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liyi ≤ xi ≤ uiyi, yi ∈ {0, 1}, i = 1, . . . , n, where li and ui are lower and upper bounds of
xi, respectively. Therefore, problem (P) can be viewed as a special mixed-integer convex
program.

Finding sparse solutions of optimization problems are often encountered in real-world
applications when the number of nonzero entries in the decision variables has to be limited.
Applications of sparse solutions include portfolio selection [4, 8, 17, 29, 31], subset selection in
multivariate regression [1, 26], signal processing and compressed sensing [7]. In the literature
of sparse solutions, much attention has been devoted to sparse solutions of linear systems
Ax = b which can be formulated as minimizing ∥x∥0 subject to Ax = b (see, e.g., [23] and
the references therein). This problem is related to but different from problem (P) where one
seeks for solutions with a given cardinality K.

An important subclass of problem (P) is cardinality-constrained quadratic programs in
the following form:

(QP) min f(x) := xTQx+ cTx

s.t. Ax ≤ b,

∥x∥0 ≤ K,

where Q is an n × n symmetric positive semidefinite The cardinality-constrained portfolio
selection model is a special case of (QP) where the cardinality constraint limits the total
number of different assets in the optimal portfolio. Branch-and-bound methods based on var-
ious relaxations and bounding techniques have been proposed for solving the mixed-integer
quadratic program reformation of (QP) (see, e.g., [3, 4, 5, 24, 29, 30]). A mixed-integer
quadratically constrained quadratic program reformulation is derived in [14] for a class of
cardinality-constrained portfolio selection problems where the assets returns are driven by
factor models. Recently, a novel geometric approach is proposed in [17] for minimizing a
quadratic function with cardinality constraint. Embedded in a branch-and-bound method,
this geometric approach is efficient for solving cardinality-constrained portfolio selection
problems. The quadratic model (QP) also has application in indexing tracking in passive
portfolio management where a small set of assets is selected to track the performance of mar-
ket benchmark index. When the tracking error is measured by variance, the index tracking
problem is a special case of (QP) with f(x) = (x−xB)TQ(x−xB), where xB is the vector of
positions of the benchmark index. In [22], an ℓp approximation method is presented to find
an approximate optimal solution of indexing tracking problem. A continuously differentiable
nonconvex piecewise quadratic approximation to ℓ0-norm is proposed in [13] for solving in-
dex tracking problem. In [32], a successive convex approximation approach is proposed to
construct convex approximations of the nonconvex feasible set of (P). Valid inequalities are
also derived in [32] to strengthen the convex approximations to (P).

While cardinality constraint imposes the sparsity directly to the feasible solutions of a
convex program, which is convenient for controlling the sparsity in a single model, it makes
the problem difficult to solve. In fact, it has been shown in [4] that problem (P) is in
general NP-hard due to the combinatorial nature of the sparsity constraint. An alternative
formulation for finding sparse solutions can be obtained by integrating the ℓ0 function into
the objective function. The resulting problem is

(Pµ) min f(x) + µ∥x∥0
s.t. x ∈ X,

where µ > 0 is a regularization parameter. Problem (Pµ) is often called regularization
formulation of (P). We assume that there exists feasible solution x such that ∥x∥0 = K.
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Under this assumption, it is easy to see that the inequality sparsity constraint ∥x∥0 ≤ K in
(P) can be replaced by ∥x∥0 = K. It can be shown that for each 1 ≤ K < n, the optimal
solution of (P) can be generated via solving (Pµ) for some µ > 0 (see [22]). In computation,
to generate an optimal solution of (Pµ) with ∥x∥0 = K, we can solve (Pµ) (approximately)
with different values of µ and eventually find an optimal solution of (P).

A special case of (Pµ) is ℓ2-ℓ0 minimization problem defined by

min
x∈ℜn

∥Ax− b∥2 + µ∥x∥0.

Approximating ∥x∥0 by the ℓp term ∥x∥pp with p ∈ (0, 1) leads to the ℓ2-ℓp minimization
problem. The lower bound theory of nonzero entries of ℓ2-ℓp minimization were discussed in
[9, 10, 11]. In [18], an interior-point potential reduction algorithm was proposed to search
for a local solution of ℓ2-ℓp minimization.

In this paper, we focus on the regularization formulation (Pµ). We propose a successive
convex approximation method for (Pµ) using a DC (difference of convex functions) approxi-
mation ψ(x, p) to ∥x∥0. By successively linearizing the concave term in ψ(x, p), we obtain a
sequence of convex subproblems whose optimal solutions provide candidates of approximate
solutions to (Pµ). We establish the convergence of the sequence of approximate solutions to
a KKT point of the approximate regularization problem. By applying ℓ1 exact penalty func-
tion of a mixed-integer nonlinear program reformulation of (Pµ), we also derive a piecewise
linear DC approximation to the regularization term of (Pµ). We report preliminary compu-
tational results of the method for test problems of limited diversified mean-variance portfolio
selection. Our numerical results suggest that the methods is promising in generating sparse
solutions to convex programs.

The paper is organized as follows. In Section 2, we first describe the successive convex
approximation method based on DC approximation. Some theoretical results of the method
is then established. In particular, we prove the convergence of the method to a KKT point
of the approximation regularization problem. In Section 3, we derive a piecewise linear DC
approximation to (Pµ) via ℓ1 exact penalty function approach to a mixed-integer nonlinear
reformulation of (Pµ). Computational results are reported in Section 4. Finally, we give
some concluding remarks in Section 5.

2 A Successive Convex Approximation Method

In this section, we first describe a successive convex approximation (SCA) method for prob-
lem (Pµ) using DC approximation to ℓ0. We prove that the method converges to a KKT
point of the approximation regularization problem.

Suppose that ψ(x, p) is an approximation to ∥x∥0 satisfying the following conditions:
(C1) ψ(x, p) is a nonnegative DC function of x for any p > 0 with DC decomposition

ψ(x, p) = c1(x, p)− c2(x, p), where c1(x, p) and c2(x, p) are convex functions of x on X;
(C2) limp→0+ ψ(x, p) = ∥x∥0 for any x ∈ X.
Consider the following approximation of the regularization problem (Pµ):

(Pp,µ) min F (x) := f(x) + µψ(x, p)

s.t. x ∈ X,

where ψ(x, p) satisfies (C1) and (C2). By condition (C2), the optimal solution of (Pp,µ)
provides a reasonable approximation solution of the regularization problem (Pµ) when p > 0
is small.
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Since f(x) is convex and ψ(x, p) is a nonconvex function of x, problem (Pp,µ) is a non-
convex optimization problem with a DC objective function and a convex feasible set. In the
literature of DC optimization, most of the approaches for DC optimization problems were
devoted to global optimization methods which are of branch-and-bound framework based
on various partition and bounding techniques (see [20]). Recently, local methods based on
sequential convex programming methods have been proposed in [19, 28] for dealing with
nonlinear programming with DC constraints.

We will focus on local method based on successive convex approximation to the DC
objective function F (x) in (Pp,µ). The idea of the successive convex approximation method
is to construct convex subproblems of (Pp,µ) via linearizing the concave term in the DC
function ψ(x, p). Let x̄ ∈ X. Since c2(x, p) is a convex function of x, we have

c2(x, p) ≥ c2(x̄, p) + ξ̄T (x− x̄), ∀x ∈ X,

where ξ̄ ∈ ∂c2(x̄, p). Then

f(x) + µψ(x, p) ≤ f(x) + µ[c1(x, p)− c2(x̄, p)− ξ̄T (x− x̄)].

We obtain the following convex subproblem at x̄:

(CPp,µ(x̄)) min f(x) + µ[c1(x, p)− c2(x̄, p)− ξ̄T (x− x̄)]

s.t. x ∈ X.

In the sequel, we need the following assumptions:

(A1) The Slater condition holds for X = {x ∈ ℜn | g(x) ≤ 0}, i.e., the interior of X is
nonempty.

(A2) f(x) is a strongly convex function on X satisfying

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) +
ρ

2
∥x− x̄∥2, ∀x, x̄ ∈ X,

where ρ > 0 is a constant.

Lemma 2.1. If x̄ is an optimal solution to (CPp,µ(x̄)), then x̄ is a KKT point of (Pp,µ).

Proof. Let x̄ be an optimal solution to (CPp,µ(x̄)). By assumption (A1), there exists a
multiplier vector θ ∈ ℜm

+ such that

0 ∈ ∇f(x̄) + µ[∂c1(x̄, p)− ξ̄] +∇g(x̄)θ, (2.1)

θT g(x̄) = 0, g(x̄) ≤ 0, (2.2)

where ∂c1(x̄, p) denotes the subgradient set of c1(x, p) at x̄, ξ̄ ∈ ∂c2(x̄, p) and ∇g(x̄) ∈ ℜn×m

is the Jacobian matrix of g(x) at x̄. Since ψ(x, p) is a DC function and thus is locally
Lipschitz continuous on X with ∂c1(x̄, p)− ξ̄ ⊆ ∂ψ(x̄, p), where ∂ψ(x̄, p) denotes the Clarke
generalized gradient set of ψ(x, p) at x̄ (see [12]), we have from (2.1) that

0 ∈ ∇f(x̄) + µ∂ψ(x̄, p) +∇g(x̄)θ.

This together with (2.2) implies that x̄ is a KKT point of problem (Pp,µ).

We are now ready to describe the successive convex approximation (SCA) method for
solving (Pp,µ).
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Algorithm 1 (SCA Method for (Pp,µ)).

Step 0. Choose parameter µ > 0 and p > 0. Choose a small stopping parameter ϵ > 0.
Select x0 satisfying x0 ∈ X and ξ0 ∈ ∂c2(x

0, p). Set k := 0.

Step 1. Solve the following convex subproblem:

(CPp,µ(x
k)) min f(x) + µ[c1(x, p)− c2(x

k, p)− (ξk)T (x− xk)]

s.t. x ∈ X,

where ξk ∈ ∂c2(x
k, p). Let xk+1 be an optimal solution to (CPp,µ(x

k)) and θk+1 ∈ ℜm
+

be the corresponding optimal multiplier vector.

Step 2. If ∥xk+1 − xk∥ ≤ ϵ, stop.

Step 3. Set k := k + 1 and go to Step 1.

Remark 2.2. The convex subproblem (CPp,µ(x
k)) at Step 1 can be solved by any suitable

convex optimization method in nonlinear programming. In particular, when f(x) is a convex
quadratic function and X is a polyhedron, we can solve the subproblem using efficient
algorithms such as Lemke’s method or interior-point method (see, e.g., [6, 27]). In our
implementation of the algorithm for finding sparse solutions of quadratic programming test
problems in Section 4, the convex quadratic subproblems at Step 1 are solved by the default
QP solver in CPLEX 12.3 which is an implementation of the barrier interior-point method
for convex quadratic programming.

The following lemma gives an estimation of the amount of decrease in the function value
of F (x) at each iteration.

Lemma 2.3. At the k-th iteration of Algorithm 1, the following inequality holds:

F (xk)− F (xk+1) ≥ ρ

2
∥xk − xk+1∥2, (2.3)

where F (x) = f(x) + µψ(x, p).

Proof. Since xk+1 is an optimal solution of subproblem (CPp,µ(x
k)), under assumption (A1),

there exist a multiplier vector θk+1 ∈ ℜm
+ and ζk+1 ∈ ∂c1(x

k+1, p) such that

∇f(xk+1) + µ(ζk+1 − ξk) +∇g(xk+1)θk+1 = 0, (2.4)

(θk+1)T g(xk+1) = 0, g(xk+1) ≤ 0, (2.5)

where ξk ∈ ∂c2(x
k, p).

On the other hand, by the strong convexity of f(x) and the convexity of c1(x), c2(x) and
g(x), we have

f(xk) ≥ f(xk+1) +∇f(xk+1)T (xk − xk+1) +
ρ

2
∥xk − xk+1∥2, (2.6)

c1(x
k, p) ≥ c1(x

k+1, p) + (ζk+1)T (xk − xk+1), (2.7)

c2(x
k+1, p) ≥ c2(x

k, p) + (ξk)T (xk+1 − xk), (2.8)

g(xk) ≥ g(xk+1) +∇g(xk+1)T (xk − xk+1). (2.9)
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Using (2.8), we have

F (xk)− F (xk+1) = f(xk) + µ[c1(x
k, p)− c2(x

k, p)]

−f(xk+1)− µ[c1(x
k+1, p)− c2(x

k+1, p)]

≥ f(xk) + µ[c1(x
k, p)− c2(x

k, p)]

−f(xk+1)− µ[c1(x
k+1, p)− c2(x

k, p)− (ξk)T (xk+1 − xk)]

≥ f(xk)− f(xk+1) + µ[c1(x
k, p)− c1(x

k+1, p) + (ξk)T (xk+1 − xk)]

+(θk+1)T [g(xk)− g(xk+1)], (2.10)

where the last inequality is due to (2.5) and (θk+1)T g(xk) ≤ 0. Combining (2.10) with (2.6),
(2.7) and (2.9), we obtain

F (xk)− F (xk+1) ≥ ∇f(xk+1)T (xk − xk+1) +
ρ

2
∥xk − xk+1∥2

+µ[(ζk+1)T (xk − xk+1) + (ξk)T (xk+1 − xk)]

+(θk+1)T∇g(xk+1)T (xk − xk+1)

= [∇f(xk+1) + µ(ζk+1 − ξk) +∇g(xk+1)θk+1]T (xk − xk+1)

+
ρ

2
∥xk − xk+1∥2

=
ρ

2
∥xk − xk+1∥2,

where the last equality is due to (2.4). This proves (2.3).

Let ϵ = 0. The convergence results of Algorithm 1 can be stated as follows.

Theorem 2.4. (i) If the algorithm stops at Step 2, then xk is a KKT point of (Pp,µ).

(ii) Assume that the multiplier sequence {θk} is bounded. If the algorithm generates an
infinite sequence {xk}, then any accumulation point of {xk} is a KKT point of (Pp,µ).

Proof. (i) If the algorithm stops at Step 2, then xk = xk+1 solves subproblem (CPp,µ(x
k)).

By Lemma 2.1, xk is a KKT point of (Pp,µ).

(ii) If the algorithm generates an infinite sequence {xk}, by (2.3) in Lemma 2.3, {F (xk)}
is a decreasing sequence. Also, since f(x) is strongly convex over X and ψ(x, p) is nonnega-
tive, we imply that F (x) = f(x) + µψ(x, p) is bounded from below over X. Hence {F (xk)}
converges and consequently F (xk)− F (xk+1) → 0. It then follows from (2.3) that

∥xk − xk+1∥ → 0. (2.11)

Now, let x∗ be an accumulation point of {xk}. Then, there exists a subsequence {xkj} such
that xkj → x∗ (j → ∞). By (2.11), we also have xkj+1 → x∗ (j → ∞). Since xkj+1 is an
optimal solution of the convex subproblem (CPp,µ(x

kj )), by assumption (A1), the following
KKT conditions hold:

0 ∈ ∇f(xkj+1) + µ[∂c1(x
kj+1, p)− ξkj ] +∇g(xkj+1)θkj+1, (2.12)

(θkj+1)T g(xkj+1) = 0, g(xkj+1) ≤ 0 i = 1, . . . ,m, (2.13)

where θkj+1 ∈ ℜm
+ and ξkj ∈ ∂c2(x

kj , p). By the assumption that {θk} is bounded and
passing into a subsequence if necessary, we can assume that θkj+1 → θ∗ ∈ ℜm

+ . Note that
the subgradient sets ∂c1(x, p) and ∂c2(x, p) are upper semicontinuous set mappings (see [2,
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Proposition 4.23]). Since xkj+1 → x∗, we have that lim supj→∞ ∂c1(x
kj+1, p) ⊆ ∂c1(x

∗, p)

and lim supj→∞ ∂c2(x
kj+1, p) ⊆ ∂c2(x

∗, p). Also, since xkj → x∗ and ξkj ∈ ∂c2(x
kj , p), by

passing into a subsequence if necessary, we can assume that ξkj → ξ∗ ∈ ∂c2(x
∗, p). Taking

limits in (2.12) and (2.13) for j → ∞, we obtain that

0 ∈ ∇f(x∗) + µ[∂c1(x
∗, p)− ξ∗] +∇g(x∗)θ∗,

(θ∗)T g(x∗) = 0, g(x∗) ≤ 0.

Thus, x∗ is a KKT point of the convex subproblem (CPp,µ(x
∗)) and hence x∗ is an optimal

solution of (CPp,µ(x
∗)). We therefore conclude from Lemma 2.1 that x∗ is a KKT point of

(Pp,µ).

Remark 2.5. When X ⊆ ℜn
+, two notable examples of ψ(x, p) satisfying (C1) and (C2) are

ℓp function ψ(x, p) = ∥x∥pp =
∑n

i=1 x
p
i (0 < p < 1) for x ≥ 0 and the exponential function

ψ(x, p) =
∑n

i=1(1 − e−
1
pxi) (p > 0) for x ≥ 0. In fact, we have limp→0+ ∥x∥pp = ∥x∥0 and

limp→0+
∑n

i=1(1 − e−
1
p |xi|) = ∥x∥0. Also, we note that xpi with 0 < p < 1 and 1 − e−

1
pxi

with p > 0 are concave functions for xi ≥ 0, which are special cases of DC functions. We
point out that the ℓp function and the exponential function have been used in the literature
for sparse solutions of linear systems (see [9, 10, 11, 25]).

3 A Piecewise Linear DC Approximation

In this section, we derive a new DC approximation to ∥x∥0 by applying ℓ1 exact penalty
function to a mixed-integer nonlinear programming reformulation of (Pµ).

Introducing yi ∈ {0, 1} to indicate xi being zero or nonzero, for i = 1, . . . , n, we can
rewrite (Pµ) as a mixed-integer nonlinear program:

min f(x) + µ
n∑

i=1

yi (3.1)

s.t. xi(1− yi) = 0, yi ∈ {0, 1}, i = 1, . . . , n,

x ∈ X.

In fact, from the first group of constraints of (3.1), we can see that xi ̸= 0 implies yi = 1.
Also, when xi = 0, we must have yi = 0 at the optimal solution of (3.1) as it gives a
smaller objective value. Therefore, problem (Pµ) is equivalent to problem (3.1). The ℓ1
exact penalty function of (3.1) with respect to constraints xi(1− yi) = 0 (i = 1, . . . , n) is

P (x, y) = f(x) + µ

(
n∑

i=1

yi +

n∑
i=1

1

pi
|xi(1− yi)|

)
,

where pi > 0 (i = 1, . . . , n) are penalty parameters. Thus, we obtain the following penalty
problem:

min P (x, y) (3.2)

s.t. yi ∈ {0, 1}, i = 1, . . . , n,

x ∈ X.
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Note that

min
y∈{0,1}n

P (x, y) = f(x) + µ
n∑

i=1

min
yi∈{0,1}

(yi +
1

pi
|xi(1− yi)|)

= f(x) + µ
n∑

i=1

min{ 1

pi
|xi|, 1}.

Let ψ(x, p) =
∑n

i=1 ϕ(xi, pi), where

ϕ(xi, pi) = min{ 1

pi
|xi|, 1} =

{ 1
pi
|xi|, |xi| ≤ pi,

1, otherwise.
(3.3)

Then the penalty problem (3.2) is equivalent to

min F (x) := f(x) + µψ(x, p) (3.4)

s.t. x ∈ X.

The following lemma summarizes the basic properties of ψ(x, p).

Proposition 3.1. (i) For any x ∈ X, limp→0+ ψ(x, p) = ∥x∥0.
(ii) ψ(x, p) is a nonnegative piecewise linear function of x and can be decomposed to a

DC function:

ψ(x, p) = c1(x, p)− c2(x, p), (3.5)

where c1(x, p) =
∑n

i=1
1
pi
|xi| and c2(x, p) =

∑n
i=1

1
pi

[max(0, xi − pi) + max(0,−xi − pi)]
are piecewise linear convex functions of x.

Proof. (i) By (3.3), it is clear that lim
pi→0+

ϕ(xi, pi) = δ(xi), where δ(xi) is the step function

defined by

δ(xi) =

{
0, xi = 0,
1 xi ̸= 0.

Thus,

lim
p→0+

ψ(x, p) =
n∑

i=1

lim
pi→0+

ϕ(xi, pi) =
n∑

i=1

δi(xi) = ∥x∥0.

(ii) By the definition of ϕ(xi, pi) in (3.3), we have

ϕ(xi, pi) =
1

pi
|xi| −

1

pi
[max(0, xi − pi) + max(0,−xi − pi)] .

The right-hand side of the above equation is a difference of two piecewise linear convex
functions. Thus, (3.5) holds and ψ(x, p) is a DC function of x.

Now, let’s consider the subproblem at the kth iteration of Algorithm 1:

(CPp,µ(x
k)) min f(x) + µ[c1(x, p)− c2(x

k, p)− (ξk)T (x− xk)] (3.6)

s.t. x ∈ X,
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where c1(x, p) and c2(x, p) are defined in (3.5) and ξk ∈ ∂c2(x
k, p). Since c1(x, p) =∑n

i=1
1
pi
|xi|, the nonsmoothness of c1(x, p) in (3.6) can be eliminated by introducing zi = |xi|

for i = 1, . . . , n. The resulting problem is a smooth convex problem:

min f(x) + µ[
n∑

i=1

1

pi
zi − c2(x

k, p)− (ξk)T (x− xk)] (3.7)

s.t. − zi ≤ xi ≤ zi, i = 1, . . . , n,

x ∈ X.

Proposition 3.2. Problem (3.6) is equivalent to problem (3.7).

Proof. Note that the first constraint in (3.7) is equivalent to zi ≥ |xi| (i = 1, . . . , n) and the
optimal solution of (3.7) must satisfy zi = |xi| (i = 1, . . . , n). Therefore, for any optimal
solution (x∗, z∗) of (3.7), x∗ is an optimal solution to (3.6). Conversely, for any optimal
solution x∗ of (3.6), (x∗, z∗) with z∗i = |x∗i | (i = 1, . . . , n) is an optimal solution of (3.7).

Remark 3.3. From Proposition 3.1 (ii), we see that ψ(x, p) =
∑n

i=1 ϕ(xi, pi) is a DC
function and can be viewed as an approximation of the ℓ0 function for small p > 0. This
DC approximation to ℓ0 function have been used in [32] to deal with cardinality constraint
directly. The subproblem (3.7) is a smooth convex optimization problem and can be solved
efficiently by convex optimization methods. In particular, when f(x) is a convex quadratic
function and gi(x)’s are linear functions, (3.7) is a convex quadratic programming problem.

4 Computational Results

In this section, we present computational results of the successive convex approximation
method (Algorithm 1) for the approximate regularization problem (Pp,µ). The method is
coded in Matlab (version R2011a) and run on a PC equipped with Intel Pentium G630 CPU
(2.70 GHz) and 8 GB of RAM. All the convex quadratic subproblems in Algorithm 1 are
solved by the QP solver in CPLEX 12.3 with Matlab interface (see [21]).

The test problems in our computational experiments are limited diversified mean-variance
portfolio selection problems (see [4, 5]). Let µ and Q be the mean and covariance matrix of
n risky assets, respectively. The limited diversified mean-variance portfolio selection model
can be formulated as

(MV) min f(x) := xTQx

s.t. ∥x∥0 ≤ K,

x ∈ X,

where ∥x∥0 ≤ K is the constraint for sparsity control and X represents the constraints of
minimum return level, budget constraint and lower and upper bounds for xi:

X = {x ∈ ℜn | µTx ≥ ρ,
n∑

i=1

xi = 1, 0 ≤ xi ≤ ui, i = 1, . . . , n}.

To find sparse solutions of problem (MV), we consider the regularization form of (MV):

(MVp,µ) min F (x) := xTQx+ µψ(x, p)

s.t. x ∈ X.
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Our test problems for (MVp,µ) consists of 60 instances where the parameters Q, µ, ρ
and ui were created in [15, 16]. There are 30 instances for each n = 200 and 300. The
matrix Q in the 30 instances of each n were generated with different diagonal dominance.
The parameters ρ and ui are uniformly drawn at random from intervals [0.002, 0.01]
and [0.375, 0.425], respectively. The data files of these instances are available at:
http://www.di.unipi.it/optimize/Data/MV.html.

In our computational experiments, we use three types of nonconvex functions ψ(x, p) as
approximations of ∥x∥0:

• Piecewise linear DC function:

ψ(x, p) =

n∑
i=1

1

pi
|xi| −

n∑
i=1

1

pi
[max(0, xi − pi) + max(0,−xi − pi)] ,

where p = (p1, . . . , pn)
T is a parameter vector.

• ℓp function: ψ(x, p) =
∑n

i=1 x
p
i , x ∈ ℜn

+, where p is a scalar parameter with 0 < p < 1;

• Exponential function: ψ(x, p) =
∑n

i=1(1 − e−
1
pxi), x ∈ ℜn

+, where p > 0 is a scalar
parameter.

In our implementation, the initial solution x0 in Step 0 of Algorithm 1 is obtained by
solving the following convex quadratic programming:

min xTQx

s.t. x ∈ X.

The stopping parameter ϵ in Step 2 is set as ϵ = 10−7. The parameter p is set as follows.
For the piecewise linear DC function, p ∈ ℜn is set as pi = 2

√
x0i + ϵ1, i = 1, . . . , n, where

ϵ1 = 10−6. For the ℓp function and the exponential function, we set p = 1
2 and p = 0.01,

respectively, as in [10, 25].
For n = 200 and 300, we solve problem (MVp,µ) with different parameter µ by Algorithm

1 using the three types of nonconvex approximations to ∥x∥0. The numerical results are
summarized in Tables 1 and 2. We explain the notations in Tables 1 and 2 as follows:

• “SCA-DC”, “SCA-ℓp” and “SCA-exp” stand for the three versions of Algorithm 1 with
ψ(x, p) being the piecewise linear DC function, the ℓp function and the exponential
function, respectively;

• “K” is the average value of cardinality (sparsity), which is the value of ∥x∥0, of the
sparse solutions generated by Algorithm 1 for the 30 instances;

• “obj” denotes the average objective function values f(x) of the sparse solutions gen-
erated by Algorithm 1 for the 30 instances;

• “itera” and “iters” denote the average number of iterations of Algorithm 1 and the
average number of inner iterations in solving the subproblem for the 30 instances,
respectively;

• “timea” and “times” denote the average CPU time of Algorithm 1 and the average
computing time in solving the subproblem at each iteration for the 30 instances, re-
spectively.
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Table 1: Average numerical results for the 30 instances with n = 200

We see from Tables 1 and 2 that all the three versions of Algorithm 1 enjoys fast con-
vergence with average number of iterations (subproblems solved during the algorithm) less
than 100 for almost all instances. As a result, the average computation time of Algorithm 1
is no more than 20 seconds for all the instances. Among the three versions of Algorithm 1,
SCA-DC uses the least CPU time and the smallest number of iterations. We also observe
from Tables 1 and 2 that the average number of inner iterations in solving the subproblem
is around 10 and the average computing time for each subproblem is less than half a second
for all instances.

Figure 1 further illustrates the performance of Algorithm 1 using the three different
functions for ψ(x, p). In particular, we plot in Figure 1 the average objective value of
f(x) and the average computing time versus cardinality K := ∥x∥0 of the sparse solutions
generated by Algorithm 1. It appears that the solutions generated by SCA-ℓp has the best
trade-off between the objective value and the cardinality (sparsity), while the performance
of SCA-DC is somehow between SCA-ℓp and SCA-exp. More precisely, we observe that for
test problems with n = 200, SCA-exp and SCA-ℓp have a similar objective value-cardinality
curve with SCA-ℓp slightly better than SCA-exp, while SCA-DC is less efficient in generating
sparse solutions with smaller cardinality (K ≤ 60). From the subfigures for n = 300, we also
observe that SCA-DC is more efficient than SCA-exp for generating sparse solutions with
smaller objective values in less computing time when the cardinality K is larger than 70.

5 Conclusions

We have presented a successive convex approximation (SCA) method for finding sparse solu-
tions of general convex programs. Instead of tackling the cardinality constrained formulation
directly, we focus on the ℓ0 regularization form of the problem which is in some sense equiv-
alent to the cardinality constrained problem. We have also derived a piecewise linear DC
approximation formulation to the regularization problem using an ℓ1 exact penalty function
approach. We have investigated the computational performance of the proposed method us-
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Table 2: Average numerical results for the 30 instances with n = 300

Figure 1: Average objective value and computing time (seconds) versus cardinality of sparse
solutions generated by Algorithm 1 for test problems with n = 200 and 300

ing three different nonconvex approximations to ∥x∥0. Our preliminary numerical seems to
suggest that the successive convex approximation method is promising in generating sparse



SUCCESSIVE CONVEX APPROXIMATION APPROACH 33

solutions of general convex programs.
It is worth pointing out that the convex subproblem (CPp,µ(x

k)) in Algorithm 1 can
be regarded as a “weighted” ℓ1 regularization problem when the DC function ψ(x, p) re-
duces to a concave function. Indeed, this is the case in our computational experiment for
test problem (MV), where the regularization term in (CPp,µ(x

k)) subproblems is a linear
function when using the piecewise linear DC function, the ℓp function and the exponential
function. Therefore, the successive convex approximation method (Algorithm 1) essentially
solves weighted ℓ1 regularization subproblems iteratively with the weight parameters up-
dated successively according to the slope of a nonconvex approximation function to ∥x∥0 at
the iteration points.
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