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Let (x∗, λ∗) be a saddle point of the Lagrangian function, then we have

Lλ∈Λ(x
∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ∗).

Finding a saddle point of the Lagrangian function is equivalent to getting a pair of (x∗, λ∗)
such that {

x∗ ∈ X , θ(x)−θ(x∗)+(x− x∗)T (−ATλ∗) ≥ 0, ∀x ∈ X ,

λ∗ ∈ Λ, (λ− λ∗)T (Ax∗ − b) ≥ 0, ∀λ ∈ Λ.
(1.4)

By denoting

u =

(
x
λ

)
, F (u) =

(
−ATλ
Ax− b

)
(1.5)

and
Ω = X × Λ, (1.6)

the compact form of (1.4) can be written as the following mixed variational inequality:

MVI(Ω, F, θ) u∗ ∈ Ω, θ(x)−θ(x∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω. (1.7)

Note that θ(x) is a convex function and the operator F in (1.5) is affine and monotone since

(u− v)T (F (u)− F (v)) = 0, ∀u, v ∈ ℜn+m.

We denote the solution set of the problem (1.7) (and thus the set of the saddle points of the
Lagrangian function) by Ω∗. For any u∗ = (x∗, λ∗) ∈ Ω∗, x∗ is an optimal solution of (1.1).
In this paper, we treat the linearly constrained convex optimization (1.1) in the frame of
MVI(Ω, F, θ).

The rest of this paper is organized as follows. In Section 2, we review the basic idea
of PPA and some related algorithms, and then show the motivation. Section 3 introduces
the predictor via Lagrangian-PPA. In Section 4, we construct the Lagrangian-PPA based
contraction methods and prove their convergence. Section 5 proves the convergence rate
of the proposed method (4.14) in an ergodic sense. Finally, in Section 6, we report the
numerical results for some practical applications.

2 Preliminaries of PPA and the Motivation

Proximal point algorithm (short as PPA), originally proposed by Martinet [15] and Rock-
afellar [16], is an attractive approach for MVI(Ω, F, θ) (1.7). As our proposed methods are
based on PPA, we briefly review the idea of PPA. To solve MVI(Ω, F, θ), the k-th iteration
of PPA begins with a given uk ∈ Ω and rk > 0, and obtains a uk+1 ∈ Ω, such that

θ(x)− θ(xk+1) + (u− uk+1)T
{
F (uk+1) + rk(u

k+1 − uk)
}
≥ 0, ∀u ∈ Ω. (2.1)

The generated sequence {uk} satisfies

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − γ(2− γ)∥uk − uk+1∥2, ∀u∗ ∈ Ω∗,

and is Fejér monotone with respect to the solution set Ω∗.
Solving the PPA subproblem (2.1) is almost as difficult as the MVI (1.7), therefore the

classical PPA only has abstract meaning and is not often used in practical computation.
To overcome the drawback of the classical PPA, a customized PPA was proposed in [12]
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and further analyzed in [10]. The k-th iteration of the customized PPA begins with a given
uk = (xk, λk), and generates a ũk via the following scheme:

ũk ∈ Ω, θ(x)− θ(x̃k) + (u− ũk)T {F (ũk) +G(ũk − uk)} ≥ 0, ∀u ∈ Ω, (2.2)

where

G =

(
rIn −AT

−A sIm

)
(2.3)

is a positive definite matrix. ũk is a solution of (1.7) if and only if uk = ũk. Using the
notations of F (see (1.5)) and G, the subproblem (2.2) is to find (x̃k, λ̃k) ∈ Ω, such that

θ(x)− θ(x̃k) +

(
x− x̃k

λ− λ̃k

)T {(
−AT λ̃k

Ax̃k − b

)
+

(
r(x̃k − xk)−AT (λ̃k − λk)

−A(x̃k − xk) + s(λ̃k − λk)

)}
≥ 0,

∀(x, λ) ∈ Ω.

The above inequality is decomposed as

x̃k ∈ X , θ(x)−θ(x̃k)+(x− x̃k)T {−AT (2λ̃k − λk) + r(x̃k − xk)} ≥ 0, ∀x ∈ X , (2.4a)

and
λ̃k ∈ Λ, (λ− λ̃k)T {(Axk − b) + s(λ̃k − λk)} ≥ 0, ∀λ ∈ Λ. (2.4b)

The solution of (2.4b) can be obtained directly by

λ̃k = PΛ[λ
k − 1

s
(Axk − b)],

where

PΛ(λ) =

{
λ, if Λ = ℜm,

max(0, λ), if Λ = ℜm
+ .

After getting λ̃k, we will obtain x̃k in (2.4a) via solving the following problem:

min
{
θ(x) +

r

2

∥∥x−
[
xk +

1

r
AT (2λ̃k − λk)

]∥∥2 ∣∣x ∈ X
}
. (2.5)

Since λ̃k in (2.5) is known, this subproblem has the form of (1.2). In other words, under the
assumption that the problem (1.2) has closed-form solution, the PPA subproblem (2.2) can
be solved efficiently.

Setting u = u∗ in (2.2) gives

(ũk − u∗)TG(uk − ũk) ≥ θ(x̃k)− θ(x∗) + (ũk − u∗)TF (ũk).

Using the structure of F yields (ũk − u∗)TF (ũk) = (ũk − u∗)TF (u∗), and thus from the last
inequality we get

(ũk − u∗)TG(uk − ũk) ≥ θ(x̃k)− θ(x∗) + (ũk − u∗)TF (u∗). (2.6)

Since u∗ ∈ Ω∗ and ũk ∈ Ω, it follows from (1.7) that the right hand side of (2.6) is nonnegative
and thus

(ũk − u∗)TG(uk − ũk) ≥ 0. (2.7)

Using γ ∈ (0, 2) and
uk+1 = uk − γ(uk − ũk),
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to obtain the new iterate uk+1, it follows from (2.7) that the generated sequence {uk}
satisfies

∥uk+1 − u∗∥2G ≤ ∥uk − u∗∥2G − γ(2− γ)∥uk − ũk∥2G, ∀u∗ ∈ Ω∗.

Note that (2.2) can be regarded as the PPA in the context of G-norm (defined by ∥u∥G =√
uTGu). In order to ensure the convergence, the matrix G in (2.2) should be positive

definite and thus the parameters r and s have to satisfy rs > ∥ATA∥. In practice, large
parameters in the matrix G may lead to slow convergence. In this paper, we relax the
restriction on the parameters r and s to

sr ≥ 1

2
∥ATA∥, (2.8)

and propose a simple algorithm for solving (1.1).

3 Predictor via Lagrangian-PPA

For given uk = (xk, λk), we obtain ũk = (x̃k, λ̃k) by minimizing (resp. maximizing) the
Lagrangian function with proximal terms. In details, we use the following primal-dual
order:

x̃k = Argmin{L(x, λk) +
r

2
∥x− xk∥2 |x ∈ X}, (3.1a)

and

λ̃k = Argmax{L(x̃k, λ)− s

2
∥λ− λk∥2 |λ ∈ Λ}. (3.1b)

If one directly takes ũk as the new iterate, it corresponds the classical Arrow-Hurwicz method
[1]. Zhu and Chan used this classical Arrow-Hurwicz method to solve the Rudin Osher and
Fatemi (ROF) image denoising problem [17]. See also [5] for a proof of convergence of
the Arrow-Hurwicz method with very large rs. In the proposed method of this paper, we
restrict rs to satisfy (2.8). We do not accept ũk as an new iterate and call it as a predictor
in the k-th iteration. Using the notation of the Lagrangian function, we conclude that the
procedure to get ũk = (x̃k, λ̃k) has the following equivalent form:

For given (xk, λk) and r, s > 0,

x̃k = Argmin
{
θ(x) +

r

2

∥∥x−
[
xk +

1

r
ATλk

]∥∥2 ∣∣x ∈ X
}
, (3.2a)

and

λ̃k = PΛ[λ
k − 1

s
(Ax̃k − b)]. (3.2b)

Lemma 3.1. For given uk = (xk, λk), let ũk be generated by (3.2). Then we have

ũk ∈ Ω,
(
θ(x)− θ(x̃k)

)
+ (u− ũk)TF (ũk) ≥ (u− ũk)TQ(uk − ũk), ∀u ∈ Ω, (3.3)

where

Q =

(
rIn AT

0 sIm

)
. (3.4)
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Proof. According to the first order optimal condition, x̃k generated by (3.2a) satisfies

x̃k ∈ X , θ(x)− θ(x̃k) + (x− x̃k)T {r(x̃k − xk)−ATλk} ≥ 0, ∀x ∈ X . (3.5)

The updating form (3.2b) can be rewritten as λ̃k = PΛ{λ̃k − [(λ̃k −λk)+ 1
s (Ax̃k − b)]}, thus

we have

λ̃k ∈ Λ, (λ− λ̃k)T {(Ax̃k − b) + s(λ̃k − λk)} ≥ 0, ∀λ ∈ Λ. (3.6)

Combining (3.5) and (3.6) together, we get

(x̃k, λ̃k) ∈ Ω, θ(x)− θ(x̃k) +

(
x− x̃k

λ− λ̃k

)T {(
−AT λ̃k

Ax̃k − b

)
+

(
r(x̃k − xk)

0

)
+

(
AT (λ̃k − λk)

s(λ̃k − λk)

)}
≥ 0, ∀(x, λ) ∈ Ω.

The compact form is

ũk ∈ Ω, θ(x)− θ(x̃k) + (u− ũk)T {F (ũk) +Q(ũk − uk)} ≥ 0, ∀u ∈ Ω,

where F and Q are defined in (1.5) and (3.4), respectively. The lemma is proved.

Remark 3.2. We can change the order of obtaining the predictor ũk and get some similar
results. Under the same condition (2.8) for given uk = (xk, λk), we obtain ũk = (x̃k, λ̃k) in
the following dual-primal order:

λ̃k = Argmax{L(xk, λ)− s

2
∥λ− λk∥2 |λ ∈ Λ}, (3.7a)

and

x̃k = Argmin{L(x, λ̃k) +
r

2
∥x− xk∥2 |x ∈ X}. (3.7b)

By using the similar analysis as in Lemma 3.1, the predictor ũk = (x̃k, λ̃k) generated by
(3.7) satisfies

(x̃k, λ̃k) ∈ Ω, θ(x)− θ(x̃k) +

(
x− x̃k

λ− λ̃k

)T {(
−AT λ̃k

Ax̃k − b

)
+

(
r(x̃k − xk)

−A(x̃k − xk)

)
+

(
0

s(λ̃k − λk)

)}
≥ 0, ∀(x, λ) ∈ Ω.

Its compact form is

ũk ∈ Ω, θ(x)− θ(x̃k) + (u− ũk)T {F (ũk) +Q(ũk − uk)} ≥ 0, ∀u ∈ Ω, (3.8)

where

Q =

(
rIn 0
−A sIm

)
. (3.9)

If Q is a symmetric positive definite matrix, (3.3) coincides with (2.2) and thus it is
a proximal point algorithm. Lemma 3.1 is the the base for constructing the contraction
method and the convergence rate proofs in Section 4 and Section 5, respectively.
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4 Lagrangian-PPA Based Contraction Method

In this section, we construct a contraction method based on the predictor via Lagrangian-
PPA. All the contraction methods [7, 8, 9, 11] generate a sequence {uk} which is Fejér
monotone with respect to the solution set Ω∗.

Lemma 4.1. For given uk = (xk, λk), let ũk be generated by (3.2). Then we have

(uk − u∗)TQ(uk − ũk) ≥ (uk − ũk)TQ(uk − ũk), ∀ u∗ ∈ Ω∗. (4.1)

Proof. Lemma 3.1 is the base for the proof. Substituting u = u∗ in (3.3) implies

(ũk − u∗)TQ(uk − ũk) ≥ θ(x̃k)− θ(x∗) + (ũk − u∗)TF (ũk).

By using the structure of F , we have (ũk − u∗)TF (ũk) = (ũk − u∗)TF (u∗), and thus

(ũk − u∗)TQ(uk − ũk) ≥ θ(x̃k)− θ(x∗) + (ũk − u∗)TF (u∗). (4.2)

Since ũk ∈ Ω and u∗ is a solution of MVI(Ω, F ), according to the definition of the mixed
variational inequality (see (1.7)), the right hand side of (4.2) is nonnegative. Consequently,
from (4.2) we get

(ũk − u∗)TQ(uk − ũk) ≥ 0,

and the assertion of this lemma follows directly.

Now, we observe the right hand side of (4.1). Because

(uk − ũk)TQ(uk − ũk)

= r∥xk − x̃k∥2 + s∥λk − λ̃k∥2 + (xk − x̃k)TAT (λk − λ̃k)

≥ r∥xk − x̃k∥2 − 1

2
∥xk − x̃k∥ · ∥AT (λk − λ̃k)∥

+s∥λk − λ̃k∥2 − 1

2
∥λk − λ̃k∥ · ∥A(xk − x̃k)∥

≥ r∥xk − x̃k∥2 − 1

4

{
r∥xk − x̃k∥2 + 1

r
∥AT (λk − λ̃k)∥2

}
+s∥λk − λ̃k∥2 − 1

4

{
s∥λk − λ̃k∥2 + 1

s
∥A(xk − x̃k)∥2

}
=

3

4

{
r∥xk − x̃k∥2 + s∥λk − λ̃k∥2

}
− 1

4

{1
s
∥A(xk − x̃k)∥2 + 1

r
∥AT (λk − λ̃k)∥2

}
,

using the condition (2.8), we obtain

(uk − ũk)TQ(uk − ũk) ≥ 1

4

{
r∥xk − x̃k∥2 + s∥λk − λ̃k∥2

}
. (4.3)

Thus, the right hand side of (4.1) is positive whenever ũk ̸= uk. Let us define the matrices
H and M by

H =

(
rIn 0
0 sIm

)
, M =

(
In

1
rA

T

0 Im

)
, (4.4)

respectively. Consequently, we have
Q = HM. (4.5)

For given uk and the predictor ũk generated by (3.2), we let uk+1(α) be an α-dependent
new iterate defined by

uk+1(α) = uk − αM(uk − ũk), (4.6)

and consider how to choose the step size α.
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Lemma 4.2. For given uk = (xk, λk), let ũk be generated by (3.2) and uk+1(α) be defined
by (4.6). Then for any α ≥ 0, we have

∥uk − u∗∥2H − ∥uk+1(α)− u∗∥2H ≥ q(α), ∀ u∗ ∈ Ω∗, (4.7)

where
q(α) = 2α(uk − ũk)TQ(uk − ũk)−α2∥M(uk − ũk)∥2H . (4.8)

Proof. For any but fixed u∗ ∈ Ω∗, we define

ϑ(α) = ∥uk − u∗∥2H − ∥uk+1(α)− u∗∥2H . (4.9)

By using (4.6), we get

ϑ(α) = ∥uk − u∗∥2H − ∥(uk − u∗)− αM(uk − ũk)∥2H
= 2α(uk − u∗)THM(uk − ũk)− α2∥M(uk − ũk)∥2H .

To the term (uk − u∗)THM(uk − ũk) in the right hand side of the last equation, using (4.1)
and Q = HM (see (4.5)) gives

ϑ(α) ≥ q(α),

immediately and the lemma is proved.

Note that q(α) in (4.8) is a quadratic function of α and it reaches its maximum at

α∗
k =

(uk − ũk)TQ(uk − ũk)

∥M(uk − ũk)∥2H
. (4.10)

Lemma 4.3. Under the condition (2.8), we have

α∗
k > 1/4, ∀ k ≥ 0. (4.11)

Proof. By using (4.10), we prove the equivalent assertion of (4.11):

4(uk − ũk)TQ(uk − ũk)− ∥M(uk − ũk)∥2H > 0. (4.12)

Note that

4(uk − ũk)TQ(uk − ũk)− ∥M(uk − ũk)∥2H = (uk − ũk)T (2Q+ 2QT −MTHM)(uk − ũk).

Using Q = HM (see (4.5)), we have

2(QT +Q)−MTHM = 2(QT +Q)−MTQ.

In the following we prove that the above matrix is positive definite. By a manipulation, we
get

2(QT +Q)−MTQ =

(
4rIn 2AT

2A 4sIm

)
−
(

In 0
1
rA Im

)(
rIn AT

0 sIm

)
=

(
4rIn 2AT

2A 4sIm

)
−
(

rIn AT

A sIm + 1
rAAT

)
=

(
2rIn AT

A sIm

)
+

(
rIn 0
0 2sIm − 1

rAAT

)
. (4.13)

According to the condition (2.8), rs > 1
2∥A

TA∥, both matrices in the right hand side of
(4.13) are positive definite. Thus, (4.12) is true and the assertion is proved.
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In the practical computation, we use

uk+1 = uk − αkM(uk − ũk), (4.14a)

to update the new iterate, where

αk = γα∗
k, γ ∈ [1, 2). (4.14b)

Theorem 4.4. For given uk = (xk, λk), let ũk be generated by (3.2) and uk+1 be updated
by (4.14). Then we have

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − γ(2− γ)

16
∥uk − ũk∥2H . (4.15)

Proof. Since we use (4.14) to update uk+1, it follows from (4.7) that

∥uk − u∗∥2H − ∥uk+1 − u∗∥2H ≥ q(γα∗
k).

By using (4.8) (4.10) and α∗ ≥ 1/4, we obtain

q(γα∗
k) ≥

1

4
γ(2− γ)(uk − ũk)TQ(uk − ũk). (4.16)

In addition, it follows from (4.3) that

(uk − ũk)TQ(uk − ũk) ≥ 1

4
∥uk − ũk∥2H .

Substituting it in (4.16), we obtain

q(γα∗
k) ≥

1

16
γ(2− γ)∥uk − ũk∥2H ,

and the theorem is proved.

The inequality (4.14) indicates that the proposed algorithm is a contraction method.
Because the predictor ũk = (x̃k, λ̃k) is generated in the primal-dual order, we call the
method (4.14) Primal-Dual Lagrangian-PPA based contraction method.

Theorem 4.5. The sequence {uk} generated by the Primal-Dual Lagrangian-PPA based
contraction method converges to some u∞ which belongs to Ω∗.

Proof. According to (4.15), it holds that {uk} is bounded and

lim
k→∞

∥uk − ũk∥ = 0. (4.17)

So, {ũk} is also bounded. Let u∞ be a cluster point of {ũk} and {ũkj} be a subsequence
which converges to u∞. It follows from (3.3) that

ũkj ∈ Ω, θ(x)− θ(x̃kj ) + (u− ũkj )TF (ũkj ) ≥ (u− ukj )TQ(ukj − ũkj ), ∀ u ∈ Ω.

Since the matrix Q is nonsingular, it follows from the continuity of θ(x) and F (u) that

u∞ ∈ Ω, θ(x)− θ(x∞) + (u− u∞)TF (u∞) ≥ 0, ∀ u ∈ Ω.

The above variational inequality indicates that u∞ is a solution of MVI(Ω, F ). By using
(4.17) and lim

j→∞
ukj = u∞, the subsequence {ukj} converges to u∞. Due to (4.15), we have

∥uk+1 − u∞∥H ≤ ∥uk − u∞∥H ,

and thus {uk} converges to u∞. The proof is complete.
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Remark 4.6. For the predictor obtained by the dual-primal order (3.7), we can use the
same update form (see (4.14))

uk+1 = uk − γα∗
kM(uk − ũk), (4.18)

to update the new iterate where α∗
k is given by (4.10). Note that in this case, the matrix Q

is defined in (3.9) and the matrix M = H−1Q (see (4.4)) is

M =

(
In 0

−1
sA Im

)
. (4.19)

We call the related method (4.18) Dual-Primal Lagrangian-PPA based contraction method.
Similar to Theorem 4.5, for this method, we can obtain the following convergence theorem.

Theorem 4.7. The sequence {uk} generated by the Dual-Primal Lagrangian-PPA based
contraction method converges to some u∞ which belongs to Ω∗.

5 Convergence Rate in an Ergodic Sense

In this section, we show the convergence rate of the proposed Lagrangian-PPA based con-
traction method for the mixed variational inequality MVI(Ω, F, θ) (1.7). The concept of the
complexity is the following theorem which is similar to Theorem 2.3.5 of [6] (see (2.3.2) in
pp. 159). Only for the sake of completeness and clarity, we include it here as the following
Theorem 5.1.

Theorem 5.1. The solution set of VI(Ω, F, θ), denoted by Ω∗, is convex and can be char-
acterized as

Ω∗ =
∩
u∈Ω

{
ũ ∈ Ω :

(
θ(x)− θ(x̃)

)
+ (u− ũ)TF (u) ≥ 0

}
. (5.1)

Proof. . Indeed, if ũ ∈ Ω∗, we have

θ(x)− θ(x̃) + (u− ũ)TF (ũ) ≥ 0, ∀u ∈ Ω.

By using the monotonicity of F on Ω, this implies

θ(x)− θ(x̃) + (u− ũ)TF (u) ≥ 0, ∀u ∈ Ω,

thus ũ belongs to the right hand set in (5.1). Conversely, suppose ũ belongs to the latter
set. Let u ∈ Ω be arbitrary. The vector

ū = αũ+ (1− α)u

belongs to Ω for all α ∈ (0, 1). Thus we have

θ(x̄)− θ(x̃) + (ū− ũ)TF (ū) ≥ 0. (5.2)

Because θ(x) is convex, we have

θ(x̄) ≤ αθ(x̃) + (1− α)θ(x).

Substituting it in (5.2), we get

(θ(x)− θ(x̃)) + (u− ũ)TF (αũ+ (1− α)u) ≥ 0,
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for all α ∈ (0, 1). Letting α → 1 yields

(θ(x)− θ(x̃)) + (u− ũ)TF (ũ) ≥ 0.

Thus ũ ∈ Ω∗. Now, we turn to prove the convexity of Ω∗. For each fixed but arbitrary
u ∈ Ω, the set

{ũ ∈ Ω : θ(x̃) + ũTF (u) ≤ θ(x) + uTF (u)},

is convex, therefore, its equivalent expression

{ũ ∈ Ω :
(
θ(x)− θ(x̃)

)
+ (u− ũ)TF (u) ≥ 0}

is convex. Since the intersection of any number of convex sets is convex, it follows that the
solution set of VI(Ω, F, θ) is convex.

According to Theorem 5.1, for given ϵ > 0, we say ū is an ϵ-approximate solution when

sup
DΩ(ū)

{
θ(x̄)− θ(x) + (ū− u)TF (u)

}
≤ ϵ, (5.3)

where§

DΩ(ū) =
{
u ∈ Ω | ∥u− ū∥ ≤ 1

}
.

In what follows, we show the convergence rate of the proposed Lagrangian-PPA contrac-
tion method for MVI(Ω, F, θ) (1.7) based on Lemma 3.1. Using the fact (see the notation
of F (u) in (1.5))

(u− ũk)TF (u) = (u− ũk)TF (ũk),

it follows from αk > 0 and (3.3) that

ũk ∈ Ω, αk

(
θ(x)− θ(x̃k) + (u− ũk)TF (u)

)
≥ αk(u− ũk)TQ(uk − ũk), ∀u ∈ Ω. (5.4)

Lemma 5.2. For given uk = (xk, λk), let ũk be generated by (3.2) and the new iterate uk+1

be updated by (4.14). Then we have

αk

(
θ(x)− θ(x̃k) + (u− ũk)TF (u)

)
+

1

2
∥u− uk∥2H ≥ 1

2
∥u− uk+1∥2H , ∀w ∈ Ω. (5.5)

Proof. Using Q = HM (see (4.5)) and the relation (4.14) to deal with the right hand side
of (5.4), we get

αk(u− ũk)TQ(uk − ũk) = αk(u− ũk)THM(uk − ũk) = (u− ũk)TH(uk − uk+1). (5.6)

Applying the identity

(a− b)TH(c− d) =
1

2
{∥a− d∥2H − ∥a− c∥2H}+ 1

2
{∥c− b∥2H − ∥d− b∥2H},

to the right hand side of (5.6) with

a = u, b = ũk, c = uk, and d = uk+1,

§The reader may ask why we take DΩ(ū) in (5.3) instead of Ω. Consider the unconstrained optimization
problem minx∈ℜn f(x), where f(x) : ℜn → ℜ is a convex differential function. The optimal condition
is ∥∇f(x)∥ = 0. We say x̃ is an approximate solution if ∥∇f(x̃)∥ ≤ ϵ. This condition is equivalent to
sup∥x−x̃∥≤1(x − x̃)T∇f(x̃) ≤ ϵ. It is well known we can not expect supx∈ℜn (x − x̃)T∇f(x̃) ≤ ϵ, unless

∥∇f(x̃)∥ = 0.
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we thus obtain

αk(u−ũk)TQ(vk−ṽk) =
1

2

(
∥u−uk+1∥2H−∥u−uk∥2H

)
+
1

2
(∥uk−ũk∥2H−∥uk+1−ũk∥2H). (5.7)

For the last term of (5.7), we have

∥uk − ũk∥2H − ∥uk+1 − ũk∥2H
= ∥uk − ũk∥2H − ∥(uk − ũk)− (uk − uk+1)∥2H

(4.14)
= ∥uk − ũk∥2H − ∥(uk − ũk)− αkM(uk − ũk)∥2H
= 2αk(u

k − ũk)HM(uk − ũk)− α2
k∥M(uk − ũk)∥2H

(4.8)
= q(αk). (5.8)

Since q(αk) > 0, it follows from (5.7) and (5.8) that

αk(u− ũk)TQ(vk − ṽk) =
1

2

(
∥u− uk+1∥2H − ∥u− uk∥2H

)
.

Substituting it in (5.4), the assertion of this lemma is proved.

Theorem 5.3. For any integers t > 0, we have ũt ∈ Ω,(
θ(x̃t)− θ(x)

)
+ (ũt − u)TF (u) ≤ 2

γ(t+ 1)
∥u− u0∥2H , ∀u ∈ Ω, (5.9)

where

ũt =
1

Υt

t∑
k=0

α∗
kũ

k, and Υt =
t∑

k=0

α∗
k. (5.10)

Proof. Summing the inequality (5.5) over k = 0, 1, . . . , t, and using αk = γα∗
k, we obtain

γ
(( t∑

k=0

α∗
k

)
θ(x)−

t∑
k=0

α∗
kθ(x̃

k)
)
+γ

(( t∑
k=0

α∗
k

)
u−

t∑
k=0

α∗
kũ

k
)T

F (u)+
1

2
∥u−u0∥2H ≥ 0, ∀u ∈ Ω.

By using (5.10), it follows that( 1

Υt

t∑
k=0

α∗
kθ(x̃

k)− θ(x)
)
+
( 1

Υt

t∑
k=0

α∗
kũ

k − u
)T

F (u) ≤ 1

2γΥt
∥u− u0∥2H , ∀u ∈ Ω. (5.11)

Since

x̃t =
1

Υt

t∑
k=0

α∗
kx̃

k is a convex conbination of x̃0, x̃1, . . . , x̃k,

and θ(x) is convex, we have

θ(x̃t) ≤
1

Υt

t∑
k=0

α∗
kθ(x̃

k).

Substituting it in (5.11) and using (5.10), we obtain(
θ(x̃t)− θ(x)

)
+ (ũt − u)TF (u) ≤ 1

2γΥt
∥u− u0∥2H , ∀u ∈ Ω. (5.12)

Since α∗
k > 1/4, ∀ k > 0, we have

Υt ≥
1

4
(t+ 1).

Substituting it in (5.12), the assertion of this theorem follows directly.
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For any substantial set D ⊂ Ω, the proposed contraction methods reach(
θ(x̃t)− θ(x)

)
+ (ũt − u)TF (u) ≤ ϵ, ∀w ∈ D, in at most t =

⌈D2

2γϵ

⌉
iterations, where ũt is defined in (5.10) and D = sup {∥u − u0∥ |u ∈ D}. The convergence
rate is in an ergodic sense.

Remark 5.4. Similar to Theorem 5.3, we can obtain the convergence rate of Dual-Primal
Lagrangian-PPA based contraction method.

6 Numerical Results

In this section, we report the results of experiments to demonstrate the efficiency of Lagrangian-
PPA based contraction method. To that end, we compare it with PPA [12] on different
applications. Our experiments focus on efficiency and speed, and evaluate the methods in
terms of their number of iterations and computational times. All the codes were written
by Matlab R2009b version and all the numerical experiments were performed on a Lenovo
desktop computer with Intel (R) Core(TM) i5 CPU with 3.2GHz and 3.5GB RAM.

6.1 Nearest Correlation Matrix Problem

The approximate correlation matrix problem is prevalent in many fields and has led to much
interest in computing the nearest correlation matrix to a given matrix C ∈ ℜn×n, that is,
solving the problem

min{1
2
∥X − C∥2F | diag(X) = e, X ∈ Sn

+}, (6.1)

where e ∈ ℜn is the vector whose entries are all 1s, Sn
+ denotes the cone of positive definite

symmetric matrices, diag(X) is the vector of diagonal elements of X, and ∥ · ∥F denotes the

matrix Fröbenis norm ∥X∥F = (trace(XTX))
1
2 .

Here, we apply the dual-primal Lagrangian-PPA(abbreviated as as L-PPA) contraction
method for solving (6.1), and its subproblem is specified into:

λ̃k = λk − 1

s
(diag(Xk)− e) (6.2a)

and
min{∥X − 1

1+r (rX
k + diag(λ̃k) + C)∥2F |X ∈ Sn

+}. (6.2b)

It is easy to see that (6.2b) admits a closed-form solution

X̃k = PSn
+
[ 1
1+r (rX

k + diag(λ̃k) + C)],

where PSn
+
denotes the projection operator onto Sn

+ which can be completed by an eigenvalue
decomposition. In our experiments, we apply mexsvd to conduct the eigenvalue decomposi-
tion. We constructed test data sets like those of [13] and the stopping criterion for solving
(6.1) was:

max{max
ij

|Xk
ij − X̃k

ij |, max
j

|λk
j − λ̃k

j |} ≤ 10−5.

In order to illustrate the efficiency of our L-PPA, we performed numerical experiments with
PPA [12], with n ranging from 500 to 3000. Note that A = I, we used initial stepsize
s = 0.5, r = 1.01/s for PPA, s = 0.5× 0.8, r = 0.65/s for L-PPA. The comparisons between
these algorithms for solving (6.1) are presented in Table 1.
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Table 1. Performance of PPA and L-PPA
Size PPA L-PPA
n It. CPU It. CPU

500 27 2.80 22 2.27
1000 31 21.24 25 17.01
1500 36 79.61 29 63.47
2000 40 199.31 33 159.86
3000 49 1091.91 37 873.74

Both PPA and L-PPA quickly converged in a few iterations. PPA took much more iter-
ations to achieve accurate solution and the run times of L-PPA were about 80% of PPA.
Both methods employed an easy implementable framework and required one function eval-
uations(involving SVD computation) per iteration which are costly. In facts, L-PPA was
faster than PPA which supports that optimal update stepsize can improve performance. Of
course, care should be taken: For instance, the cost of computing optimal stepsize αk here
is negligible, compared to the computation of SVD.

6.2 Matrix Completion Problem

In this subsection we report experiments which demonstrate the effective performance of
the L-PPA approach on matrix completion problem [2, 3]. Considering the recovery of a
low-rank matrix X from under-sampled data, the matrix completion problem can be cast
as the following convex programming:

min{∥X∥∗ | XΠ = MΠ}, (6.3)

where M ∈ ℜl×n is a given matrix, ∥X∥∗ denotes the nuclear norm which is defined as the
sum of all singular values of X, and (·)Π : ℜl×n → ℜl×n is the sampling operator defined
by Xij = Mij if (i, j) ∈ Π and 0 otherwise. Applying L-PPA to this problem, the predictor
takes the form

λ̃k
Π = λk

Π − 1

s
(Xk

Π −MΠ)

and

X̃k = Argmin
{1
r
∥X∥∗ +

1

2

∥∥X − (Xk +
1

r
λ̃k
Π)

∥∥2
F

}
. (6.4)

In fact, the closed-form solution of (6.4) is given by:

σ̃i = max(σi −
1

r
, 0),

and
X̃k = UkΛ̃k(V k)T ,

where Λ̃k = diag(σ̃1, σ̃2, · · · , σ̃n).
Its computational cost is dominated by singular value decomposition, hence, we combine

a Lanczos method PROPACK [14] to accomplish the singular value decomposition. We
conducted the test examples of (6.3) in the way suggested by [3] and compared our L-PPA
against PPA. Since ∥ATA∥ ≤ 1, the parameters were set as follows: s = 160, r = 1.01/s for
PPA, s = 160 × 0.8, r = 0.65/s for L-PPA. All initial points were set to 0. As [3], we use
the stopping criterion

relative error =
∥Xk

Π −MΠ∥F
∥MΠ∥F

≤ 10−3
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as the stopping criterion. In Table 2, we report the numerical performance of these methods
in various scenarios. In the following, sr denotes the sampling ratio as [18] and fr = rank ∗
(l + n− rank)/(sr ∗ l ∗ n) is the freedom of set, all test matrices were square.

Table 2. Comparison of PPA and L-PPA
Problems PPA L-PPA

n rank sr fr rel.err. It. CPU rel.err It. CPU

200 15 0.43 0.33 1.86e-004 48 3.48 1.75e-004 45 3.07
500 10 0.16 0.25 1.02e-004 57 6.62 9.77e-005 42 4.97
500 20 0.24 0.33 1.16e-004 41 5.62 1.83e-004 33 5.84
1000 10 0.12 0.17 1.00e-004 70 35.99 1.08e-004 52 29.97
1000 50 0.50 0.20 1.43e-004 40 41.85 1.23e-004 30 29.99
2000 10 0.39 0.25 1.28e-004 142 300.82 1.26e-004 111 246.85

From Table 2, we observe that L-PPA outperformed PPA in both iteration numbers and
CPU times. Our numerical results show that L-PPA was competitive and it provided more
robust performance than PPA.

The above experimental results confirm the efficiency of L-PPA, in particular showing
its nice convergent behavior. In addition, the comparison highlights the fact that L-PPA
is faster than PPA. The key reason is the less rigorous step-size choice and the optimal
‘αk’. Overall, L-PPA provide a simple and elegant framework for solving various practical
problems arising from linearly constrained convex optimization.
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