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OPTIMAL BOUNDARY CONTROL FOR A SCHRODINGER
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Abstract: In this paper we look for an answer to the question: To which extent can the solution of the
Schrodinger equation be perturbed by the action of the Neumann boundary controls at a given final time
in order to reach a given final target? Showing ill-posedness of the problem and after regularization, we get
the Frechet differentiability and find the gradient of the new cost functional in terms of the solution of the
adjoint problem. We constitute the minimizing sequence by the method of the projection of the gradient
and prove its convergence to the optimal solution.
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Introduction and Statement of the Problem

Optimal control theory governed by Schrodinger equations has begun to improve in 1980s.
The cases of being the control in the coefficient of the equation were seriously investigated
by [3,4]. Exact controllability studies on Schrodinger equations were dealt with on the other
hand [13]. Machtyngier studied the exact controllability of Schrodinger equation in bounded
domains with Dirichlet boundary condition using Hilbert Uniqueness Method [6]. Avdonin
et al. recovered the spectral data from the Neumann-Dirichlet map of the Schrodinger equa-
tion [1]. Guo and Shao studied the basic properties of the Schrédinger equation defined on
a bounded domain of R™,n > 2 with partial Dirichlet control [2]. Triggiani investigated the
role of an Ly (Q)energy estimate in the theories of uniform stabilization and exact control-
lability for Schrodinger equations with Neumann boundary control [10]. The case that the
control is in initial condition was investigated in [11].

The investigations in this paper are remarkable in some aspects: The controls in our
problems are in the both Neumann boundary conditions. We give an example for non-
uniqueness and ill-conditionedness for solution to given problem. After regularization, we
use strong convexity of the functional to prove the well-posedness of the regularized problem.
We constitute the minimizing sequence by the method of the projection of the gradient and
indicate the convergence according to this method. This result is compatible with literature
on gradient projection methods in optimal control problems [7] and references therein.
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We consider the following problem;

l

7 (v) :/|1/)(:13,T;v) — (@) dz — min (1.1)
0

where the function 1 (z,¢; v) is the solution of the following 1-D Schrédinger boundary value
problem;

Z% + aO% —a(z)y = f(x,t), (x,t) € Qr (1.2)
Y (2,0) = ¢ (x),z € (0,1) (1.3)
O 0 =0 (1), 22 1) = va (1)t € (0.7) (1.4

corresponding the controls v (t) = {v; (t),v2 (t)}. Boundary conditions including controls
can serve as a phenomenological description of apparatuses measuring quantum mechanical
particles on the boundary of the domain. Here ag > 0, Qr = (0,1) x (0,7,

0< pp <a(zx)<p for @x € (0,1) (1.5)

and
y(.%‘),(b(l‘) € Ly (07l)’ f(.’);‘,t) € Lo (QT) (1'6)

The controls are defined on the bounded, closed and convex set

V= {v = v (t) = {v (t),v2 ()} € L? (0,T) : vy € Ly (0,7, vg ()] < o, k = 1,2}
(1.7)
The generalized solution of the problem (1.2)-(1.4) is the function v € W, % (Qr) satis-
fying the following integral identity for Vn € W21’1 (Qr) with n (z,T) = 0;

jg’)f ( —ivmy — agthans — a () Yn)dwdt = jg’)f Fndadt
T . T

—H'Of(b () n (x,0)dx — ag 2:’()2 t)n(l,t)dt + ag g:vl (t)n (0,t) dt.

(1.8)

So, we can state the following theorem whose proof can be done by Galerkin method
used in [5].

Theorem 1.1. Suppose that the conditions (1.5)-(1.6) hold. Then, the problem (1.2)-(1.4)
has a unique solution in the sense (1.8) and this solution satisfies the following estimate;

2 2 2
110 0r) < 0 (19113400 + 171 a0y - (1.9)

Existence of the Optimal Solution
In this section we prove that the problem

jg‘f/J(v) =J, (2.1)

has at least one solution for the functional (1.1).
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Firstly, we show that the cost functional (1.1) is continuous on V. Suppose that the
function dv = {dvy (t),dva (1)} € LY (0,T) := Lo (0,T) X Lo (0,T) is the increment to
v € V such that v+d6v € V. Then the function s = ¢5 (z,t) = ¢ (x,t; v + dv) is the solution
of (1.2)-(1.4) corresponding to this element. So the solution ¢ = ¢ (z,t) = v (x,t;v) of the
problem (1.2)-(1.4) will have the difference 0y = 6 (z,t) = ¢ (z,t;v + dv) — ¢ (x,;v) =
ts — 1. Then we can say that the function §tp = 64 (z,t) is the solution of the following
problem;

.00 0261

e +ag 92 a(x)dp =0, (x,t) € Q (2.2)
5 (2,0) = 0,z € (0,1) (2.3)
886—;/} (0,t) = duv1 (¢), 8;—;[) (1,t) =dva (t),t € (0,T). (2.4)

The difference of the cost functional corresponding to the increment v + v € V' is such

as
0J (v) =J(v+dv)—J(v)

l l
={\w<x,T;v+6v> —y(w)ﬁdw—of\wx,T;w —y () da

and
0J (v) = J (v+dv) — J (v)

Re [v (2, T:v) — y (2)) 60 2. T) da + 66 (2. D) - 29)

=2

o

Lemma 2.1. Let 69 be a solution of the problem (2.2)-(2.4). Then the following inequality
s valid;
2 2
100 (2, 1)1, ) < 1 10012 0.7, (2.0

where 001l 0.7 = 1801 1,_ 0.2y + I6021l,_ 0.0
Proof. If we multiply (2.2) by 07 and integrate over Q;, we have
p— t PR
If (iéwt&/} — a0 |0te|? — a (x) |5¢|2) dxdt = ag [ 50 (0,t) Svydt
(N 0

(2.7)
v (1,t) Svadt.

—ay

O—~

Subtracting complex conjugate of (2.7) from itself, we get the following for V¢ € [0, T;
p t t
z// 7 09| dwdt = Qiao/évglmW(l,t) - 2ia0/5vllmw (0,1)
Q 0 0

and

l t t
Of|5w (z,t)|* dz < 2aq ({ [dval |64 (1,t)] + of |dv1 ]| |6e) (0,t)|>

< 2a9 (H(SUQ”LOO(OJ&) 169 (L) 1y 0,0y + 160111 (0.4 1109 (O7t)||L2(O,t)>
< ag <||5U2||2Loo(o,t) + ||5U1||2Loo(o,t) + (169 (l,t)HQLz(o,t) +[16¢ (O7t)||iz(0,t)> '
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Further
301> 0,169 (1, )l 1y 0.0 < VT 0] 1y ) (2.8)

and
Joz > 0, |6 (Ovt)HLg(O,t) < 0—2\/TH6¢“L2(Qt) : (2.9)

So, we write for V¢ € [0, T);

t
166 (@010 < 0 1801300y + aoT (0 + ) [ 150130,
0

Applying Gronwall inequality, we get
2 2
16 (@, 1) II7, 0,y < €xP (taoT (o + o)) ||5U||L<o§>(0’t)

and for t = T, we have
2 2
169 (2, T)I L0,y < 1160l o )

where ¢; = exp (aoT? (0} + 01)). Hence lemma has been proved. O

Using this lemma and the estimate (1.9), since y (z) € Lo (0,])we can write from (2.5)
by Cauchy-Bunyakovski inequality that

2
[6J (v)| < co ”(SUHLE,?(O,T) . (2.10)
Therefore 6J (v) — 0 when ||511Hig)(07T — 0, namely the functional (1.1) is continuous
on V.
Now we continue to prove the existence of optimal solution. Let us take a minimizing
sequence {v™} C V such that

)

. my 7
i, 07 = o= ol T )

and ¥, = ¥ (x,t) = ¥ (2,t;v™) be solution of problem (1.2)-(1.4) corresponding {v™} for

m=1,2,.... We can write from (1.9) that

2 2 2
lmliyzoey < 0 (16130000 + 117 0r) ) = csm =12, (2.11)

Here, c3 is a number independent of the m = 1,2, ....
Since the set V' is a closed, bounded and convex subset of Lg) (0,T), one can select

a subsequence {v™*} of {v™} converging weakly-star to v € L® (0,T). Let us show this
subsequence by {v™} again for simplicity. Since the set V is weak-star closed, we say
thatv € V. The sequence{t,, (z,t)} is defined from a closed sphere to a closed sphere in
W,° (Qr). So, it can be chosen a subsequence {¢p,, (2,t)} of {ty, (,t)} weakly converging
to ¢ (z,t) in W21’O (Qr). Let us show this subsequence by {1y, (z,t)} again for simplicity.
This limit function ¢ (z,t) is also a solution to the problem (1.2)-(1.4) in sense of (1.8). It
can be written from embedding theorem that

Ym (T) — ¥ (., T),weakly in Lo (0,1)
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for m — oo. Using this convergence, weak convergence of {v"} in ng) (0,T) and continuity
of functional (1.1), we get
Jo <J () < lim J (™) = J..
m— o0
Consequently we get (2.1). Namely v € V' is a solution of problem (1.1)-(1.4).
Although the solution of this optimal control problem is exist, the solution is not unique

and not dependent continuously on data. In the following section we give an example for
this situation.

Example of Non-Uniqueness and III-Conditionedness

Let us assume in the problem (1.2) that a(z) = 1. Denote by ¢ (z,t;v), ¥ (z,t;v + dv)
the solutions of this problem, corresponding to the pairs v = {vy,v2}, v + Av =
{v1 + Avy,v2 + Avg}. Then the function 6 (z,t;v) = § (x,t;v + dv) — ¢ (z, t;v) will be the
solution of the problem (2.2)-(2.4). In the particular case, if we select

8o, (t) = Jo g(r)dr, t € (0,T) (3.1)
Juy (1) = [y B (7)dr, t € (0,T)
then the solution of problem (2.2)-(2.4), with a () = 1, has the form
0 (x,t) € (0,1) x [0,T)
W) =L [0, ) - @- 076, 0] @heloxor) O
which can be easily verified. For final time we find from (3.2) that
5 (2, T v) = % (#2602 (T) — (& — 1601 (7)) 2 € (0.1} (3.3)

To analyze the non-uniqueness of the solution, we need to show whether or not the
condition
6 (z,T;v) =0,V € [0,1], (3.4)

holds for arbitrary functions dvy (t) and dvg (t). The situation is obvious for z € (0,1) from
(3.2). The condition (3.4) is equivalent to the condition

T T
1
5 x2/h(t)dt—(z—l)2/g(t)dt =0, (3.5)
0 0
for z € {0,1}. If we consider the class of polynomial functions
h(t) = at" +bT"n € Ny with b= —=%,a R .
g(t)=ct™+dI™,m €Ny withd=—;%5,c€R (3.6)

T T
then we get [h(t)dt =0 and [g(t)dt = 0. So condition (3.4) holds. Therefore if dvy (¢)
0 0

and dvs (t) are given by the functions given in (3.1), then any admissible data {v1 (), v2 (¢)},
{v1 (t) 4+ dvy () ,v2 (t) + dvz ()} cannot be distinguished by the final state ¢ (x, T;v) .
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Now we will show that two close enough final states i (x) = ¥ (z,T;v), ps(x) =
¥ (z,T;v+ dv) may correspond to the different functions v = {v1,va},v + dv =
{1}1 + dvy, v + 51]2} eV.

Let us assume that the output data dp (x) = po (x) — p1 () = 69 (z,T;v) are given
by the formula (3.2) and corresponding input data dv = {dv1,dv2} given by (3.1). Let us
choose the functions g (t) and h (¢) in (3.1) such as

he (t) = at™ + b T",n € Ny withb= —-45 +e,a €R
ge (1) =™ +d.T™",m € Ny withd = —%5 +¢6,c€R

where € > 0 is a small parameter. If we consider the dpu. (x) functions, obtained by using
the functions he (t) and g. (t), from (3.3) then we find |6z (%) 1,0, = O since dpe () is
zero almost everywhere in [0,!]. Corresponding input data norms are

262m2T2n+3
3 (2m* + 13m3 4+ 29m?2 + 27m + 9)
2a2n2T2n+3
3(2nt + 13n3 + 29n2 4+ 27n + 9)

1301 ()2, 0.2 =

1602 (D17, p0.77 =

while e — 0. This shows ill-conditionedness of the problem.

Regularization of Optimal Control Problem

Since the problem is ill-posed, we use the parameter a > 0 as the regularization parameter
and write the functional;

l

Jo (0) = / [ (2,T;0) =y (2)|” dz + e |[oll7 g 7 — min (4.1)
0

T T
where ||v||2L<22)(07T) = <f v%dt—l—fv%dt).
0 0

The parameter o can be found by regularization methods such as Tikhonov regulariza-
tion, for numerical investigations [8, 9].

The functional (4.1) is continuous on V, as it is sum of a continuous functional (1.1) and
a norm in the space Lg) (0,T), norm in this space is weakly lover semi-continuous.

Now, we show that the functional (4.1) is strongly convex with the constant x > 0,
namely

Jo (Bo+ (1= B)w) < Bl (v) + (1= B) Jo (w) = XB (1~ B) llo — w]2e .1

for Vv,w € V and for V33 € [0,1].
Since the problem (1.2)-(1.4) is linear and has a unique solution, we can write that

¥ (z,T; v+ (1= B)w) = ¢ (z,T;0) + (1= B) ¢ (2, T;w) .
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On the other hand, we easily see that

l

o (Bo+ (1= Bw) = [ (@T:fv+ (1= B)w) —y @) de+allfo+ (1= Hwlieq s

0

l

2 2

Sﬁ{{W(%T»U)—Z/(m” dx_"anv_w”[,g)(o,'f)}
l

{Ofw x, T;w) (x)|2 dx+a|v—w|iéz)(oj)}

—Oéﬁ ) ||U w||L(2)(O T)

So, the functional (4.1) is strongly convex with y = a.

We proved that the cost functional is continuous and strongly convex(so strictly convex)
for strong convexity constant @ > 0 on the weakly compact set V. So according to the
generalized Weierstrass theorem [12], the optimal solution v, € V to the problem

Ja (v4) = Ulg‘f/ Ja (v)

is exist and unique.

Frechet Differentiability and Lipschitz Continuity of the Gradient
for Regularized Problem

Let us consider the adjoint boundary value problem for given optimal control problem;

z%—kao% —a(z)n=0,(x,t) € N (5.1)
n(z,T) ==2i[¢ (x,T) —y(z)],z € (0,1) (5.2)

on om o

Ep (0,t) =0, ' D (I,t)=0,t € (0,T) (5.3)

Lemma 5.1. Let 6¢ be a solution of the problem (2.2)-(2.4) and n be a solution of the
problem (5.1)-(5.3), then the following equality is valid;

l T
2 / Re ¢ (2, T;v) —y (2)] 8¢ (2, T)dr = ap / Ren (1, t) Svq (t) dt (5.4)
0 0

T
—ay / Ren (0,t) vy (t) dt
0

Proof. Let us multiply (5.1) by 6¢ and after partial integration if we take complex conjugate
we have

J (1001 + aodthze — a(x) 09 fjdzdt =2 [ [¢ (2, T) -7 (2)] 00 (2, T) d

Q

+a0

OHHO%N

T
7(0,t) dvidt — ag [T (1,t) dvadt
0
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Multiplying (2.2) by 7 and then subtracting from above equation, we write

l T T
2/ 7(2)] 64 (2, T) do = aq /ﬁ(l,t) Susdt — ag /ﬁ(O,t) Svrdt.
0 0 0
Adding complex conjugate to itself of above equation, we get (5.4). O

Theorem 5.2. The functional J, (v) is Frechet differentiable and its gradient is given by
the formula;

J., (v) = { —agRen (0,t) + 2avy, agRen (1, t) + 2avs} . (5.5)
The increment of the functional (4.1) is
0Jo (V) = Jo (V4 6v) — Jy (v)
=2 [ Re[o (0. T10) =y (0)66 (2. T) o + 150 (2. T

T PR PR
+2a [ (1)151)1 + vgévg)dt +a ||511Hi;2)(0 )
) .

The following can be written using (5.4);
0o (v) = Jo (v+0v) — Jy (V)
T

JE— T —_—
= ap f Ren (1, t) dvadt — ag f Ren (0,t) dvrdt + 1|04 (2, T)I17, 0.

7
+2a [ (v16v1 + vadva)dt + o |\5v||L(2)(0 e

o

T
laoRen (1,t) + 2aws] dvs (t) dt — [ [agRen (0,t) + 2av1] dvy (t) dt

0 0
+ [|oy (IvT)HLg(O,l) ta HgUHLg”(O,T)

%’ﬂ

By the definition of Frechet differential at v € V,

Jo (04 80) = Ja (v) = (T4 () ,00) o) 1y + 0 (||511Hi;2) (w)

we get the formula (5.5) using (2.6).

Theorem 5.3. The following estimate is valid for the gradient of the functional (4.1);

||Jé (U + (5”0) — J(/l (U)HLEQ)(O,T) <L ||5”U||L522)(07T) . (56)

where L = (max {adTcy (03 + o3) ,8a2})1/2-

Proof. We can evaluate the increment of the gradient as;

T
|| J2 (v + v) — J. (v) ||L<2) 0.7) / (aoRedn (0,t) 4 2a6v1) + (agRedn (1,t) + 200v5)? | dt
0

(5.7)
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where 97 is the solution of the following problem

.0dn 0%on B

i + ag 52 a(x)dn =0, (z,t) € Q (5.8)
on(z,T) = =2i6¢ (z,T) ,x € (0,1) (5.9)

20m 0py— 0. 29 1y =

B (0,t) =0, 5 (I,t) =0,t € (0,T). (5.10)

Similar to (2.6), we can write the following estimate for the solution of the problem
(5.8)-(5.10);
2 2
1612, ez < e 1012 .1 (5.11)
Since (a +b)* < 2 (a® +b?), we get from (5.7) that

T

IT,, (v + év) — J., (v) = J {(aoReén (0,8) + 2adv1)” + (agRedn (1, 1) + 20[51}2)2} dt

2
ILe o)
T
<2f (ag 167 (0,8)]% + 402602 + a2 |6 (1,1)]> + 4a25v§) dt
0

Using here similar inequalities to (2.8)-(2.9) for o7 (I,¢) and dn (0,t), we have

2 2 2 2 2 2 2
4 080) T Oy < 2087 (03 02 Iy + 50 Wl
< 2agT (ag + 04) cq H(51)||L;2>(O’T) + 8« ||5v||ng>(0’T)
< L? ||6’UHLé2)(0’T)
and so using (5.11) we get (5.6), where L? = max {a3Tcy (03 + 03) ,802}. O

@ Continuous Dependence of Solutions for Regularized Problem

Let v° (t) = {9 (t),v9 (t)} € V be the initial point. Then we set the minimizing sequence
according to the method of projection of the gradient [7,12] by

’Um+1 :PV (vm_ﬂk*]; (Um))7m207172a"' (61)

where Py (v™ — B J! (v™)) is the projection of the element v™ — S J. (v™) on the set V.
Projection on the set Vis established in this way;

o™ — ,Bkj; (Um) o™ — ﬂkJ(; (vm)HL@)(O - < U

L WY U RATD) "= Bl (o) e
; o™ — v v
||”m*ﬁkJa(v’”)HLg>(OﬁT> ko L2 (0,1) k

Since the set V' is closed and convex this projection is exist and unique. According the
definition of differentiability we have;

O (Bx)
B

for small enough [, values. Appropriate values for 85 will be given in the following theorem.
In any step if one gets v™*t! = v™ then iteration is stopped. Due to the convexity of
functional (4.1) and conditions on the set V, this element v™ will be the solution v, of the
problem.

A (,varl) —J, (vm) _ 5k { _ ”J& (Um)Hif)(O,T) + } <0
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Theorem 6.1. Let v° € V be the initial point. The sequence {v™} defined by (6.1) con-
verges to the unique minimum element v, of the functional J, (v) for By = 8 € (O,4ozL’2).
Moreover the following inequality holds;

< o .

) g m=0,1,...

o™ = vl e 0.1y L@ o

where ¢ = (1 —4af + ﬂ2L2)% € (0,1).
Proof. We define the mapping A : V — V with
Av =Py (v—8J., (v)).
It can easily be shown that the mapping Py is a contraction mapping, namely;

[Py (u) — Py (U)HL(22>(0,T) < lu-— UHng)(o,T) Yu,v € V.

We must show that the mapping A also holds this property when 0 < 3 < 4aL~2. We
know that

(J! (u) — J., (v) ,u —v) > 2a]|u — Yu,v € V. (6.2)

2
Ve o)

So, we write the following using (6.2) and Lipschitz continuity of the functional;

| Au — AUHign(QT) =Py (u—BJ}, (u)) — Py (v—BJg (U))||2L§2>(0,T)
< =) — B (1 () = T2 ) o o,
O AR AR
’ /
+p ||J2a (2u) - Ja (’U)Hng)(%yT)
< _ _
= (]- + ﬁ L 45@) ||’LL v”Lf)(o,T)

Then, we have

||A’LL - AU||Lg2)(O7T) <q ||’LL - U”LéQ)(QT)
1
with ¢ = (1 + #2L? — 4Ba)?. The condition 8 < 4L ™2 gives ¢ € (0,1).
The statement (6.1) can be written as v™+! = Av™. Then by the contraction mapping

principle, the sequence {v™} converges to the fixed point v, = Av, of the operator A with
the factor q. We know that the minimum element v, is unique. So we get followings;

|[o™ — ”*”Lff)(o,T) ||AUm*1 - AU*HL;Q)(O,T)
< g™t - ”*HLg2>(o,T)
< @om? - U*HLgZ)(QT)

" [[o° - U*||L§2)(O,T)

Hence, the theorem 6.1 has been proven. O
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Conclusions

In this paper we have found out that using the sequence (6.1) the solution of the Schrédinger
equation can be perturbed by the action of the Neumann boundary controls at a given final
time in order to reach a given final target. To do this the gradient (5.5) is used. The
rate of convergence, in which the relations of «a, 8, L can be seen, is given in Theorem 6.1.
Furthermore in this problem the regularization parameter « is, at the same time, the strong
convexity constant for the cost functional (4.1).
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