 2.6480

Table 2.2: Test result for Example 3.2 with x(0) = (10, 9, 90, 85).
m Method f(x∗) x∗ Time

100 CSH 0.9999 (0.5000,0.5000,0.7071,0.7071) 0.6755
CHIP - - fail2

KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 0.0470
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.5252

400 CSH 0.9999 (0.5000,0.5000,0.7071,0.7071) 1.4476
CHIP - - fail2

KNITRO 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.1090
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.5866

900 CSH - - fail1

CHIP - - fail2

KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 0.1410
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 0.5943

10000 CSH - - fail1

CHIP - - fail2

KNITRO 1.0000 (0.5000,0.5000,0.7071,0.7071) 7.4840
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 1.4217

90000 CSH - - fail1

CHIP - - fail2

KNITRO 1.0000 (0.5000,0.5000,-0.7071,-0.7071) 75.0310
CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 2.5076

Example 3.3.

f(x) = x2
1/3 + x1/2 + x2

2,
gi(x) = (1− x2

1t
2
i )

2 − x1t
2
i − x2

2 + x2,
ti = i/(m− 1), i = 0, . . . ,m− 1.
h1(x) = x1 + 0.75.



CONSTRAINT SHIFTING SPLINE SMOOTHING HOMOTOPY METHOD 47

Table 3.1: Test result for Example 3.3 with x(0) = (−0.75, 100).
m Method f(x∗) x∗ Time

100 CSH - - fail1

CHIP - - fail1

KNITRO 2.4305 (-0.7500,1.6180) 0.0930
CSSSH 2.4305 (-0.7500,1.6180) 0.1548

1000 CSH - - fail1

CHIP - - fail1

KNITRO 2.4305 (-0.7500,1.6180) 0.0940
CSSSH 2.4305 (-0.7500,1.6180) 0.1810

10000 CSH - - fail1

CHIP - - fail4

KNITRO 2.4305 (-0.7500,1.6180) 0.5940
CSSSH 2.4305 (-0.7500,1.6180) 0.3693

100000 CSH - - fail4

CHIP - - fail4

KNITRO 2.4305 (-0.7500,1.6180) 3.3280
CSSSH 2.4305 (-0.7500,1.6180) 2.6806

1000000 CSH - - fail4

CHIP - - fail4

KNITRO - - fail3

CSSSH 1.0000 (0.5000,0.5000,0.7071,0.7071) 36.9158

Table 3.2: Test result for Example 3.3 with x(0) = (−1, 20).
m Method f(x∗) x∗ Time

100 CSH - - fail1

CHIP - - fail2

KNITRO 2.4305 (-0.7500,1.6180) 0.0630
CSSSH 2.4305 (-0.7500,1.6180) 0.0499

1000 CSH - - fail1

CHIP - - fail2

KNITRO 2.4305 (-0.7500,1.6180) 0.0780
CSSSH 2.4305 (-0.7500,1.6180) 0.5866

10000 CSH - - fail1

CHIP - - fail2

KNITRO 2.4305 (-0.7500,1.6180) 0.5310
CSSSH 2.4305 (-0.7500,1.6180) 0.1046

100000 CSH - - fail4

CHIP - - fail2

KNITRO 2.4305 (-0.7500,1.6180) 2.4840
CSSSH 2.4305 (-0.7500,1.6180) 0.6515

1000000 CSH - - fail4

CHIP - - fail2

KNITRO - - fail3

CSSSH 2.4305 (-0.7500,1.6180) 8.1487

Example 3.4.

f(x) =
1

n

∑
1≤k≤n

(xk − 1)2,

gi(x) =
∏

1≤k≤n

cos(tixk) + ti
∑

1≤k≤n

x3
k,

ti = 0.5 + πi/(m− 1), i = 0, . . . ,m− 1,

hi(x) = xi − xi+1, i = 0, . . . , n− 1.
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Table 4.1: Test result for Example 3.4 with n = 100, x(0) = (−0.5, · · · ,−0.5).
m Method f(x∗) x∗ Time

100 CSH - - fail1

CHIP 1.4914 (-0.2212,· · · ,-0.2212) 54.2700
KNITRO 1.4915 (-0.2213,· · · ,-0.2213) 1.0160
CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 1.1826

1000 CSH - - fail1

CHIP 1.4914 (-0.2212,· · · ,-0.2212) 1123.2969
KNITRO 1.4915 (-0.2213,· · · ,-0.2213) 5.6560
CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 3.0975

10000 CSH - - fail3

CHIP - - fail3

KNITRO - - fail3

CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 8.4600

100000 CSH - - fail3

CHIP - - fail3

KNITRO - - fail3

CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 60.2280

Table 4.2: Test result for Example 3.4 with n = 100,
x(0) = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4,−2, · · · ,−2).

m Method f(x∗) x∗ Time

100 CSH - - fail1

CHIP - - fail2

KNITRO 1.4915 (-0.2213,· · · ,-0.2213) 1.4530
CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 2.0319

1000 CSH - - fail1

CHIP - - fail2

KNITRO 1.4915 (-0.2213,· · · ,-0.2213) 8.4840
CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 2.7178

10000 CSH - - fail3

CHIP - - fail2

KNITRO - - fail3

CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 8.2156

100000 CSH - - fail3

CHIP - - fail2

KNITRO - - fail3

CSSSH 1.4914 (-0.2212,· · · ,-0.2212) 96.7384

Table 4.3: Test result for Example 3.4 with m = 1000, x(0) = (−0.5, · · · ,−0.5).
n Method f(x∗) x∗ Time

150 CSH - - fail1

CHIP 1.4147 (-0.1894,· · · , -0.1894) 2832.2024
KNITRO 1.4147 (-0.1894,· · · , -0.1894) 12.0000
CSSSH 1.4147 ( -0.1894,· · · , -0.1894) 4.8622

200 CSH - - fail1

CHIP 1.3677 (-0.1695,· · · ,-0.1695) 5704.1973
KNITRO 1.3678 (-0.1695,· · · ,-0.1695) 38.9380
CSSSH 1.3677 (-0.1695,· · · ,-0.1695) 11.4528

250 CSH - - fail3

CHIP - - fail3

KNITRO 1.3351 (-0.1555,· · · ,-0.1555) 56.2500
CSSSH 1.3350 (-0.1554,· · · ,-0.1554) 26.1072

300 CSH - - fail3

CHIP - - fail3

KNITRO 1.3105 (-0.1448,· · · ,-0.1448) 88.1090
CSSSH 1.3105 (-0.1447,· · · ,-0.1447) 35.5979



CONSTRAINT SHIFTING SPLINE SMOOTHING HOMOTOPY METHOD 49

Table 4.4: Test result for Example 3.4 with m = 1000,
x(0) = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4,−2, · · · ,−2).

n Method f(x∗) x∗ Time

150 CSH - - fail1

CHIP - - fail2

KNITRO 1.4147 (-0.1894,· · · , -0.1894) 19.0160
CSSSH 1.4147 ( -0.1894,· · · , -0.1894) 8.4100

200 CSH - - fail1

CHIP - - fail2

KNITRO 1.3678 (-0.1695,· · · ,-0.1695) 33.1720
CSSSH 1.3677 (-0.1695,· · · ,-0.1695) 14.7899

250 CSH - - fail3

CHIP - - fail2

KNITRO 1.3351 (-0.1555,· · · ,-0.1555) 51.0630
CSSSH 1.3350 (-0.1554,· · · ,-0.1554) 26.1072

300 CSH - - fail3

CHIP - - fail2

KNITRO 1.3105 (-0.1448,· · · ,-0.1448) 87.0630
CSSSH 1.3105 (-0.1447,· · · ,-0.1447) 55.5347

3.3 Remarks

Now we give some remarks on numerical results.

1. For nonlinear programming with large number of complicated inequality constraints
and equality constraints, the CSSSH method can save much computation of the gra-
dient and the Hessian of inequality constraint functions and hence it is more efficient
than the CHIP and CSH method. Even compare with very successful optimization
softwares like KNITRO, the CSSSH method is very encouraging by above preliminary
numerical tests. It is our future work to test examples with application’s background.

2. In example 3.1, the inequality constraints are linear or quadratic functions, their gra-
dient and Hessian calculations are cheap. So the efficiency of CSSSH-S-N is lower than
KNITRO.

3. The Algorithm 3.1 is a simple implementation of the CSSSH method. Our numerical
tests compare it fairly with similar simple implementations of CHIP method and CSH
method. It needs to do much work to improve implementation of the CSSSH method
on all processes of numerical path tracing, say, schemes of predictor and corrector,
step length updating, linear system solving, end game. Other practical strategies like
sparsity exploitation and memory allocation, e.g., [2,3,7,8,13], are also very important
for improving the efficiency.
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