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We consider the following problem;

J (v) =

l∫
0

|ψ (x, T ; v)− y (x)|2 dx→ min (1.1)

where the function ψ (x, t; v) is the solution of the following 1-D Schrödinger boundary value
problem;

i
∂ψ

∂t
+ a0

∂2ψ

∂x2
− a(x)ψ = f (x, t) , (x, t) ∈ ΩT (1.2)

ψ (x, 0) = ϕ (x) , x ∈ (0, l) (1.3)

∂ψ

∂x
(0, t) = v1 (t) ,

∂ψ

∂x
(l, t) = v2 (t) , t ∈ (0, T ) (1.4)

corresponding the controls v (t) = {v1 (t) , v2 (t)}. Boundary conditions including controls
can serve as a phenomenological description of apparatuses measuring quantum mechanical
particles on the boundary of the domain. Here a0 > 0, ΩT = (0, l)× (0, T ),

0 < µ0 ≤ a (x) ≤ µ1 for
◦
∀x ∈ (0, l) (1.5)

and
y (x) , ϕ (x) ∈ L2 (0, l) , f (x, t) ∈ L2 (ΩT ) . (1.6)

The controls are defined on the bounded, closed and convex set

V :=
{
v = v (t) = {v1 (t) , v2 (t)} ∈ L

(2)
2 (0, T ) : vk ∈ L2 (0, T ) , |vk (t)| ≤ ṽk, k = 1, 2

}
(1.7)

The generalized solution of the problem (1.2)-(1.4) is the function ψ ∈ W 1,0
2 (ΩT ) satis-

fying the following integral identity for ∀η ∈W 1,1
2 (ΩT ) with η (x, T ) = 0;∫∫

ΩT

( −iψηt − a0ψxηx − a (x)ψη)dxdt =
∫∫
ΩT

fηdxdt

+i
l∫
0

ϕ (x) η (x, 0) dx− a0
T∫
0

v2 (t) η (l, t) dt+ a0
T∫
0

v1 (t) η (0, t) dt.
(1.8)

So, we can state the following theorem whose proof can be done by Galerkin method
used in [5].

Theorem 1.1. Suppose that the conditions (1.5)-(1.6) hold. Then, the problem (1.2)-(1.4)
has a unique solution in the sense (1.8) and this solution satisfies the following estimate;

∥ψ∥2W 1,0
2 (ΩT ) ≤ c0

(
∥ϕ∥2L2(0,l)

+ ∥f∥2L2(ΩT )

)
. (1.9)

2 Existence of the Optimal Solution

In this section we prove that the problem

inf
v∈V

J (v) = J∗ (2.1)

has at least one solution for the functional (1.1).
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Firstly, we show that the cost functional (1.1) is continuous on V . Suppose that the

function δv = {δv1 (t) , δv2 (t)} ∈ L
(2)
∞ (0, T ) := L∞ (0, T ) × L∞ (0, T ) is the increment to

v ∈ V such that v+δv ∈ V . Then the function ψδ = ψδ (x, t) ≡ ψ (x, t; v + δv) is the solution
of (1.2)-(1.4) corresponding to this element. So the solution ψ = ψ (x, t) ≡ ψ (x, t; v) of the
problem (1.2)-(1.4) will have the difference δψ = δψ (x, t) ≡ ψ (x, t; v + δv) − ψ (x, t; v) =
ψδ − ψ. Then we can say that the function δψ = δψ (x, t) is the solution of the following
problem;

i
∂δψ

∂t
+ a0

∂2δψ

∂x2
− a(x)δψ = 0, (x, t) ∈ Ω (2.2)

δψ (x, 0) = 0, x ∈ (0, l) (2.3)

∂δψ

∂x
(0, t) = δv1 (t) ,

∂δψ

∂x
(l, t) = δv2 (t) , t ∈ (0, T ) . (2.4)

The difference of the cost functional corresponding to the increment v + δv ∈ V is such
as

δJ (v) = J (v + δv)− J (v)

=
l∫
0

|ψ (x, T ; v + δv)− y (x)|2 dx−
l∫
0

|ψ (x, T ; v)− y (x)|2 dx

and
δJ (v) = J (v + δv)− J (v)

= 2
l∫
0

Re [ψ (x, T ; v)− y (x)] δψ (x, T ) dx+ ∥δψ (x, T )∥2L2(0,l)
.

(2.5)

Lemma 2.1. Let δψ be a solution of the problem (2.2)-(2.4). Then the following inequality
is valid;

∥δψ (x, T )∥2L2(0,l)
≤ c1 ∥δv∥2L(2)

∞ (0,T )
(2.6)

where ∥δv∥
L

(2)
∞ (0,T )

= ∥δv1∥L∞(0,T ) + ∥δv2∥L∞(0,T ).

Proof. If we multiply (2.2) by δψ and integrate over Ωt, we have

∫∫
Ωt

(
iδψtδψ − a0 |δψx|2 − a (x) |δψ|2

)
dxdt = a0

t∫
0

δψ (0, t) δv1dt

−a0
t∫
0

δψ (l, t) δv2dt.

(2.7)

Subtracting complex conjugate of (2.7) from itself, we get the following for ∀t ∈ [0, T ];

i

∫∫
Ωt

d

dt
|δψ|2 dxdt = 2ia0

t∫
0

δv2Imδψ (l, t)− 2ia0

t∫
0

δv1Imδψ (0, t)

and

l∫
0

|δψ (x, t)|2 dx ≤ 2a0

(
t∫
0

|δv2| |δψ (l, t)|+
t∫
0

|δv1| |δψ (0, t)|
)

≤ 2a0

(
∥δv2∥L∞(0,t) ∥δψ (l, t)∥L2(0,t)

+ ∥δv1∥L∞(0,t) ∥δψ (0, t)∥L2(0,t)

)
≤ a0

(
∥δv2∥2L∞(0,t) + ∥δv1∥2L∞(0,t) + ∥δψ (l, t)∥2L2(0,t)

+ ∥δψ (0, t)∥2L2(0,t)

)
.
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Further

∃σ1 > 0, ∥δψ (l, t)∥L2(0,t)
≤ σ1

√
T ∥δψ∥L2(Ωt)

(2.8)

and

∃σ2 > 0, ∥δψ (0, t)∥L2(0,t)
≤ σ2

√
T ∥δψ∥L2(Ωt)

. (2.9)

So, we write for ∀t ∈ [0, T ];

∥δψ (x, t)∥2L2(0,l)
≤ a0 ∥δv∥2L(2)

∞ (0,t)
+ a0T

(
σ2
1 + σ2

1

) t∫
0

∥δψ∥2L2(0,l)
dτ

Applying Gronwall inequality, we get

∥δψ (x, t)∥2L2(0,l)
≤ exp

(
ta0T

(
σ2
1 + σ2

1

))
∥δv∥2

L
(2)
∞ (0,t)

and for t = T , we have

∥δψ (x, T )∥2L2(0,l)
≤ c1 ∥δv∥2L(2)

∞ (0,T )

where c1 = exp
(
a0T

2
(
σ2
1 + σ2

1

))
. Hence lemma has been proved.

Using this lemma and the estimate (1.9), since y (x) ∈ L2 (0, l)we can write from (2.5)
by Cauchy-Bunyakovski inequality that

|δJ (v)| ≤ c2 ∥δv∥2L(2)
∞ (0,T )

. (2.10)

Therefore δJ (v) → 0 when ∥δv∥2
L

(2)
∞ (0,T )

→ 0, namely the functional (1.1) is continuous

on V.
Now we continue to prove the existence of optimal solution. Let us take a minimizing

sequence {vm} ⊂ V such that

lim
m→∞

J (vm) = J∗ = inf
v∈V

J (v)

and ψm = ψm (x, t) ≡ ψ (x, t; vm) be solution of problem (1.2)-(1.4) corresponding {vm} for
m = 1, 2, .... We can write from (1.9) that

∥ψm∥2W 1,0
2 (ΩT ) ≤ c0

(
∥ϕ∥2L2(0,l)

+ ∥f∥2L2(ΩT )

)
= c3,m = 1, 2, ... (2.11)

Here, c3 is a number independent of the m = 1, 2, ....

Since the set V is a closed, bounded and convex subset of L
(2)
∞ (0, T ), one can select

a subsequence {vmk} of {vm} converging weakly-star to v ∈ L
(2)
∞ (0, T ). Let us show this

subsequence by {vm} again for simplicity. Since the set V is weak-star closed, we say
thatv ∈ V . The sequence{ψm (x, t)} is defined from a closed sphere to a closed sphere in
W 1,0

2 (ΩT ). So, it can be chosen a subsequence {ψmk
(x, t)} of {ψm (x, t)} weakly converging

to ψ (x, t) in W 1,0
2 (ΩT ). Let us show this subsequence by {ψm (x, t)} again for simplicity.

This limit function ψ (x, t) is also a solution to the problem (1.2)-(1.4) in sense of (1.8). It
can be written from embedding theorem that

ψm (., T ) −→ ψ (., T ) ,weakly in L2 (0, l)
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for m→ ∞. Using this convergence, weak convergence of {vm} in L
(2)
2 (0, T ) and continuity

of functional (1.1), we get

J∗ ≤ J (v) ≤ lim
m→∞

J (vm) = J∗.

Consequently we get (2.1). Namely v ∈ V is a solution of problem (1.1)-(1.4).
Although the solution of this optimal control problem is exist, the solution is not unique

and not dependent continuously on data. In the following section we give an example for
this situation.

3 Example of Non-Uniqueness and III-Conditionedness

Let us assume in the problem (1.2) that a (x) = 1. Denote by ψ (x, t; v), ψ (x, t; v + δv)
the solutions of this problem, corresponding to the pairs v = {v1, v2}, v + ∆v =
{v1 +∆v1, v2 +∆v2}. Then the function δψ (x, t; v) = δ (x, t; v + δv)−ψ (x, t; v) will be the
solution of the problem (2.2)-(2.4). In the particular case, if we select{

δv1 (t) =
∫ t

0
g (τ) dτ, t ∈ (0, T )

δv2 (t) =
∫ t

0
h (τ) dτ, t ∈ (0, T )

(3.1)

then the solution of problem (2.2)-(2.4), with a (x) = 1, has the form

δψ (x, t; v) =

{
0 (x, t) ∈ (0, l)× [0, T )

1
2l

[
x2δv2 (t)− (x− l)

2
δv1 (t)

]
(x, t) ∈ {0, l} × (0, T ]

(3.2)

which can be easily verified. For final time we find from (3.2) that

δψ (x, T ; v) =
1

2l

[
x2δv2 (T )− (x− l)

2
δv1 (T )

]
, x ∈ {0, l} . (3.3)

To analyze the non-uniqueness of the solution, we need to show whether or not the
condition

δψ (x, T ; v) = 0, ∀x ∈ [0, l] , (3.4)

holds for arbitrary functions δv1 (t) and δv2 (t). The situation is obvious for x ∈ (0, l) from
(3.2). The condition (3.4) is equivalent to the condition

1

2l

x2 T∫
0

h (t) dt− (x− l)
2

T∫
0

g (t) dt

 = 0, (3.5)

for x ∈ {0, l}. If we consider the class of polynomial functions{
h (t) = atn + bTn, n ∈ N+ with b = − a

n+1 , a ∈ R
g (t) = ctm + dTm,m ∈ N+ with d = − c

n+1 , c ∈ R (3.6)

then we get
T∫
0

h (t) dt = 0 and
T∫
0

g (t) dt = 0. So condition (3.4) holds. Therefore if δv1 (t)

and δv2 (t) are given by the functions given in (3.1), then any admissible data {v1 (t) , v2 (t)},
{v1 (t) + δv1 (t) , v2 (t) + δv2 (t)} cannot be distinguished by the final state ψ (x, T ; v) .
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Now we will show that two close enough final states µ1 (x) := ψ (x, T ; v), µ2 (x) :=
ψ (x, T ; v + δv) may correspond to the different functions v = {v1, v2} , v + δv =

{v1 + δv1, v2 + δv2} ∈ V .

Let us assume that the output data δµ (x) = µ2 (x) − µ1 (x) = δψ (x, T ; v) are given
by the formula (3.2) and corresponding input data δv = {δv1, δv2} given by (3.1). Let us
choose the functions g (t) and h (t) in (3.1) such as{

hε (t) = atn + bεT
n, n ∈ N+ with b = − a

n+1 + ε, a ∈ R
gε (t) = ctm + dεT

m,m ∈ N+ with d = − c
n+1 + ε, c ∈ R

where ε > 0 is a small parameter. If we consider the δµε (x) functions, obtained by using
the functions hε (t) and gε (t), from (3.3) then we find ∥δµε (x)∥L2[0,l]

= 0 since δµε (x) is

zero almost everywhere in [0, l] . Corresponding input data norms are

∥δv1 (t)∥2L2[0,T ] =
2c2m2T 2n+3

3 (2m4 + 13m3 + 29m2 + 27m+ 9)

∥δv2 (t)∥2L2[0,T ] =
2a2n2T 2n+3

3 (2n4 + 13n3 + 29n2 + 27n+ 9)

while ε→ 0. This shows ill-conditionedness of the problem.

4 Regularization of Optimal Control Problem

Since the problem is ill-posed, we use the parameter α > 0 as the regularization parameter
and write the functional;

Jα (v) =

l∫
0

|ψ (x, T ; v)− y (x)|2 dx+ α ∥v∥2
L

(2)
2 (0,T )

→ min (4.1)

where ∥v∥2
L

(2)
2 (0,T )

=

(
T∫
0

v20dt+
T∫
0

v21dt

)
.

The parameter α can be found by regularization methods such as Tikhonov regulariza-
tion, for numerical investigations [8, 9].

The functional (4.1) is continuous on V , as it is sum of a continuous functional (1.1) and

a norm in the space L
(2)
2 (0, T ), norm in this space is weakly lover semi-continuous.

Now, we show that the functional (4.1) is strongly convex with the constant χ > 0,
namely

Jα (βv + (1− β)w) ≤ βJα (v) + (1− β)Jα (w)− χβ (1− β) ∥v − w∥2
L

(2)
2 (0,T )

for ∀v, w ∈ V and for ∀β ∈ [0, 1] .

Since the problem (1.2)-(1.4) is linear and has a unique solution, we can write that

ψ (x, T ;βv + (1− β)w) = βψ (x, T ; v) + (1− β)ψ (x, T ;w) .
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On the other hand, we easily see that

Jα (βv + (1− β)w) =
l∫
0

|ψ (x, T ;βv + (1− β)w)− y (x)|2 dx+ α ∥βv + (1− β)w∥2
L

(2)
2 (0,T )

≤ β

{
l∫
0

|ψ (x, T ; v)− y (x)|2 dx+ α ∥v − w∥2
L

(2)
2 (0,T )

}

+(1− β)

{
l∫
0

|ψ (x, T ;w)− y (x)|2 dx+ α ∥v − w∥2
L

(2)
2 (0,T )

}
−αβ (1− β) ∥v − w∥2

L
(2)
2 (0,T )

So, the functional (4.1) is strongly convex with χ = α.
We proved that the cost functional is continuous and strongly convex(so strictly convex)

for strong convexity constant α > 0 on the weakly compact set V. So according to the
generalized Weierstrass theorem [12], the optimal solution v∗ ∈ V to the problem

Jα (v∗) = inf
v∈V

Jα (v)

is exist and unique.

5 Frechet Differentiability and Lipschitz Continuity of the Gradient
for Regularized Problem

Let us consider the adjoint boundary value problem for given optimal control problem;

i
∂η

∂t
+ a0

∂2η

∂x2
− a(x)η = 0, (x, t) ∈ Ω (5.1)

η (x, T ) = −2i [ψ (x, T )− y (x)] , x ∈ (0, l) (5.2)

∂η

∂x
(0, t) = 0,

∂η

∂x
(l, t) = 0, t ∈ (0, T ) (5.3)

Lemma 5.1. Let δψ be a solution of the problem (2.2)-(2.4) and η be a solution of the
problem (5.1)-(5.3), then the following equality is valid;

2

l∫
0

Re [ψ (x, T ; v)− y (x)] δψ (x, T ) dx = a0

T∫
0

Reη (l, t) δv2 (t) dt (5.4)

−a0

T∫
0

Reη (0, t) δv1 (t) dt.

Proof. Let us multiply (5.1) by δψ and after partial integration if we take complex conjugate
we have

∫
Ω

(iδψt + a0δψxx − a (x) δψ) ηdxdt = 2
l∫
0

[
ψ (x, T )− y (x)

]
δψ (x, T ) dx

+a0
T∫
0

η (0, t) δv1dt− a0
T∫
0

η (l, t) δv2dt
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Multiplying (2.2) by η and then subtracting from above equation, we write

2

l∫
0

[
ψ (x, T )− y (x)

]
δψ (x, T ) dx = a0

T∫
0

η (l, t) δv2dt− a0

T∫
0

η (0, t) δv1dt.

Adding complex conjugate to itself of above equation, we get (5.4).

Theorem 5.2. The functional Jα (v) is Frechet differentiable and its gradient is given by
the formula;

J ′
α (v) = { −a0Reη (0, t) + 2αv1, a0Reη (l, t) + 2αv2} . (5.5)

The increment of the functional (4.1) is

δJα (v) = Jα (v + δv)− Jα (v)

= 2
l∫
0

Re [ψ (x, T ; v)− y (x)] δψ (x, T ) dx+ ∥δψ (x, T )∥2L2(0,l)

+2α
T∫
0

(
v1δv1 + v2δv2

)
dt+ α ∥δv∥2

L
(2)
2 (0,T )

The following can be written using (5.4);

δJα (v) = Jα (v + δv)− Jα (v)

= a0
T∫
0

Reη (l, t) δv2dt− a0
T∫
0

Reη (0, t) δv1dt+ ∥δψ (x, T )∥2L2(0,l)

+2α
T∫
0

(
v1δv1 + v2δv2

)
dt+ α ∥δv∥2

L
(2)
2 (0,T )

=
T∫
0

[a0Reη (l, t) + 2αv2] δv2 (t) dt−
T∫
0

[a0Reη (0, t) + 2αv1] δv1 (t) dt

+ ∥δψ (x, T )∥2L2(0,l)
+ α ∥δv∥2

L
(2)
2 (0,T )

By the definition of Frechet differential at v ∈ V ,

Jα (v + δv)− Jα (v) = ⟨J ′
α (v) , δv⟩

L
(2)
2 (0,T )

+ o
(
∥δv∥2

L
(2)
2 (0,T )

)
we get the formula (5.5) using (2.6).

Theorem 5.3. The following estimate is valid for the gradient of the functional (4.1);

∥J ′
α (v + δv)− J ′

α (v)∥
L

(2)
2 (0,T )

≤ L ∥δv∥
L

(2)
2 (0,T )

. (5.6)

where L =
(
max

{
a20Tc4

(
σ2
3 + σ2

4

)
, 8α2

})1/2
.

Proof. We can evaluate the increment of the gradient as;

∥J ′
α (v + δv)− J ′

α (v)∥2L(2)
2 (0,T ) =

T∫
0

[
(a0Reδη (0, t) + 2αδv1)

2
+ (a0Reδη (l, t) + 2αδv2)

2
]
dt

(5.7)
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where δη is the solution of the following problem

i
∂δη

∂t
+ a0

∂2δη

∂x2
− a(x)δη = 0, (x, t) ∈ Ω (5.8)

δη (x, T ) = −2iδψ (x, T ) , x ∈ (0, l) (5.9)

∂δη

∂x
(0, t) = 0,

∂δη

∂x
(l, t) = 0, t ∈ (0, T ) . (5.10)

Similar to (2.6), we can write the following estimate for the solution of the problem
(5.8)-(5.10);

∥δη∥2L2(ΩT ) ≤ c4 ∥δv∥2L(2)
2 (0,T )

(5.11)

Since (a+ b)
2 ≤ 2

(
a2 + b2

)
, we get from (5.7) that

∥J ′
α (v + δv)− J ′

α (v)∥2
L

(2)
2 (0,T )

=
T∫
0

[
(a0Reδη (0, t) + 2αδv1)

2
+ (a0Reδη (l, t) + 2αδv2)

2
]
dt

≤ 2
T∫
0

(
a20 |δη (0, t)|

2
+ 4α2δv21 + a20 |δη (l, t)|

2
+ 4α2δv22

)
dt

Using here similar inequalities to (2.8)-(2.9) for δη (l, t) and δη (0, t), we have

∥J ′
α (v + δv)− J ′

α (v)∥2
L

(2)
2 (0,T )

≤ 2a20T
(
σ2
3 + σ2

4

)
∥δη∥2L2(ΩT ) + 8α2 ∥δv∥2

L
(2)
2 (0,T )

≤ 2a20T
(
σ2
3 + σ2

4

)
c4 ∥δv∥2L(2)

2 (0,T )
+ 8α2 ∥δv∥2

L
(2)
2 (0,T )

≤ L2 ∥δv∥2
L

(2)
2 (0,T )

and so using (5.11) we get (5.6), where L2 = max
{
a20Tc4

(
σ2
3 + σ2

4

)
, 8α2

}
.

6 Continuous Dependence of Solutions for Regularized Problem

Let v0 (t) =
{
v01 (t) , v

0
2 (t)

}
∈ V be the initial point. Then we set the minimizing sequence

according to the method of projection of the gradient [7,12] by

vm+1 = PV (vm − βkJ
′
α (vm)) ,m = 0, 1, 2, ... (6.1)

where PV (vm − βkJ
′
α (vm)) is the projection of the element vm − βkJ

′
α (vm) on the set V .

Projection on the set V is established in this way;

vm+1 =


vm − βkJ

′

α (vm) ,
∥∥∥vm − βkJ

′

α (vm)
∥∥∥
L

(2)
∞ (0,T )

≤ ṽk

ṽk

(
vm−βkJ

′
α(vm)

)
∥vm−βkJ

′
α(vm)∥

L
(2)
∞ (0,T )

,
∥∥∥vm − βkJ

′

α (vm)
∥∥∥
L

(2)
∞ (0,T )

> ṽk
.

Since the set V is closed and convex this projection is exist and unique. According the
definition of differentiability we have;

Jα
(
vm+1

)
− Jα (vm) = βk

[
−∥J ′

α (vm)∥2L(2)
2 (0,T ) +

O (βk)

βk

]
< 0

for small enough βk values. Appropriate values for βk will be given in the following theorem.
In any step if one gets vm+1 = vm then iteration is stopped. Due to the convexity of
functional (4.1) and conditions on the set V , this element vm will be the solution v∗ of the
problem.
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Theorem 6.1. Let v0 ∈ V be the initial point. The sequence {vm} defined by (6.1) con-
verges to the unique minimum element v∗ of the functional Jα (v) for βk = β ∈

(
0, 4αL−2

)
.

Moreover the following inequality holds;

∥vm − v∗∥L(2)
2 (0,T )

≤
∥∥v0 − v∗

∥∥
L

(2)
2 (0,T )

.qm,m = 0, 1, ...

where q =
(
1− 4αβ + β2L2

) 1
2 ∈ (0, 1).

Proof. We define the mapping A : V → V with

Av = PV (v − βJ ′
α (v)) .

It can easily be shown that the mapping PV is a contraction mapping, namely;

∥PV (u)− PV (v)∥
L

(2)
2 (0,T )

≤ ∥u− v∥
L

(2)
2 (0,T )

∀u, v ∈ V.

We must show that the mapping A also holds this property when 0 < β < 4αL−2. We
know that

⟨J ′
α (u)− J ′

α (v) , u− v⟩ ≥ 2α ∥u− v∥2
L

(2)
2 (0,T )

∀u, v ∈ V. (6.2)

So, we write the following using (6.2) and Lipschitz continuity of the functional;

∥Au−Av∥2
L

(2)
2 (0,T )

= ∥PV (u− βJ ′
α (u))− PV (v − βJ ′

α (v))∥2
L

(2)
2 (0,T )

≤ ∥(u− v)− β (J ′
α (u)− J ′

α (v))∥2
L

(2)
2 (0,T )

= ∥u− v∥2
L

(2)
2 (0,T )

− 2β ⟨J ′
α (u)− J ′

α (v) , u− v⟩
+β2 ∥J ′

α (u)− J ′
α (v)∥2

L
(2)
2 (0,T )

≤
(
1 + β2L2 − 4βα

)
∥u− v∥2

L
(2)
2 (0,T )

Then, we have

∥Au−Av∥
L

(2)
2 (0,T )

≤ q ∥u− v∥
L

(2)
2 (0,T )

with q =
(
1 + β2L2 − 4βα

) 1
2 . The condition β < 4αL−2 gives q ∈ (0, 1).

The statement (6.1) can be written as vm+1 = Avm. Then by the contraction mapping
principle, the sequence {vm} converges to the fixed point v∗ = Av∗ of the operator A with
the factor q. We know that the minimum element v∗ is unique. So we get followings;

∥vm − v∗∥L(2)
2 (0,T )

=
∥∥Avm−1 −Av∗

∥∥
L

(2)
2 (0,T )

≤ q
∥∥vm−1 − v∗

∥∥
L

(2)
2 (0,T )

≤ q2
∥∥vm−2 − v∗

∥∥
L

(2)
2 (0,T )

...

≤ qm
∥∥v0 − v∗

∥∥
L

(2)
2 (0,T )

Hence, the theorem 6.1 has been proven.
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Conclusions

In this paper we have found out that using the sequence (6.1) the solution of the Schrödinger
equation can be perturbed by the action of the Neumann boundary controls at a given final
time in order to reach a given final target. To do this the gradient (5.5) is used. The
rate of convergence, in which the relations of α, β, L can be seen, is given in Theorem 6.1.
Furthermore in this problem the regularization parameter α is, at the same time, the strong
convexity constant for the cost functional (4.1).
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