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via certain reconstruction technique. However, the l0-norm problem is combinatorial and
generally computationally intractable. A fundamental decoding model in CS is to replace
l0-norm by l1-norm, which is defined as ∥x∥1 =

∑n
i=1 |x(i)|. The resulting adaptation of

(1.1) is the so-called basis pursuit (BP) problem [5]

min
x∈Rn

∥x∥1 s.t. b = Ax. (1.2)

It is shown that, problem (1.2) shares common solutions with (1.1) under some reasonable
conditions [6]. When b contains some noise in most practical applications, certain relaxation
to the equality constraint in (1.2) is desirable. One of the relaxations is the unconstrained
basis pursuit denoising problem:

min
x∈Rn

1

2
∥b−Ax∥22 + µ∥x∥1. (1.3)

The regularization parameter µ > 0 provides a tradeoff between fidelity to the measurements
and noise sensitivity.

The recent results indicate that if a signal is sparse or approximately sparse in some
orthogonal basis, then we can obtain an accurate recovery when A is a random matrix pro-
jections [8]. In CS, encoding matrices A is often generated by randomly taking a subset of
rows from orthonormal transform matrices, such as discrete Fourier transform (DFT), dis-
crete cosine transform (DCT), and discrete Walsh-Hadamard transform (DWT) in magnetic
resonance imaging (MRI) [18]. Such encoding matrices do not require storage and enable
fast matrix-vector multiplications.

In recent years, quite a few algorithms have been proposed and studied for solving the
aforementioned l1-norm regularization problems arising in CS. One most widely studied first-
order method is the iterative shrinkage/thresholding (IST) method [9, 11, 20, 21], which is
designed for wavelet-based image deconvolution. In [16], Hale, Yin and Zhang derive the IST
fixed-point continuation algorithm (FPC) via an operator splitting technique. TwIST [3] and
FISTA [2] speed up the performance of IST and have virtually the same complexity but with
better convergence properties. Another closely related method is the sparse reconstruction
algorithm called SpaRSA was also studied by Wright, Nowak and Figueiredo in [25].

Gradient based algorithm is also prevalent for solving problem (1.3). One of the earliest
gradient projection method for sparse reconstruction (GPSR) was developed by Figueiredo
et al. [13]. SPGL1 [10] solves a least-squares problem with l1-norm constraint by the spectral
gradient projection method with an efficient Euclidean projection on l1-norm ball. In [29],
Yun and Toh studied a block coordinate gradient descent (CGD) method for solving (1.3).
The projection steepest descent (PSD) method [7] also have good performance. Recently, the
alternating direction method (ADM) have received much attention for solving total variation
regularization problems for image restoration, and is also capable of solving the l1-norm
regularization problems in CS [27, 28]. Among all the methods mentioned above, GPSR
splits x into two vectors, formulates (1.3) for a bound-constrained QP problem, and solves
subsequently by using Barzilai-Borwein gradient method [4] with an efficient nonmonotone
line search [15]. The resulting convex QP problem can be formulated to an equivalent
non-smooth monotone equation [26]. Thanks to the low memory requirement, conjugate
gradient methods are popular in dealing with large-scale optimization problem. During the
past few years, descent conjugate gradient methods have been widely developed for solving
unconstrained optimization and systems of nonlinear equations [1, 19, 32, 33, 34, 31].

One main motivation of this paper is to extend the well-known Polak-Ribière-Polyak
(PRP) conjugate gradient method to solve the l1 regularized least squares problem arising
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from compressed sensing. The construction of the method consists of two main steps: (1)
reformulate the l1 regularized least squares problem into an equivalent nonlinear system of
monotone equations; (2) apply a descent Polak-Ribière-Polyak (DPRP) conjugate gradient
method [31] with the projection technique [24] for solving the resulting system of monotone
equations. Under reasonable assumptions, we can establish its convergence result. Numerical
experiments illustrate that the proposed method is efficient to recover a sparse signal arising
in compressive sensing and performs better than its competitors.

This paper is organized as follows. A full description of the projected conjugate gradient
method for CS is presented in the next section. Meanwhile, we establish its global conver-
gence under some suitable conditions. In Section 3, we present some numerical experiments
to show the practical performance of the proposed algorithm. Finally, we have a conclusion
section.

2 Proposed Algorithm and the Global Convergence

Firstly, we briefly review the process for constructing a quadratic programming problem in
[13]. Making a substitution, for any vector x ∈ Rn, it can be formulated for x = u − v,
where u ≥ 0, u ∈ Rn, v ≥ 0, v ∈ Rn and ui = max{0, xi}, vi = max{0,−xi}. Hence (1.3)
can be rewritten as the following bound-constrained quadratic programming

min
u,v∈Rn

1

2
∥b−A(u− v)∥22 + µ(ITnu+ ITnv) s.t. u ≥ 0, v ≥ 0, (2.1)

where ITn represents the transpose of In, and In =

 1
...
1

 is a vector consisting of n ones.

Particularly, it follows from [13] that (2.1) can be rewritten as the following form

min
z∈R2n

1

2
zTHz + cT z s.t. z ≥ 0, (2.2)

where z =

[
u
v

]
, y = AT b, c = µI2n +

[
−y
y

]
and H =

[
ATA −ATA
−ATA ATA

]
.

Recently, Xiao et al. [26] indicated that (2.2) can be transformed into the following form

F (z) = min{z,Hz + c} = 0, (2.3)

where function F is vector-valued, and the “min” is interpreted as componentwise minimum.
Without specific statements, ∥ · ∥ denotes the Euclidean norm in the following paper.

The following lemma shows that F (·) is Lipschitz continuous.

Lemma 2.1 (Lemma 3 in [22]). There exists a positive constant L such that

∥F (z1)− F (z2)∥ ≤ L∥z1 − z2∥, ∀ z1, z2 ∈ R2n. (2.4)

The following lemma shows that F (·) is monotone.

Lemma 2.2 (Lemma 2.2 in [26]). The mapping F (·) is monotone, i.e.,

(F (z1)− F (z2))
T (z1 − z2) ≥ 0, ∀ z1, z2 ∈ R2n. (2.5)
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The above two lemmas illustrate that the system of nonlinear equations has nice prop-
erties, and it can be solved efficiently by some derivative-free methods [14, 30, 33].

In this paper, based on a descent PRP conjugate gradient method [31], we propose a
projected conjugate gradient method for the minimization of l1-regularized minimization
problem with applications to CS. In particular, the search direction is generated by the
following way

dk =

{
−F0 if k = 0,
−Fk + βkdk−1 − θkyk−1 if k ≥ 1,

(2.6)

where Fk = F (zk), βk = λk−1β
DPRP
k , βDPRP

k = βPRP
k − C∥yk−1∥2

∥Fk−1∥4 FT
k dk−1 with parameter

C = 1, and βPRP
k =

FT
k yk−1

∥Fk−1∥2 is the well-known PRP conjugate gradient formula, θk =

λ2
k−1(F

T
k yk−1)∥dk−1∥2

∥Fk−1∥4 , yk−1 = F (zk) − F (zk−1) and λk−1 is the steplength determined by a

line search technique.
A full description of the projected conjugate gradient method (PCGM) can be presented

as follows.

Projected Conjugate Gradient Method (PCGM) for solving (2.3)

Date: Give initial point z0 ∈ R2n, set parameters σ1 > 0, σ2 > 0 and ρ ∈ (0, 1).
Convergence test: If ∥F (z0)∥ = 0, then stop. Else set d0=−F (z0). Let k := 0.
Line search update: Determine the steplength λk and set tk = zk + λkdk, where λk =
σ1ρ

mk with mk being the smallest nonnegative integer m satisfying

−F (tk)
T dk ≥ σ2σ1ρ

m∥F (tk)∥∥dk∥2. (2.7)

Projection update: Compute

zk+1 = zk − F (tk)
T (zk − tk)

∥F (tk)∥2
F (tk). (2.8)

If ∥F (zk+1)∥ = 0, then stop. Else let k := k + 1 and compute dk defined by (2.6). Then go
to the Convergence Test.

The following lemma states that PCGM method satisfies the sufficient descent condition.

Lemma 2.3. The introduced direction in the Algorithm PCGM satisfies the sufficient de-
scent condition, i.e. there exists a constant τ > 0 such that FT

k dk ≤ −τ∥Fk∥2 holds.

Proof. From (2.6), it follows that

FT
k dk =

−∥Fk∥2∥Fk−1∥4+λk−1(F
T
k dk−1)(F

T
k yk−1)∥Fk−1∥2

∥Fk−1∥4

− λk−1∥yk−1∥2(FT
k dk−1)

2
+λ2

k−1(F
T
k yk−1)

2∥dk−1∥2

∥Fk−1∥4 .
(2.9)

Setting u = 1√
2
∥Fk−1∥2Fk and v =

√
2λk−1(F

T
k yk−1)dk−1 in the second term of the numera-

tor and using the inequality uT v ≤ 1
2 (u

2+v2) = 1
2 (

1
2∥Fk−1∥4∥Fk∥2+2λ2

k−1(F
T
k yk−1)

2∥dk−1∥2),
it straightforwardly implys

FT
k dk ≤ −∥Fk∥2∥Fk−1∥4+ 1

2 (
1
2∥Fk−1∥4∥Fk∥2+2λ2

k−1(F
T
k yk−1)

2∥dk−1∥2)

∥Fk−1∥4

− λ2
k−1(F

T
k yk−1)

2∥dk−1∥2

∥Fk−1∥4 = −3
4∥Fk∥2.

(2.10)

Therefore, the introduced direction satisfies the sufficient descent condition.
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The following lemma indicates that if the sequence {zk} be generated by Algorithm
PCGM and z such that F (z̄) = 0 , then the sequence {zk − z} is decreasing and convergent,
thus the sequence {zk} is bounded.

Lemma 2.4. Suppose the sequence {zk} be generated by Algorithm PCGM. For any z such
that F (z) = 0, we have that

∥zk+1 − z∥2 ≤ ∥zk − z∥2 − ∥zk+1 − zk∥2. (2.11)

In particular, the sequence {zk} is bounded and

∞∑
k=0

∥zk+1 − zk∥2 < ∞. (2.12)

Proof. Using the monotonicity property of F (z), for any z such that F (z) = 0, it can be
concluded that

F (tk)
T (z − tk) ≤ 0 (2.13)

while tk = zk + λkdk. On the other hand, due to the line search technique (2.7), we have

F (tk)
T (zk − tk) > 0. (2.14)

It means that the hyperplane

Hk =
{
z ∈ Rn|F (tk)

T
(z − tk) = 0

}
(2.15)

strictly separates the current iterate zk from z. It is also easy to verify that zk+1 is the

projection of zk onto the halfspace
{
z ∈ Rn|F (tk)

T
(z − tk) ≤ 0

}
. Since zk+1 belongs to

this halfspace, it follows from the basic properties of the projection operator (see p.121 in
[23]) that ⟨zk − zk+1, zk+1 − z⟩ ≥ 0. Therefore

∥zk − z∥2 = ∥zk − zk+1∥2 + ∥zk+1 − z∥2 + 2 ⟨zk − zk+1, zk+1 − z⟩
≥ ∥zk − zk+1∥2 + ∥zk+1 − z∥2.

Hence the sequence {∥zk − z∥} is nonincreasing and convergent, therefore the sequence {zk}
is bounded, and also

lim
x→∞

∥zk+1 − zk∥ = 0. (2.16)

This completes the proof.

Lemma 2.5. Suppose the sequence of directions {dk} be generated by the Algorithm PCGM.
Also there exists a constant ε0 > 0 such that

∥Fk∥ ≥ ε0 (2.17)

for all k ∈ N ∪{0}, then the directions {dk} are bounded, i.e. there exists a constant M > 0
such that

∥dk∥ ≤ M (2.18)

for all k ∈ N ∪ {0}.
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Proof. From (2.8), it can be concluded that

∥zk+1 − zk∥ =

∣∣∣F (tk)
T
(zk − tk)

∣∣∣
∥F (tk)∥

=

∣∣∣λkF (tk)
T
dk

∣∣∣
∥F (tk)∥

. (2.19)

Relation (2.7) together with (2.19) directly imply

∥zk+1 − zk∥ =

∣∣∣F (tk)
T
(zk − tk)

∣∣∣
∥F (tk)∥

=

∣∣∣λkF (tk)
T
dk

∣∣∣
∥F (tk)∥

≥ σ2λ
2
k∥dk∥

2 ≥ 0. (2.20)

This fact and Lemma 4 suggest that

lim
k→∞

λk ∥dk∥ = 0. (2.21)

Under other circumstances, from (2.19) and the Cauchy–Schwartz inequality, we also have

∥zk+1 − zk∥ ≤ λk ∥F (tk)∥ ∥dk∥
∥F (tk)∥

= λk ∥dk∥ . (2.22)

Using (2.6), (2.17) and the Cauchy–Schwartz inequality, it follows that

∥dk∥ ≤ ∥Fk∥+ ∥Fk∥∥yk−1∥
ε20

+ λk−1∥yk−1∥2∥Fk∥∥dk−1∥2

ε40

+
λ2
k−1∥yk−1∥2∥Fk∥∥dk−1∥2

ε40

(2.23)

for all k ∈ N . Now, by (2.4), there exist two constants L > 0 and κ > 0 such that

∥yk−1∥ ≤ L ∥zk+1 − zk∥ , ∥Fk∥ ≤ κ. (2.24)

As a consequence of (2.21), there exist a constant ε1 ∈ (0, 1) and a positive integer k0 such
that

λk−1 ∥dk−1∥ <
3

√
ε40ε1

/
L2κ, for all k > k0. (2.25)

These inequalities together with (2.23) lead to

∥dk∥ ≤ κ+
Lκ

3

√
ε40ε1

/
L2κ

ε20
+ ε1 ∥dk−1∥+

L2κ(
3

√
ε40ε1

/
L2κ)

4

ε40
. (2.26)

Let r = κ+
Lκ

3

√
ε40ε1/L2κ
ε20

+
L2κ(

3

√
ε40ε1/L2κ)

4

ε40
, and we have, for any k > k0 ,

∥dk∥ ≤ r + ε1 ∥dk−1∥ ≤ r(1 + ε1 + ε21 + · · ·+ εk−k0−1
1 ) + εk−k0

1 ∥dk0∥ ≤ r

1− ε1
+ ∥dk0∥ .

Then let M = max
{
∥d0∥ , ∥d1∥ , · · · , ∥dk0∥ , r

1−ε1
+ ∥dk0∥

}
to get (2.18).

The following Lemma guarantees that the recommended line search in Algorithm PCGM
is well-defined.

Lemma 2.6. Suppose that all conditions of Lemma 5 hold. Then the line search procedure
(2.7) in Algorithm PCGM is well-defined.
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Proof. Our aim is to show that the line search procedure (2.7) terminates finitely with a

positive steplength λk. By contradiction, suppose that for some iterate indexes such as k̂,

the condition (2.7) is not held. As a result, by setting λ
(m)

k̂
= σ1ρ

m, it can be conclude

−F (zk̂ + λ
(m)

k̂
dk̂)

T dk̂ < σ2λ
(m)

k̂

∥∥∥F (zk̂ + λ
(m)

k̂
dk̂)

∥∥∥∥∥dk̂∥∥2
for all m ∈ N ∪ {0}. This fact along with the Lipschitz continuous Lemma 1 and the
sufficient descent condition Lemma 3 express

τ
∥∥Fk̂

∥∥2 ≤ −FT
k̂
dk̂ =

[
F (zk̂ + λ

(m)

k̂
dk̂)− Fk̂

]T
dk̂ − F (zk̂ + λ

(m)

k̂
dk̂)

T dk̂

<
[
L+ σ2

∥∥∥F (zk̂ + λ
(m)

k̂
dk̂)

∥∥∥]λ(m)

k̂

∥∥dk̂∥∥2 (2.27)

for all m ∈ N ∪ {0}. On the other hand, using Lemma 1, (2.24) and Lemma 5, it directly
follows that ∥∥∥F (zk̂ + λ

(m)

k̂
dk̂)

∥∥∥ ≤
∥∥∥F (zk̂ + λ

(m)

k̂
dk̂)− Fk̂

∥∥∥+
∥∥Fk̂

∥∥
≤ Lλ

(m)

k̂

∥∥dk̂∥∥+ κ ≤ σ2LM + κ = κ1

where κ1 = σ2LM + κ. This inequality together with (2.17), (2.18) and (2.27) yield

λ
(m)

k̂
>

τ
∥∥Fk̂

∥∥2[
L+ σ2

∥∥∥F (zk̂ + λ
(m)

k̂
dk̂)

∥∥∥] ∥∥dk̂∥∥2 ≥ τε20
(L+ σ2κ1)M2

> 0

for all m ∈ N ∪ {0}. This contradicts the definition of λ
(m)

k̂
. Consequently, the line search

procedure (2.7) can attain a positive steplength λk in a finite number of backtracking repe-
titions in step line search update. Therefore, the line search is well-defined.

Assume that the solution set of (2.3) is nonempty, we can establish the following global
convergence theorem for PCGM method.

Theorem 2.7. Suppose that the sequence {zk} is generated by Algorithm PCGM, then it
holds that

lim
k→∞

inf ∥Fk∥ = 0. (2.28)

Proof. By contradiction, we assume that (2.28) does not hold. Then there exists a constant
ε0 > 0 such that ∥Fk∥ ≥ ε0 holds, for all k ∈ N ∪ {0}. From Lemma 3 we know

FT
k dk ≤ −τ∥Fk∥2 (2.29)

and we also have

τ∥Fk∥2 ≤ −FT
k dk ≤ ∥Fk∥ ∥dk∥

for all k ∈ N ∪ {0}. Hence
∥dk∥ ≥ τε0 > 0

for all k ∈ N ∪ {0}. According to this condition and (2.21), it follows that

lim
k→∞

λk = 0. (2.30)
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From Line search update of Algorithm PCGM, it is easy to see that for λ∗
k = ρ−1λk, the

condition (2.7) does not hold, i.e.

−F (zk + λ∗
kdk)

T dk < σ2λ
∗
k ∥F (zk + λ∗

kdk)∥ ∥dk∥
2
. (2.31)

As a result of the boundedness of {zk} in Lemma 4, there exist an accumulation point z
and an infinite index set K1 such that lim

k→∞
zk = z̄, for k ∈ K1. Meanwhile, it follows from

Lemma 5 that there exist an infinite index set K2 ⊂ K1 and an accumulation point d such
that lim

k→∞
dk = d̄, for k ∈ K2. Therefore, taking the limit as k → ∞ in both sides of (2.31)

for all k ∈ K2 gives
F (z̄)T d̄ > 0. (2.32)

In the other point, by taking the limit as k → ∞ in both sides of (2.29) for k ∈ K2, obviously

F (z̄)T d̄ ≤ 0.

This yields a contradiction with (30). Therefore, the proof is completed.

3 Experimental Results

In this section, we present some numerical experiments to illustrate the practical performance
of PCGMmethod, and compare PCGM with SGCS [26], DFPB1 [1], IST [11], MPRP [19] for
sparse reconstruction. All experiments are tested in Matlab R2010a. We consider a typical
compressive sensing scenario, where the goal is to reconstruct a n length sparse signal with
k non-zero elements from m observations. We restrict our attention to the l1 regularized
least squares model (1.3), and use f(x) = 1

2∥b − Ax∥22 + µ∥x∥1 as the merit function. The
random A is the Gaussian matrix whose elements are generated from shape i.i.d. normal
distributions N (0, 1) (randn(m,n) in Matlab). In real applications, the measurement b is
usually contaminated by noise, i.e., b = Ax + η, where η is the Gaussian noise distributed
as N (0, σ2I).

In PCGM, we let ρ = 0.1, σ1 = 0.95 and σ2 = 0.93. The common stopping criterion

is ∥f(xk)−f(xk−1)∥
∥f(xk−1)∥ < 10−4, where f(xk) denotes the function value at xk. Mean squared

error (MSE) is used to measure the quality of the reconstructive signals, which is defined as
MSE = ∥x̂− x̄∥2/n, where x̂ denotes the reconstructive signal, x̄ denotes the original signal
and n is the length of the signal.

Firstly, we test the practical performance of PCGM for reconstructing sparse signal.
Fig.1 and Fig.2 report that the results of PCGM for a signal sparse reconstruction in CS.
Comparing the first and the last plots in Fig.1, we can see that the original sparse signal is
restored almost exactly. As shown in the right plot in Fig.2, all the blue dots are circled by
the red circles, which illustrates that the original signal has been found almost exactly.

Secondly, we report some numerical comparison to some exists gradient methods for
solving monotone equations arising from CS. In Fig.3, we visually illustrate the performance
of PCGM with comparison to the recent solver SGCS [26] and two related conjugate gradient
methods, MPRP [19], DFPB1 [1]. As we can see, PCGM requires less computing time than
SGCS, MPRP and DFPB1 while obtaining similar reconstructive quality.

In the next experiment, we choose three different signals and four different values of noise
level σ2 to compare PCGM with the well known first-order method IST [11]. Numerical
results are listed in Table 1, in which we report the number of iterations (Iter), the CPU
time in seconds (Time) required for the whole reconstructing process, the means of squared
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Figure 1: Top: original signal with length 4096 and 128 non-zero elements. Middle: noisy
measurement with length 1024. Bottom: recovered signal by PCGM when σ2 = 10−3.
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Figure 2: Left: original signal with length 4096 and 128 non-zero elements. Middle: noisy
measurement with length 1024. Right: recovered signal by PCGM (red circle) versus original
signal (blue peaks) when σ2 = 10−3, the error MSE= 7.231e-6, the CPU time is 3.67 seconds,
and requires 143 iterations.
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Figure 3: Comparison result of PCGM and other methods with n=4096, m=1024, k=128
and σ2 = 10−3. The x-axes represent the CPU time in seconds. The y-axes represent the
function values.

error to every original signal x̄ (MSE), where n is the length of the signal, m is the length of
noisy measurement and k is the number of non-zero elements. As we can see from Table 1,
PCGM requires less iterations and less CPU time than that of IST and SGCS while deriving
the similar quality of restoration.

4 Concluding Remark

Sparse reconstruction has been widely involved in signal processing, compressed sensing and
statistical learning. In order to realise the task, one need to solve a l1-norm regularized
least squares problem. This paper presents a projected conjugate gradient method (PCGM)
for sparse reconstruction with applications to compressed sensing. The construction of the
method consists of two main steps: (1) reformulate the l1 regularized least squares prob-
lem into an equivalent nonlinear system of monotone equations; (2) apply a projected PRP
conjugate gradient method for solving the resulting system of monotone equations. The al-
gorithm is easily implemented, in which only matrix-vector inner product is required at each
step. Due to the low memory requirement of conjugate gradient approaches, the proposed
method is practical and effective for sparse reconstruction. Numerical experiments indicate
that PCGM is promising and competitive to the well-known iterative soft-thresholding (IST)
method. One future topic is to investigate the applications of PCGM in image restoration
or image reconstruction.
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Table 1: performance of signal reconstruction with different length of signals and different noise
level σ2 in the number of iterations, CPU time and the means of squared error.

presentation.
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