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the method, given in [21], to simple bound constrained problems was subsequently proposed
by Sainvitu and Toint in [25].

Here, we combine the gradient projection method with the filter technique and present
a filter trust-region algorithm for bound constrained optimization. We extend the uncon-
strained method introduced by Fatemi and Mahdavi-Amiri [14] to the case of bound con-
strained optimization problems. The main feature of our algorithm is in fact using a new
filter technique to ensure global convergence. This technique guarantees the finiteness of
the filter size [15]. The remainder of our work is organized as follow. Section 2 gives a
brief description of the approximating model. Section 3 explains some basic concepts of
the multidimensional filter. Our new algorithm is given in Section 4. The global conver-
gence of the algorithm to at least one first order critical point is established in Section 4.1.
Some comparative computational results are illustrated in Section 5. Finally, we conclude
in Section 6.

2 Step Length Calculation

As is common in trust-region algorithms, a trial step length s is computed by first choosing
an approximating model of the objective function and then minimizing the model in the
presence of a trust-region constraint so that the trial point x+

k = xk + s is a feasible point
for the original problem. By this trust-region constraint, we aim to trust the model to be an
adequate representation of the objective function. We choose the quadratic approximation
model as follow

mk(xk + s) = f(xk) + gTk s+
1

2
sTHks, (2.1)

where, gk = ∇f(xk) and Hk is a symmetric approximation of the Hessian of the objective
function in the current iterate xk. To find a trial step length, we minimize (2.1) subject to
the following constraints

l ≤ xk + s ≤ u, (2.2)

∥s∥ ≤ ∆k, (2.3)

where, ∥.∥ is an arbitrarily chosen norm and ∆k is the trust-region radius. We note that
(2.2) ensures the feasibility of the trial point xk + s. Here, similar to Gould et al. [20, 21],
we do not necessarily need to uphold (2.3) for every iteration.

It is convenient to choose the infinity norm for the trust-region constraint (2.3), because
the shape of the trust-region is aligned with the simple bound constraint (2.2) and we can
replace (2.2) and (2.3) by the box constraints

(lk)i
def
= max(li, (xk)i −∆k) ≤ (xk + s)i ≤ min(ui, (xk)i +∆k)

def
= (uk)i, (2.4)

for i = 1, . . . , n. The approximate solution of the trust-region subproblem, as is common in
the trust-region algorithms, needs to provide a sufficient decrease in the model in the sense
of the following inequality

mk(xk)−mk(xk + sk) ≥ κmdcχk min(
χk

βk
,∆k), (2.5)

where, κmdc ∈ (0, 1), βk = 1+∥Hk∥ and χk is a first order criticality measure; see [8, chapter
8]. In the context of unconstrained optimization, χk = ∥gk∥ is obviously one of the many
suitable criticality measures. A possible criticality measure for problem (1.1) is

χk
def
= ∥ḡ(xk)∥∞, (2.6)
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where,
ḡ(xk) = xk − p[xk − gk, l, u] (2.7)

is called the projected gradient of the objective function into the feasible box and p[x, l, u]
is the projection operator defined by

p[x, l, u]i =

 li if xi ≤ li
xi if xi ∈ (li, ui)
ui if xi ≥ ui,

(2.8)

(see e.g., [8, chapter 8] and [9]).
In order to satisfy (2.5), we need to find the Generalized Cauchy Point (GCP); see [9,10].

This point is the first local minimizer of the univariate function

mk(p[xk − tgk, lk, uk]).

There are several efficient algorithm for the GCP calculation; see [10,22,24]. In these algo-
rithms, in order to provide a fast asymptotic rate of convergence, after computing GCP, the
variables non-active at the GCP is determined and then the model mk is further minimized
in the box (2.4) over the subspace corresponding to the non-active variables. This process
can efficiently be done by a conjugate gradient based algorithm.

3 The Multidimensional Filter

A filter is simply a data structure whose mission is to store pertinent information on the
past iterates for use in determining the new iterates. Before giving a formal definition, we
briefly recall some facts from [20].

If we focus temporarily on the finding of a stationary point for problem (1.1), then we
can compute such a point by the following minimization problem:

min

p∑
j=1

θj(x), (3.1)

where,
θj(x) = ∥ḡIj (x)∥, for j = 1, . . . , p,

and the ḡIj (x) form a partition of ḡ(x) (not necessarily disjoint) into sets {ḡi(x)}i∈Ij , with
ḡi(x) as the ith component of ḡ(x) and I1 ∪ I2 . . . ∪ Ip = {1, . . . , n}.

Let θ(xk) = (θ1(xk), . . . , θp(xk)). Then, it is easy to see that for an arbitrarily chosen
norm, there exist some positive constants κl and κu such that

κl∥ḡk∥∞ ≤ ∥θ(xk)∥ ≤ κu∥ḡk∥∞. (3.2)

The minimization problem (3.1) can be seen as a p-criteria optimization problem. Hence,
we define filter as a list F of p-tuples θ(xk) so that if θ(xk) and θ(xl), with k ̸= l, belong to
the filter, then for at least one j ∈ {1, . . . , p},

θj(xk) < θj(xl).

As a data structure, we may wish to add a point to the filter or remove a point from it. Our
strategy is inspired by that of [14]: we say that a new trial point x+

k is acceptable for the
filter if for all θ(xl) ∈ F , there exists j ∈ {1, . . . , p} such that

θj(x
+
k )

µ2 + λ2∥θ(x+
k )∥

µ1 ≤ θj(xl)
µ2 + λ1∥θ(xl)∥µ1 , (3.3)
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where, ∥.∥ is a Euclidean norm and λ1, λ2, µ1 and µ2 are constants so that

0 < λ1 < λ2 <
1
√
p

and 0 < µ1 < µ2.

Knowing this, we add a point to the filter only if it is acceptable for the filter. As we will
show in Section 4.1 (Lemma 4.7), this adding strategy guarantees the finiteness of the filter
size, a property that can not be guaranteed by the earlier filter algorithms.

It is also possible to remove a point from the filter. We remove θ(xl) from the filter and
replace it with θ(x+

k ) if (3.3) is satisfied for all index j ∈ {1, . . . , p}. In this case, we say that
θ(x+

k ) dominates θ(xl) from the filter.
Finally, note that we can also use the extra removing procedure introduced in [14] to

further control the filter size. Here, we skip the details and refer the interested reader to [14].

4 The Algorithm

Here, we combine the filter technique with the gradient projection strategy to introduce the
following gradient projection filter trust-region algorithm. This algorithm is a modification
of the algorithm proposed in [14].

Algorithm 4.1. Gradient Projection Filter Trust-Region Algorithm (GPFTRA).

Step 0:{Initialization}
Give an initial point x0, a small tolerance ϵ > 0, an initial symmetric matrix H0, an initial
trust-region radius ∆0 > 0, the constants λ1, λ2, µ1 and µ2 satisfying

0 ≤ λ1 < λ2 <
1
√
p
, 0 < µ1 < µ2,

with η1, η2, γ1, γ2 and γ3 satisfying

0 < η1 < η2 < 1, 0 < γ1 < γ2 < 1 ≤ γ3.

Choose fsup ≥ f(x0).
k = 0.
RESTRICT=false.
F = ∅.
repeat
Step 1:{Computing a trial step}
if RESTRICT=true then

{minimize within trust-region}
Compute sk by approximately minimizing (2.1) such that xk + sk satisfies (2.4).

else
Start minimizing (2.1) subject to (2.2).
if negative curvature is discovered then
{minimize within trust-region}
Compute sk by approximately minimizing (2.1) such that xk + sk satisfies (2.4).

else
{minimize disregarding trust-region}
Compute sk by approximately minimizing (2.1) subject to (2.2).

end if
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end if
x+
k = xk + sk.

Compute the ratio,

ρk =
f(xk)− f(x+

k )

mk(xk)−mk(x
+
k )

.

Step 2:{Test trial step for acceptance}
if f(x+

k ) ≤ fsup then
if ρk ≥ η1 and ∥sk∥∞ ≤ ∆k then
xk+1 = x+

k .
RESTRICT = false.
fsup = f(xk+1);

else if x+
k is acceptable for the filter then

Add θ(x+
k ) to the filter.

xk+1 = x+
k .

RESTRICT = false.
else
xk+1 = xk.
RESTRICT=true.

end if
else

xk+1 = xk.
RESTRICT=true.

end if
Step 3:{Updating the trust-region radius}
if ∥sk∥∞ ≤ ∆k then

Choose

∆k+1 ∈

 [γ1∆k, γ2∆k] if ρk < η1
[γ2∆k,∆k] if ρk ∈ [η1, η2)
[∆k, γ3∆k] if ρk ≥ η2

else
∆k+1 = ∆k.

end if
k = k + 1.

until (∥ḡk∥∞ < ϵ or k is larger than a user defined value)

As can be seen in Step 1 of Algorithm 4.1, if a negative curvature is discovered, we must
recompute sk by considering the trust-region constraint (2.3).

4.1 Global Convergence Analysis

Here, we analyze the global convergence properties of Algorithm 4.1 as applied to problem
(1.1).

The following assumptions are commonly used in convergence analysis of the filter algo-
rithms.
A1. f is a twice continuously differentiable function on Rn.
A2. The sequence {xk} generated by the algorithm is contained in a compact subset of Rn.
A3. There exists a constant κumh ≥ 1 such that for all k,

∥Hk∥ = βk − 1 ≤ κumh − 1.
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Assumptions A1, A2 imply that there exists κufh ≥ 1 such that

∥∇2
xxf(xk)∥ ≤ κufh,

for all k. Consequently, assumption A3 can be satisfied for the choice Hk = ∇2
xxf(xk).

Let

S def
= {k | xk+1 = xk + sk}

be the set of successful iterations,

D def
= {k | ρk ≥ η1 and ∥sk∥∞ ≤ ∆k}

be the set of sufficient decrease iterations, and

A def
= {k | θ(x+

k ) is added to the filter}

be the set of the filter iterations. It is easy to see that

S = D ∪A. (4.1)

We first characterize the first order stationary conditions for problem (1.1).

Theorem 4.1. A feasible point x∗ is a first order critical point for problem (1.1) if and
only if

ḡ(x∗) = 0.

Proof. See theorems 12.1.2 and 12.1.3 in [8].

In the next step for our convergence analysis, we need to recall a basic result concerning
the trust-region radius.

Lemma 4.2. Suppose that assumptions A1-A3 hold and that there exists a constant κlbg > 0
such that χk ≥ κlbg, for all k. Then, there exists a constant κlbd > 0 such that

∆k ≥ κlbd.

Proof. It is easy to see that Lemma 3.2 and Lemma 3.3 of [25] still hold. Thus, the proof is
identical to the proof of Lemma 3.4 in [25].

We now consider the case of |S| = ∞ and restrict our attention to the case of infinitely
many filter iterations.

Lemma 4.3. If A1-A3 hold and |A| = ∞, then

lim inf
k→∞

χk = 0. (4.2)

Proof. The proof is similar to the first part of the proof of Theorem 1 in [14] except that
g(xk) is replaced by θ(xk) and that we use the new filter acceptance criterion (3.3). We can
then show that

lim inf
k→∞

∥θ(xk)∥ = 0.

Thus, equality (4.2) is a straightforward result of (2.6) and (3.2).
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We now concentrate on the case of finitely many filter iterations and show that the
number of sufficient decrease iterations should be finite unless a first order critical point is
approached.

Lemma 4.4. Suppose that |A| < ∞ and A1-A3 hold and there exists a constant κlbg > 0
such that χk ≥ κlbg, for all k. Then, there can be only finitely many sufficient decrease
iterations; i.e., |D| < ∞.

Proof. The proof is identical to the proof of Theorem 2 in [14] except that ∥gk∥ is replaced
by χk.

Now, we consider the case of |S| < ∞ and prove the first order criticality of the limit
points of the sequence of the iterates.

Theorem 4.5. Suppose that A1-A3 hold and that there are only finitely many successful
iterations; i.e., |S| < ∞. Then, xk = x∗, for all sufficiently large k, and x∗ is first order
critical.

Proof. The proof is the same as the proof of Theorem 3.6 in [21] except that ∥gk∥ is replaced
by χk.

Now, we have the following main result.

Theorem 4.6. Suppose that assumptions A1-A3 hold. Then, either χk = 0 for some finite
k, or

lim inf
k→∞

χk = 0.

Proof. The proof follows from lemmas 4.3 and 4.4, Theorem 4.5 and using (4.1).

The above result implies that at least one of the limit points of the sequence of the
iterates generated by Algorithm 4.1 is a first order critical point. Furthermore, as Example
4.1 in [14] indicated, we can not improve this result to the case of the first order criticality
of all the limit points without modifying the filter mechanism.

As a final result, we show that our filter acceptance criterion based on (3.3) ensures the
finiteness of the filter size.

Lemma 4.7. Let {θk+1} with k ∈ A be the subsequence of all the points added to the filter,

0 < µ1 < µ2, 0 < λ1 < λ2 <
1
√
p
,

and m be the smallest integer satisfying

(1 + λ2)ϵ
m < λ1,

for some ϵ ∈ (0, 1). Then, the filter size is finite.

Proof. The proof is similar to the proof of Lemma 4 in [14] except that gk, θ1 and θ2 are
respectively replaced by θk, λ1 and λ2.

Remark 4.8. The idea of introducing the reference iteration fsup (see Step 2 of Algorithm
4.1) is inspired by Algorithm 2.1 in [25]. In contrast with the algorithm in [25], we can remove
the process of determining the reference iteration from Algorithm 4.1 without sacrificing the
convergence guarantee. In other words, both the first “ if ... else ... endif ” statement
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and also the term “ fsup = f(xk+1) ” can be removed from the Step 2 of Algorithm 4.1. By
the reference iteration, we only ensure the existence of a decreasing subsequence of {f(xk)},
increasing the chance to converge to a minimal point. We must note that although this
strategy seems to be useful, it does not guarantee convergence to a second order critical
point. Hence, a modified version of Algorithm 4.1 without the definition of the reference
iteration can be used simply to solve for example convex problems, because a zero criticality
measure is both necessary and sufficient for second order criticality of the convex problems.
In the next section, we investigate the effect of removing the reference iteration on our
numerical results.

5 Numerical experiments

Here, we test our algorithm on a set of 108 simple bound constrained problems from the
CUTEr collection. We chose test problems with the same names and dimensions as specified
in Table 4.1 in [25]. In our numerical tests, we compared our algorithm with the filter trust-
region algorithm (FTRA) of [25]. The codes were written in MATLAB and run on a PC with
a 2.4 GHz Intel Core 2Duo CPU and 2 GB of memory under ubuntu 10.04 Linux operating
system. In order to find a suitable starting point, we project the initial point supplied by
the problem onto the feasible region. All attempts to solve the test problems were limited
to a maximum of 5000 iterations or 1 hour of CPU time.

In our tests, we chose the exact Hessian of the objective function as the Hessian of the
approximating model. A step length s is computed by approximately minimizing the model
with the algorithm presented in [10]. This algorithm is terminated at the first s for which,

∥∇mk(xk + s)free∥ ≤ min(0.1,
√
∥ḡk∥)∥ḡk∥,

where, ∇mk(xk + s)free denotes the restricted gradient of the model corresponding to the
free variables. The initial parameters were chosen to be: γ1 = 0.0625, γ2 = 0.25, γ3 = 2,
η1 = 0.01, µ1 = η2 = 0.9, µ2 = 1, ∆0 = 1, ϵ = 10−6, λ2 = 2λ1 and

λ1 = min(0.001,
1

2
√
p
).

Moreover, we chose p = n and Ij = {j} for our tests.

The two algorithms successfully solved 103 problems and failure occurred on BIGGSB1,
MINSURFO, PALMER7A, QRTQUAD and SCOND1LS, because the maximal iteration
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count was reached before having the chance to detect convergence. In Table 1 and Table
2, we report the results obtained by applying FTRA and GPFTRA on the whole set of the
test problems. In the tables, we let iter denote the number of iterations, CPU denote the
CPU time, CG denote the number of conjugate gradient iterations and f∗ denote the final
objective function value.

As Table 1 and Table 2 show the efficiency of the two algorithms is averagely the same.
We have better results of FTRA over GPFTRA on problems EXPQUAD, NCVXBQP2,
NCVXBQP3, PAMER1A, PALMER2A and YFIT. The FTRA algorithm has also produced
the better result with respect to the total amount of the conjugate gradient iteration than
the GPFTRA algorithm on problems PALMER2B, PALMER3, PALMER5E and QR3DLS.
We note that on these problems, GPFTRA has a better total number of iterations than
FTRA. The better result of GPFTRA over FTRA can be seen on problems PALMER4A,
PALMER5A, PALMER5B, PSPDOC, QR3DLS, WEEDS. We should note that GPFTRA
has produced better final objective function values than FTRA on problems HS1, HS38,
QR3DLS and YFIT.

We have also used the performance profile of Dolan and Moré [11] to compare the effi-
ciency of the two algorithms. As Fig. 1, indicates, GPFTRA is significantly more efficient
than FTRA with respect to the filter size. Its efficiency is also better than FTRA with
respect to the CPU time factor; see Fig. 4 and Fig. 5. Furthermore, Fig. 2 and Fig. 3 give
the performance profiles for the number of iterations and total amount of conjugate gradient
iterations. As these figures indicate, FTRA is more efficient than GPFTRA with respect to
to these factors.
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We finally investigated the effect of removing the reference iteration as described in
Remark 4.8. In this case, we observed that on problems PSPDOC and SINEALI, the
iterates finally converged to a point with the final objective function values 4.8 × 1016 and
8.5 × 104 in 24 and 4 iterations, respectively. We also observed that on the average, the
restriction to reference iteration undermines the efficiency of GPFTRA.

6 Conclusions

We proposed a projected gradient filter trust-region algorithm for solving bound constrained
optimization problems. The new algorithm is a modified version of our recent algorithm
proposed for unconstrained optimization. In contrast with the earlier filter algorithms, the
new algorithm has the novelty to ensure the finiteness of the filter size. We showed, under
standard assumptions, that at least one of the limit points of the sequence of the iterates
generated by the algorithm was a first order critical point. Numerical comparative results on
a set of bound constrained test problems from the CUTEr collection showed the algorithm
is competitive and more efficient solely with respect to the filter size..
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Table 1: Numerical comparisons on a subset of test problems.

Name GPFTRA FTRA
iter CPU CG f∗ iter CPU CG f∗

3PK 88 0.1482 594 1.72E+00 88 0.1602 594 1.72E+00
ALLINIT 9 0.0133 14 1.67E+01 9 0.0267 14 1.67E+01
BDEXP 2 0.9241 2 2.65E-123 2 0.9036 2 2.65E-123
BLEACHNG 5 24.3918 1 9.18E+03 5 26.0591 1 9.18E+03
BQP1VAR 2 0.0009 0 0.00E+00 2 0.0631 0 0.00E+00
BQPGABIM 4 0.0063 17 -3.79E-05 4 0.0190 17 -3.79E-05
BQPGASIM 5 0.0135 26 -5.52E-05 5 0.0251 26 -5.52E-05
BQPGAUSS 533 194.2316 6320 -3.63E-01 533 193.2728 6320 -3.63E-01
CAMEL6 7 0.0064 6 -1.03E+00 7 0.0224 6 -1.03E+00
CHEBYQAD 24 13.6575 72 1.01E+02 24 13.9096 72 1.01E+02
CHENHARK 8 29.2582 1190 -2.00E+00 8 29.2351 1190 -2.00E+00
CVXBQP1 2 4.1307 5 2.25E+04 2 4.2049 5 2.25E+04
DECONVB 26 0.0844 67 3.41E-09 26 0.0985 67 3.41E-09
EG1 6 0.0063 5 -1.13E+00 6 0.0195 5 -1.13E+00
EXPLIN 50 15.5694 113 -7.19E+07 50 15.4188 113 -7.19E+07
EXPLIN2 25 13.1176 52 -7.20E+07 25 13.0891 52 -7.20E+07
EXPQUAD 132 256.690 281 -3.68E+009 70 71.537 139 -3.68E+009
GRIDGENA 5 20.8589 200 2.35E+04 5 21.1741 200 2.35E+04
HADAMALS 10 0.7603 6 7.31E+03 10 0.8069 6 7.31E+03
HART6 309 1816.3125 774 2.51E+00 309 1817.5970 774 2.51E+00
HATFLDA 24 0.0296 58 8.07E-19 24 0.0440 58 8.07E-19
HATFLDB 20 0.0366 36 5.57E-03 20 0.0449 36 5.57E-03
HATFLDC 6 0.0135 38 1.70E-17 6 0.0223 38 1.70E-17
HIMMELP1 6 0.0090 5 -2.39E+01 6 0.0207 5 -2.39E+01
HS1 27 0.033 36 5.49E-028 16 0.016 17 4.02E-015
HS110 8 0.0076 2 -4.58E+01 9 0.0210 2 -4.58E+01
HS2 8 0.0053 3 4.94E+00 8 0.0187 3 4.94E+00
HS25 3 0.0054 2 3.28E+01 3 0.0181 2 3.28E+01
HS3 2 0.0014 3 3.16E-35 2 0.0136 3 3.16E-35
HS38 57 3.5620 179 2.86E-25 54 0.0910 173 6.12E-15
HS3MOD 3 0.0058 4 0.00E+00 3 0.0147 4 0.00E+00
HS4 2 0.0011 3 2.67E+00 2 0.0136 3 2.67E+00
HS45 2 0.0042 4 1.00E+00 2 0.0165 4 1.00E+00
HS5 13 0.0138 9 -1.91E+00 13 0.0297 9 -1.91E+00
JNLBRNG1 110 120.0741 238 -1.81E-01 110 117.8933 238 -1.81E-01
JNLBRNG2 8 5.7573 255 -4.15E+00 8 5.8375 255 -4.15E+00
JNLBRNGA 8 6.0473 303 -2.91E-01 8 6.0616 303 -2.91E-01
JNLBRNGB 9 7.7468 553 -6.46E+00 9 7.8323 553 -6.46E+00
LINVERSE 46 82.5600 51 6.82E+02 46 78.8241 51 6.82E+02
LOGROS 2 0.0018 3 1.93E+02 2 0.0142 3 1.93E+02
MAXLIKA 276 1.1937 337 1.14E+03 277 1.2462 346 1.14E+03
MCCORMCK 15 28.7382 35 -4.57E+03 8 10.6754 17 -4.57E+03
MDHOLE 53 0.0860 77 0.00E+00 42 0.0760 50 0.00E+00
NCVXBQP1 2 4.0910 5 -1.99E+08 2 3.9777 5 -1.99E+08
NCVXBQP2 32 5.7840 121 -1.33E+08 9 4.6880 16 -1.33E+08
NCVXBQP3 33 8.5250 38 -6.58E+07 11 7.3520 16 -6.58E+07
NOBNDTOR 23 53.9472 687 -4.50E-01 23 84.5287 687 -4.50E-01
NONSCOMP 16 23.6340 43 3.76E-10 16 17.1380 43 3.76E-10
OBSTCLAE 122 177.1975 158 1.06E+01 122 248.4091 158 1.06E+01
OBSTCLAL 11 5.5947 74 1.06E+01 11 7.8374 74 1.06E+01
OBSTCLBL 309 1816.3125 774 2.51E+00 309 1817.5970 774 2.51E+00
OBSTCLBM 30 73.3985 67 3.38E+01 30 97.7889 67 3.38E+01
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Table 2: Numerical comparisons on a subset of test problems.

Name GPFTRA FTRA
iter CPU CG f∗ iter CPU CG f∗

OBSTCLBU 30 48.5622 74 3.38E+01 30 65.4013 74 3.38E+01
OSLBQP 2 0.1960 5 6.25E+00 2 0.0139 5 6.25E+00
PALMER1 31 0.1584 18 1.18E+04 26 0.1093 18 1.18E+04
PALMER1A 112 0.1530 466 8.99E-02 60 0.0920 145 8.99E-02
PALMER1B 35 0.1707 59 3.45E+00 42 0.1811 61 3.45E+00
PALMER1E 156 0.3070 1088 8.35E-04 192 0.4090 1285 8.35E-04
PALMER2 48 0.0750 42 3.65E+05 51 0.0780 40 3.65E+03
PALMER2A 219 0.3350 1029 1.71E-02 113 0.1830 487 1.71E-02
PALMER2B 23 0.0363 51 6.23E-01 27 0.1281 43 6.23E-01
PALMER2E 238 1.5916 1970 2.07E-04 99 0.1912 463 1.16E-01
PALMER3 21 0.0829 26 2.42E+03 27 0.0532 23 2.42E+03
PALMER3A 249 1.1845 1221 2.04E-02 80 0.3043 229 2.04E-02
PALMER3B 27 0.0345 51 6.23E-01 33 0.1471 56 4.23E+00
PALMER3E 181 0.3630 1499 5.07E-05 190 0.4020 1569 5.07E-05
PALMER4 22 0.0909 26 2.42E+03 26 0.0484 20 2.42E+03
PALMER4A 62 0.1610 173 4.06E-02 145 0.6712 668 4.06E-02
PALMER4B 32 0.0390 55 6.84E+00 21 0.0370 37 6.84+000
PALMER4E 113 0.2450 950 1.48E-04 127 0.2440 993 1.48E-04
PALMER5A 4264 7.5750 37774 5.18E-02 4493 7.9180 38853 5.18E-02
PALMER5B 2279 4.2490 20071 9.75E-03 2639 4.7700 23430 9.75E-03
PALMER5D 3 0.0101 7 8.73E+01 3 0.0175 7 8.73E+01
PALMER5E 2153 3.5620 15485 2.56E-02 2272 3.7380 16638 2.56E-02
PALMER6A 282 0.4149 1202 5.59E-02 95 0.1355 255 5.59E-02
PALMER6E 43 0.0750 295 2.24E-04 47 0.1390 349 2.24E-04
PALMER7E 601 1.0380 3966 6.68E+00 706 1.2600 5022 6.68E+00
PALMER8A 39 0.0520 107 7.40E-02 43 0.0530 102 7.40E-02
PALMER8E 32 0.0530 209 6.34E-03 61 0.1230 438 6.34E-03
PENTDI 2 1.1751 6 -7.50E-01 2 1.1899 6 -7.50E-01
PROBPENL 2 0.1145 3 3.99E-07 2 0.1286 3 3.99E-07
PSPDOC 26 0.0470 57 2.41E+00 230 0.3330 469 2.41E+02
QR3DLS 373 144.6730 99919 2.43E-07 521 133.6800 57126 8.47E-03
QUDLIN 2 758.9444 3 -7.19E+07 2 58.0068 3 -7.19E+07
S368 6 0.0274 4 -7.50E-01 6 0.0426 4 -7.50E-01
SIM2BQP 2 0.0040 3 0.00E+00 2 0.0164 3 0.00E+00
SIMBQP 2 0.0057 2 0.00E+00 2 0.0167 2 0.00E+00
SINEALI 8 0.7021 34 -9.99E+04 8 0.7532 34 -9.99E+04
SPECAN 12 0.6836 50 1.65E-13 12 0.7734 50 1.65E-13
TORSION1 24 63.3769 553 -4.30E-01 24 61.7812 553 -4.30E-01
TORSION2 93 315.9712 184 -4.30E-01 93 317.2696 184 -4.30E-01
TORSION3 12 23.4316 150 -1.22E+00 12 23.3387 150 -1.22E+00
TORSION4 12 34.5391 69 -1.22E+00 12 35.1008 69 -1.22E+00
TORSION5 7 13.2039 50 -2.86E+00 7 12.1168 50 -2.86E+00
TORSION6 6 17.7341 40 -2.86E+00 6 17.9586 40 -2.86E+00
TORSIONA 24 62.6318 553 -4.18E-01 24 62.7643 553 -4.18E-01
TORSIONB 60 218.1529 128 -4.18E-01 60 225.9029 128 -4.18E-01
TORSIONC 12 23.3875 150 -1.20E+00 12 23.3422 150 -1.20E+00
TORSIOND 11 35.9114 101 -1.20E+00 11 36.1875 101 -1.20E+00
TORSIONE 7 12.2407 50 -2.85E+00 7 12.2321 50 -2.85E+00
TORSIONF 6 17.2641 40 -2.85E+00 6 17.2753 40 -2.85E+00
WEEDS 37 0.0470 59 2.59E+00 57 0.0670 86 2.59E+00
YFIT 104 0.1480 271 6.74E-13 33 0.1030 70 3.16E-009


