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have been suggested to reduce the sensitivity of the M-V optimal portfolio to uncertainties
on input parameters, such as multi-factor models [9], Bayesian estimation of means and
covariance [2, 12] and covariance shrinkage [14–17].

Statistical regularization methods have wide applications in constructing large scale M-
V portfolio selection models to find sparse optimal portfolios with better out-of-sample
performance and to reduce transaction cost (see [3,5–7,10,18,21,26]). Lorenzo et al (2012)
propose a concave optimization model for sparse optimal portfolio selection by introducing
an either L1 or L2 regularization [13] on portfolio weights. Empirical analyses in a M-V
framework support the use of the L1 regularization when short-selling is permitted. However,
the L1 regularization approach is ineffect in promoting sparsity in presence of budget and no-
short-selling constraints [18]. DeMiguel and Garlappi (2009) propose a unified framework for
optimal portfolio selection to improve performance through constraining portfolio norms [7].
Brodie et al (2008), Fan et al (2009) propose sparse and stable portfolio selection models by
imposing upper bounds on the 1-norm of portfolio weights [22]. Introducing regularization in
portfolio selection model relaxes the limit of without short-selling for large portfolio selection
(see [14]) and the regularization parameter is used to control the sparsity of the resulting
optimal portfolio [5,10]. Yen (2010) proposes a minimum variance portfolio selection model
by adding a constraint on portfolio weights and designs a coordinate-wise descent algorithm
to solve the resulting model [26]. Carrasco and Noumon (2010) propose four regularization
techniques through stabilizing the inverse of covariance matrices and present methods to
determine optimal regularization parameter values [6]. Still and Kondor (2010) propose a
regularized optimal portfolio selection model in terms of the statistical learning theory [21].
Brandt et al (2009) present a new portfolio selection approach that avoids the difficulties in
estimating asset returns moments by directly modeling the portfolio weight in each asset as
a function of the asset returns [3].

Based on authors recent researches on L1/2 regularization (see [23–25]), two non-convex
sparse portfolio selection models are proposed in this paper. The proposed models can
generate optimal portfolios with better sparsity than the portfolio selection models using L1

or L2 regularization do. The reasons for using L1/2 regularization on portfolio weights are
as follows. Firstly, a sparse portfolio means that less assets are selected in an investment
and transaction cost may be saved. Secondly, although the portfolio selection problem with
L1/2 regularization on portfolio weights is a non-convex, non-smooth and non-Lipschitz
continuous optimization problem, a penalty half thresholding algorithm is proposed for
the solution of resulting portfolio selection models, and the algorithm is fast and efficient,
especially for large scale portfolio selection problems. Finally, a strategy to adjust the value
of the regularization parameter is derived, when the sparsity of optimal portfolios is specified
using a parameter. The efficiency of the penalty half thresholding algorithm is improved
when this strategy is incorporated into the algorithm.

The main contributions of the paper are as follows.

• Two sparse optimal portfolio selection models with and without short-selling con-
straints are proposed by introducing L1/2 regularization on portfolio weights, and a fast
and efficient penalty half thresholding algorithm is presented to solve the resulting portfolio
models by extending the half thresholding algorithm in [23].

• A strategy to adjust the value of regularization parameter in the portfolio selection
model is derived when the sparsity of portfolios is specified.

The rest of the paper is organized as follows. Section 2 reviews the sparse M-V portfolio
selection model with L1 regularization on portfolio weights, and then presents the two sparse
portfolio selection models by introducing L1/2 regularization on portfolio weights. The
penalty half thresholding algorithm and the strategy to adjust the value of the regularization
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parameter are presented in Section 3. The steps of the algorithm is also described in Section
3. Section 4 reports empirical tests and comparisons on the proposed portfolio selection
models and some existing portfolio selection models. Conclusions are given in Section 5.

2 New Sparse Portfolio Selection Models

In this section we recall, at first, the sparse M-V model with L1 regularization presented
in [5]. Then the new sparse portfolio selection models that uses L1/2 regularization and the
analysis of the models are presented.

2.1 The Sparse Mean-Variance Model

It is assumed that there are N assets. Let rt = (r1t, r2t, . . . , rNt)
T ∈ RN be the vector of

asset returns at time t, t = 1, . . . , T, E(rt) = µ and C = E[(rt − µ)(rt − µ)T ] be the mean
return vector and the covariance matrix of asset returns, where rit is the return of asset i
at time t . Then the traditional M-V portfolio selection model can be expressed as follows

min wTCw
s.t. µTw = ρ

eTw = 1,
(2.1)

where w = (w1, w2, . . . , wN )T ∈ RN is the vector of asset weights, e ∈ RN is the vector of
all ones and ρ is the minimum expected return from the portfolio that is expected by an
investor.

Since C = E[(rt − µ)(rt − µ)T ], we have

wTCw = E[|ρ− wT rt|2] =
1

T
∥ρe−Rw∥22,

where R = (r1, . . . , rT )
T ∈ RT×N . Then the M-V model can be expressed, in the statistical

regression view, as follows
min 1

T ∥ρe−Rw∥22
s.t. µ̂Tw = ρ

eTw = 1,
(2.2)

where µ̂ = 1
T

T∑
t=1

rt and ∥ · ∥2 is the L2 vector norm.

Problem (2.2) is unstable when the matrix RTR is ill-conditioned, Brodie et al.(2008)
present a modification to problem (2.2) by introducing a penalty with L1 regularization on
the portfolio weights in the objective function to combat the unstability [5]

min 1
T ∥ρe−Rw∥22 + λ∥w∥1

s.t. µ̂Tw = ρ
eTw = 1,

(2.3)

where λ is a regularization parameter. Problem (2.3) is a sparse and stable M-V portfolio
selection model, since the introduction of the L1 penalty term in the objective function
stabilize the problem, promotes sparsity in some degree, and regulates the amount of shorting
in the resulting portfolio. However, sparsity of the resulting portfolio is not guaranteed from
problem (2.3), since the L1-norm of the asset weights will result in a constant value of one
when asset weights is nonnegative. Moreover, it is difficult to choice a proper value for the
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penalty parameter λ, when a penalty function method is employed to solve the problem
(2.3). An improvement to problem (2.3) is given in the next subsection by using L1/2

regularization proposed in [23–25] to replace the L1 regularization in (2.3).

2.2 New Sparse Portfolio Selection Models

L1/2 regularization is one of statistical regularization methods and introducing the L1/2

regularization in a problem variables aims to find a sparse solution of the problem. A simple
presentation of an optimization problem with L1/2 regularization is as follows

min
x∈RN

∥Ax− b∥2 + λ∥x∥1/21/2, (2.4)

where λ > 0 is the regularization parameter and controls the sparsity of optimal solutions,
∥x∥1/2 is the L1/2 quasi-norm of the vector x ∈ RN , and is defined by

∥x∥1/21/2 =
N∑
i=1

|xi|1/2.

Problem (2.4) is non-convex, non-smooth and non-Lipschitz continuous. However, an
iterative algorithm, called half thresholding algorithm, is proposed for the fast solution of
problem (2.4) in [23], and a novel strategy to set the value of the regularization parameter λ
is suggested. Numerical experiments show that the sparsity of the solutions generated from
problem (2.4) using the half thresholding algorithm is satisfactory (see [23] ).

Now, we are ready to describe the new sparse portfolio selection model. The model is
a variant of problem (2.3) and is formulated by using L1/2 regularization to replace the L1

regularization in (2.3)), that is,

min 1
T ∥Rw − ρe∥22 + λ∥w∥1/21/2

s.t. µ̂Tw = ρ
eTw = 1.

(2.5)

If sort-selling is not permitted, the model for portfolio selection has the form

min 1
T ∥Rw − ρe∥22 + λ∥w∥1/21/2

s.t. µ̂Tw = ρ
eTw = 1
w ≥ 0.

(2.6)

Problems (2.5) and (2.6) can be expressed in the matrix-vector form

min 1
T ∥Rw − ρe∥22 + λ∥w∥1/21/2

s.t. Aw = b
(2.7)

and
min 1

T ∥Rw − ρe∥22 + λ∥w∥1/21/2

s.t. Aw = b
w ≥ 0,

(2.8)

where b = (ρ, 1)T , AT = (µ̂, e).

Since ∥w∥1/21/2 is non-convex, non-smooth and non-Lipschitz continuous, Problems (2.7)

and (2.8) are hard to solve. Thus, the algorithm given in the next section aims to find local
solutions of problems (2.7) and (2.8).
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3 An Efficient Algorithm for the Solution of Problem (2.7)

The algorithm given in this section is an extension of the half thresholding algorithm for
solving L1/2 minimization problem proposed by Xu et al in [23].

3.1 The Penalty Function

The proposed method uses the penalty function minimization technique to find a local
solution of problem (2.7). The penalty function problem for problem (2.7) is given by

min
1

T
∥Rw − ρe∥22 + λ∥w∥1/21/2 + γ∥Aw − b∥22, (3.1)

where γ > 0 is a penalty parameter. Let w = (w1, x2, . . . , wN )T be a local minimizer of
problem (3.1) with wi ̸= 0 for all i = 1, 2 . . . , N . Then the first order necessary optimality
condition

1

T
RT (Rw − ρe) + γAT (Aw − b) +

λ

2
∂(∥w∥1/21/2) = 0 (3.2)

is satisfied at w (see Xu [23]). Condition (3.2) can be rearranged into the following form by
multiplying a parameter µ(0 < µ < 1) at the both sides of equation (3.2)

w + µ
1

T
RT (ρe−Rw) + µγAT (b−Aw) = w +

λµ

2
∂(∥w∥1/21/2). (3.3)

Let

Pλµ,1/2(·) = (I +
λµ

2
∂(∥ · ∥1/21/2))

−1,

where it is assumed that the inverse of ∂(∥ · ∥1/21/2) exists. Then it follows from (3.3) that

w = (I +
λµ

2
∂(∥ · ∥))−1(w + µ

1

T
RT (ρe−Rw) + µγAT (b−Aw))

= Pλµ,1/2(w + µ
1

T
RT (ρe−Rw) + µγAT (b−Aw))

= Pλµ,1/2B(w),

where B(w) = w + µ 1
T R

T (ρe−Rw) + µγAT (b−Aw).
Note that the above conclusion is obtained based on the assumption that w is a local

minimizer of problem (3.1) with wi ̸= 0 for all i = 1, 2, . . . , N. Now we consider a local
minimizer of problem (3.1) without the assumption. Let w∗ be such a local minimizer. The
following theorem directly comes from Theorem 2 in [23].

Theorem 3.1. Let w∗ be a local minimizer of problem (3.1), If either w∗
i = 0 or |B(w∗)i| >

3
4 (λ)

2/3 holds for any i = 1, 2, . . . , N, then

|B(w∗)i| ≤
3

4
(λµ)2/3 ⇔ w∗

i = 0.

Theorem 3.1 indicates that the elements of the local minimizer w∗ either takes the value
w∗

i = 0 or satisfies the condition |B(w∗)i| > 3
4 (λµ)

2/3. In fact, if the elements of a solution

are all positive and satisfy the condition |B(w)i| > 3
4 (λµ)

2/3, then the operator Pλ,1/2 exists
and is given by (see [23])
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Pλµ,1/2(B(w)) = (hλµ,1/2(B(w)1), hλµ,1/2(B(w)2), ..., hλµ,1/2(B(w)N )), (3.4)

where

hλµ,1/2(B(w)i) =

{
2
3B(w)i

(
1 + cos( 2π3 − 2

3φλµ(B(w)i))
)
, |B(w)i| ≥ 3

4 (λµ)
2
3

0, otherwise
(3.5)

with

φλµ(B(w)i) = arccos

(
λµ

8

(
|B(w)i|

3

)− 3
2

)
. (3.6)

Based on the above analysis, given an initial point w1, the penalty half thresholding
algorithm uses the following iteration

wk+1 = Pλµ,1/2(B(wk)), k = 1, 2, . . . (3.7)

to generate iterates, where wk is the k-th iterate.

3.2 Adjusting Values for the Regularization Parameter

In this subsection we suggest a way to automatically adjust the value for the regulariza-
tion parameter λ. Various methods (see Akaike (1973) [1], Schwarz(1978) [20]) have been
proposed for estimation of regularization parameters through available information of the
problem under consideration. As for a portfolio selection problem, the prior information on
assets is generally available and can be used to estimate the value of regularization param-
eter.

Suppose that the portfolio is required to be k-sparsity, that is, the portfolio should consist
of k assets. Let w∗ be a local minimizer of the penalty problem (3.1), and |[B(w∗)]k| be the
k−th largest value among the absolute elements of B(w∗). Then it follows from Theorem
3.1 that we have

|[B(w∗)]1| ≥ |[B(w∗)]2 ≥ · · · ≥ |[B(w∗)]N |,

i ∈ {1, 2, . . . , k} ⇔ |[B(w∗)]i| >
3

4
(λµ)

2
3 ,

and

i ∈ {k + 1, . . . , N} ⇔ |[B(w∗)]i| ≤
3

4
(λµ)

2
3 .

It follows that

{|[ 4
3
B(w∗)]k+1|}3/2 ≤ λµ < {|[ 4

3
B(w∗)]k|}3/2. (3.8)

From (3.8) we obtain

λ∗ ∈ [
1

µ
{|[ 4

3
B(w∗)]k+1|}3/2,

1

µ
{|[ 4

3
Bµ(w

∗)]k|}3/2], (3.9)

(3.9) gives a suggestion on how to adjust the value of the regularization parameter λ. Since
w∗ is unknown, when wn is the best available approximation to w∗, a proper choice for the
value of λn at n-th iteration is given by

λn =
1

µ
|4
3
[B(wn)]k+1|

3
2 . (3.10)

That is, (3.10) can be used to adjust the value of the regularization parameter λ during
iteration.
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3.3 The Penalty Half Thresholding Algorithm

Based on the analyses given in subsections 3.1 and 3.2, the proposed penalty half threshold-
ing algorithm for a local solution of problem (2.7) can be described as follows.

Algorithm 1. The penalty half thresholding algorithm

Step 1. Generate an initial point w1 and µ. Give values to parameters γ and δ and a
tolerance ϵ > 0, and Set n = 1.

Step 2. Compute

λn =
1

µ
[
4

3
|(B(wn)k+1)|3/2],

B(wn) = wn + µ
1

T
RT (ρe−Rwn) + µγAT (b−Awn);

Step 3. Compute wn+1.
If B(wn)i >

3
4 (λ

nµ)2/3, then wn+1
i = hλn,1/2(w

n
i ), else wn+1

i = 0, i = 1, 2, . . . , N.

Step 4. If ∥wn+1 − wn∥ < ϵ, then go to step 5; Else n = n+ 1, go to step 2.

Step 5. If ∥Awn+1 − b∥ < ϵ, then stop; Else γ = δγ, go to step 1.

Remark 1. It follows from [23] that when

µ = min{ 1

γ∥A∥
,

T

∥R∥
} (3.11)

the convergence of the algorithm to a local minimizer of problem (2.7) is ensured. Thus,
(3.11) is used to adjust the value of the penalty factor γ in the iteration of the algorithm 1.

Remark 2. The algorithm can also be effectively used to solve the problem (2.8) in which
short-shelling is not permitted.

4 Numerical Results

Experiments on real market data are performed to test the out-of-sample performance of the
sparse portfolio selection models (2.7) and (2.8)) and the efficiency of the modified penalty
half thresholding algorithm in solving the problems (2.7) and (2.8). The out-of-sample
performance of a portfolio is evaluated using Sharpe ratio. The performance of portfolios
generated from the sparse portfolio selection models (2.7) and (2.8) is compared with those
generated from the L1 regularization portfolio model in [5] (solved using Lars algorithm
proposed by Efron and Hastie (2004) [8]), the equally weighted strategy (denoted by 1/N ),
and the traditional Markowitz M-V portfolio selection model [19]. The tests and comparisons
are performed on the benchmark problems FF48 and FF100 in [11]. The problem FF48
forms portfolios from 48 industrial assets and the problem FF100 forms portfolios from 100
assets. These portfolios are conducted at the end of every June. The parameter values
µ = min{ 1

∥A∥ ,
T

∥R∥} and λn = 1
µ |

4
3 [B(wn)]k+1|

3
2 are used in applying algorithm 1 to perform

these tests, where T is the length of the time period.
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4.1 Tests on Problem FF48

In this subsection, we report the test results on the problem FF48. Tests use the real market
data of these 48 industrial assets during a period of 30 years from July 1976 to June 2006.
The time period is divided into 6 equal sub-periods. The tests are performed as follows.
The historical daily data of these assets during a sub-period is used as training data, that
is, used to estimate the means and covariance matrices of these assets returns, and then
these means and covariance matrices are used as the input parameters in different testing
portfolio selection models. Note that the average return of all assets during the period is
used as the input value of ρ in models. These models are then solved to generate testing
portfolios. The out-of-sample performance of these resulting portfolios are tested using the
first years data of the following sub-period. That is, the data during July 1976 and June
1981 is used to estimate input parameters in portfolio selection models, and the performance
of portfolios generated from portfolio selection models are tested on the data during July
1981 and June 1982. Repeating the process for the 6 sub-periods generates 6 test results for
each portfolio selection model. Note that the results in the last row of the following tables
are generated by using monthly data in the whole test period. In order to understand the
effect of sparsity on the performance of resulting portfolios, the value of k in the following
tables specifies the number of assets in a portfolio.

A. Test results on model (2.7)
Table 1 gives the test results on out-of-sample performance of portfolios generated from

models (2.7), the L1 regularization portfolio selection model, the equal weighting portfolio
strategy (1/48) and the M-V model with different sparsity, where the results of the tradi-
tional Makowitz model, the L1 model and the 1/N strategy are quoted form [5]. CPU is
the computing time of algorithms to generate the solutions that measured by seconds, Iter
is the number of algorithm iterations. It can be observed from the table that the out-of-
sample performance of the portfolio generated from model (2.7) is the best, the one of the
portfolio generated from the L1 regularization portfolio selection model is the second best,
while the out-of-sample performance of the portfolio generated from the M-V model is the
worst. It also has been found through further observation that the penalty half thresholding
algorithm is more suitable and free from the choice for the value of regularization parameter
in solving model (2.7)

Table 1: Comparison results with no short-selling model (FF48)

Period L1/2 model L1 model 1/N strategy Markowitz

k S(%) CPU Iter S(%) S(%) S(%)

76.07-81.06 24 50 0.015 32 49 44 39

81.07-86.06 10 61 0.016 32 57 31 44

86.07-91.06 21 29 0.018 33 20 7 22

91.07-96.06 9 64 0.017 32 62 44 46

96.07-01.06 10 41 0.016 31 40 17 19

01.07-06.06 15 36 0.017 32 30 30 16

76.07-06.06 12 46 0.12 54 41 27 30

Table 2 gives the test results for optimal portfolios generated from L1 and L1/2 mod-
els with sparsity k being in different intervals [8, 16], [17, 24], [25, 32], [33, 40], [41, 48], where
the results for L1 model are quoted from [5]. It can be observed from Table 2 that the
performance of the portfolios generated from model (2.7) is better than the performance of
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the portfolios generated from the L1 regularization portfolio selection model in all periods
except in the period 07/76-06/81.

Table 2: Comparison results of Sharpe ratio

(k = 8− 16) (k = 17− 24) (k = 25− 32) (k = 33− 40) (k = 41− 48)

Period L1/2 L1 L1/2 L1 L1/2 L1 L1/2 L1 L1/2 L1

76.07-81.06 44 50 50 46 47 49 45 50 43 46

81.07-86.06 61 58 61 52 56 52 56 46 50 39

86.07-91.06 25 18 29 15 26 9 27 7 24 8

91.07-96.06 64 57 67 47 61 36 60 30 48 21

96.07-01.06 41 38 28 22 28 6 26 4 23 0

01.07-06.06 37 30 39 29 33 28 30 27 28 27

76.07-06.06 43 40 47 34 47 28 47 26 43 22

B. Test results on model (2.8)
Table 3 gives the performance results of the portfolios generated from model (2.8) with

different sparsity. The second column in the table gives the number of assets in portfolios
that has the best performance in each period. It can be observed from the column that
portfolios with 5-8 assets generally have better performance for the problem FF48, and
taking sparsity into account in a portfolio selection model is significant.

Table 3: Comparison results of FF48 with short-selling model

optimal k = 8− 16 k = 17− 24 k = 25− 32 k = 33− 40 k = 41− 48

Period k S(%) S(%) S(%) S(%) S(%) S(%)

76.07-81.06 6 47 44 41 39 43 38

81.07-86.06 23 74 70 74 71 63 54

86.07-91.06 15 34 34 27 25 25 24

91.07-96.06 5 70 62 53 53 47 37

96.07-01.06 5 41 31 30 27 21 14

01.07-06.06 5 37 31 30 22 21 18

76.07-06.06 8 45 45 38 33 34 37

Figure 1 and Figure 2 below present the relationship between the performance of a
portfolio and the sparsity of the portfolio for both models (2.7) and (2.8). It can be observed
from the two figures that the performance of portfolios gradually reduces when the number
of assets in portfolios increases, especially for model (2.8). This fact further indicates that
the consideration of sparsity is necessary in constructing optimal portfolios.

4.2 Tests on Problem FF100

This subsection reports the test result of portfolios generated from different portfolio se-
lection models on problem FF100. Test results are given in Tables 4-6 and Figures 3 and
4.

Tables 4, 5 and figure 3 give the test results of optimal portfolios from portfolio selection
models with on-short-selling constraints. It can be observed from Tables 4 and 5 that
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Figure 1: FF48 (no short-selling)
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Figure 2: FF48 (short-selling)

Table 4: Comparison results of Sharpe ration with no short-selling model(FF100)

Period L1/2 model L1 model 1/N strategy

k S(%) CPU Iter S(%) S(%)

76.07-81.06 14 48 0.021 42 21 38

81.07-86.06 22 58 0.019 41 49 38

86.07-91.06 29 72 0.023 43 15 13

91.07-96.06 37 68 0.021 43 61 53

96.07-01.06 39 44 0.022 42 35 26

01.07-06.06 34 32 0.024 43 21 19

76.07-06.06 8 46 0.15 67 30 28

the portfolio generated from L1/2 model has higher out-of-sample performance than the
portfolios generated from the 1/N strategy and the L1 model have, and that the portfolios
generated from the L1/2 model display higher out-of-sample performance than portfolios
generated from the L1 model do in most cases of k = 11−20, k = 21−30, k = 31−40, k =
41 − 50, and k = 51 − 60. While figure 3 also clearly shows the feature that out-of-sample
performance of a portfolio decreases when the number of assets in the portfolio increases.

Table 5: Comparison results of Sharpe ratio(FF100 no short-selling)

(k = 11− 20) (k = 21− 30) (k = 31− 40) (k = 41− 50) (k = 51− 60)

Period L1/2 L1 L1/2 L1 L1/2 L1 L1/2 L1 L1/2 L1

76.07-81.06 48 22 34 24 37 22 36 20 33 10

81.07-86.06 56 64 58 81 56 77 54 72 55 67

86.07-91.06 62 14 72 16 68 18 65 19 67 17

91.07-96.06 67 70 66 86 68 73 68 70 66 67

96.07-01.06 45 35 42 44 44 61 42 62 43 54

01.07-06.06 33 22 29 29 30 26 27 23 29 22

76.07-06.06 43 33 40 39 36 40 36 39 32 34

Table 6 and figure 4 give the test results of optimal portfolios generated from the L1/2
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Figure 3: FF100 (no short-selling)
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Figure 4: FF100 (short-selling)

model with the short-selling constraint on problem FF100 for different values of k. It can be
observed from the table that the number of assets in a portfolio with higher out-of-sample
performance is from 17 to 37 in all the periods. This feature can also be observed from
figure 4.

Table 6: Comparison results of FF100 with short-selling model

optimal k = 11− 20 k = 21− 30 k = 31− 40 k = 41− 50 k = 51− 60

Period k S(%) S(%) S(%) S(%) S(%) S(%)

76.07-81.06 31 59 52 46 59 50 42

81.07-86.06 19 86 86 72 74 55 50

86.07-91.06 27 51 35 51 44 44 43

91.07-96.06 34 80 72 66 80 71 64

96.07-01.06 37 83 68 72 83 63 69

01.07-06.06 17 48 48 44 47 42 37

76.07-06.06 25 51 41 51 45 34 51

Therefore, the following results can be obtained from the test results of these models on
problems FF48 and FF100.

• The proposed sparse portfolio selection models outperform the L1 model, the Markowitz
model and the 1/N strategy significantly and over most of the evaluation periods in
both with short-selling and without short-selling cases.

• Test results support the conclusion that the modified penalty half thresholding algo-
rithm is fast, effective and powerful for the solution of the proposed sparse portfolio
selection models. The algorithm is suitable, and free from the choice of regularization
parameters when the sparsity of a required portfolio is specified.

5 Conclusions

Two new portfolio selection models are proposed to take the sparsity of the resulting op-
timal portfolios into account. These models are variants of the traditional M-V portfolio
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selection model by introducing a non-convex and non-smooth L1/2 regularization on the
weights of portfolios. Since the proposed portfolio selection models are NP-hard, a penalty
half thresholding algorithm is then presented for the local solutions of the proposed port-
folio selection models. A strategy to adjust the value of the regularization parameter in
the algorithm is given through analyzing the property of optimal sparse portfolios. When
the strategy is incorporated into the algorithm, the algorithm adaptively adjusts the value
of the regularization parameter and the efficiency of the algorithm is improved. Empirical
tests on benchmark test problems FF48 and FF100 with real market data are performed
to test the out-of-sample performance of the portfolios generated from the solution of pro-
posed portfolio selection models. Comparisons with the L1 regularization portfolio selection
model, the traditional M-V portfolio selection model and the equal weighting strategy show
that the proposed portfolio selection models generate portfolios with better out-of-sample
performance and that it is necessary to take sparsity of resulting optimal portfolios into
account in constructing portfolio selection models for large scale portfolio optimization.
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