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algorithms. Facchinei, Fisher and Kanzow [7] present a technique based on identification
function which uses estimates of the Lagrange multipliers along with the current x, where
neither the strict complementary slackness nor the uniqueness of the multipliers is required.
The book [3, Chapter 12] describes a trust region algorithm for convex constrained problems,
where active sets are identified when iterates enter some neighborhood of the optimal solu-
tion x∗ for nondegenerate cases. Based on the work of [7], Oberlin and Wright [14] propose
some identification schemes which do not require good estimates of Lagrange multipliers.
Then Lewis and Wright [12] generalize the method to composite nonsmooth minimization
which includes the classical nonlinear programming as a special case, and provide a simple
conceptual framework for general active-set techniques.

The identification of active constraints has also played an important role in interior
point methods for linear programming. Ye and Mehrotra [18, 13] propose strategies for
identifying active set near the primal-dual interior optimal solution, and prove that interior
point methods also possess the finite termination property just as the simplex methods for
linear programming. El-Bakry, Tapia and Zhang [6] discuss various indicators for identifying
active constraints in interior algorithms for linear programming.

In this paper we focus on the construction of identification functions. The identification
function technique for identifying active constraints in nonlinear programming was first
proposed by [7], and two identification functions were discussed there. Based on a class of
NCP functions, we construct several new identification functions. The correctness of the
construction method is proved in detail. Some numerical results are also presented to show
the efficiency of these new identification functions.

We conclude this section by introducing notations and some background material used
in this paper. Following the usual terminology in constrained programming, the Lagrangian
for (1.1) is:

L(x, λ) = f(x)−
m∑
i=1

λici(x), (1.2)

where λ = (λ1, λ2, . . . , λm)T ∈ Rm are Lagrangian multipliers. Under some constraint
qualification, the first order necessary conditions for x∗ to be a solution of (1.1) are that
there exist multipliers λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m)T such that the following KKT (Karush-Kuhn-

Tucker) system is satisfied:
∇xL(x

∗, λ∗) = ∇f(x∗)−
m∑
i=1

λ∗i∇ci(x∗) = 0

λ∗i ≥ 0, ci(x
∗) ≥ 0, i = 1, . . . ,m

λ∗i ci(x
∗) = 0, i = 1, . . . ,m

(1.3)

The pair (x∗, λ∗) is called a KKT point of problem (1.1), and x∗ ∈ Rn is called a stationary
point of problem (1.1).

Denote

Bε = {x ∈ Rn | ∥x∥ < ε}, Bε(x
∗) = {x ∈ Rn | ∥x− x∗∥ < ε},

where ∥ · ∥ is the Euclidean norm. In the sequel x∗ will always denote a fixed, isolated
stationary point, i.e., there exists some ε > 0 such that x∗ is the only stationary point in
its neighborhood Bε(x

∗). The “dual” solution set Λ (which means the Lagrange multipliers
set) corresponding to x∗ and the primal-dual solution set K are defined as follows:

Λ = {λ|(x∗, λ) is a KKT point of (1.1)} , K = {(x∗, λ)|λ ∈ Λ} . (1.4)
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We say that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x∗ if there
exists a vector d ∈ Rn such that

dT∇ci(x∗) > 0, ∀i ∈ I(x∗). (1.5)

It is well known that Λ is a compact convex set if and only if MFCQ is satisfied at x∗ (see
[9]).

Denote

I(x∗) = {i|ci(x∗) = 0, i ∈ I}
I+(x∗) = {i ∈ I(x∗) | there exists some λ∗i ∈ Λ such that λ∗i > 0}

I0(x∗) = I(x∗)\I+(x∗) = {i ∈ I(x∗) | λ∗i = 0,∀λ∗i ∈ Λ}
G(x∗) = {d | dT∇ci(x∗) = 0, ∀i ∈ I+(x∗); dT∇ci(x∗) ≥ 0, ∀i ∈ I0(x∗)},

where I(x∗) is the index set of active inequality constraints, I+(x∗) is said to be the index
set of strongly active inequality constraints and I0(x∗) is called as the index set of weakly
active inequality constraints. We say that second-order sufficient condition (SOSC) holds at
x∗ if f(x) and ci(x) (i = 1, . . . ,m) are all twice continuously differentiable and there exists
a positive value γ > 0 such that

vT∇xxL(x
∗, λ∗)v ≥ γ∥v∥2 for all v ∈ G(x∗) and for all λ∗ ∈ Λ. (1.6)

2 Construction of Identification Functions

In this section we consider how to construct identification functions for identifying active
set by a primal-dual point (x, λ) near the KKT point set K which is defined in formula
(1.4). The identification function technique is proposed by [7], where a nonnegative valued
function ρ : Rn × Rm → R+ is defined, and the predicted active constraints index set is
defined as follows:

A(x, λ) = {i ∈ I|ci(x) ≤ ρ(x, λ)} . (2.1)

Definition 2.1. Let ρ(x, λ) : Rn × Rm → R+ be a nonnegative valued function. If there
exists a positive constant ε > 0 such that

A(x, λ) = I(x∗) for all (x, λ) ∈ K +Bε, (2.2)

we call the function ρ(x, λ) as an identification function for K.

The above definition is different from the one given in [7]. However, they are in essence
the same for identifying active set, as the following lemma indicates.

Lemma 2.2. Let ρ(x, λ) : Rn ×Rm → R+ be a nonnegative valued function, and dist(x, S)
be the usual distance function between the point x and the set S, i.e.

dist(x, S) = inf
y∈S

∥x− y∥. (2.3)

If the function ρ(x, λ) satisfies the following conditions:

(a) If dist[(x, λ),K] = 0, then ρ(x, λ) = 0.

(b) The function ρ(x, λ) → 0 as dist[(x, λ),K] → 0, i.e. for any ε > 0, there exists a real
δ > 0 such that for all (x, λ) with 0 < dist[(x, λ),K] < δ, we have ρ(x, λ) < ε.
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(c) For all (x, λ) /∈ K, we have ρ(x,λ)
dist[(x,λ),K] → +∞ as dist[(x, λ),K] → 0.

Then it is an identification function.

The proof procedure of the above Lemma is the same as the one presented in [7, Theorem
2.2], and we omit it here.

Denote

ψ1(a, b) = ψmin(a, b) = min{a, b}

Φ1(x, λ) =

(
∇xL(x, λ)
ψ1(c(x), λ)

)
(2.4)

where ψ1(c(x), λ) is taken componentwise, i.e. ψ1(c(x), λ) = (ψ1(c1(x), λ1),
ψ1(c2(x), λ2), . . . , ψ1(cm(x), λm))T . The following result has been established in earlier
works, see, e.g. [7, Theorem 3.6] and [17, Theorem A.1].

Theorem 2.3. Suppose that x∗ is an isolated stationary point of problem (1.1), and the
MFCQ (1.5) and the SOSC (1.6) are satisfied at x∗. Then there are constants ε > 0, κ1 > 0
and κ2 > 0 such that

κ1dist[(x, λ),K] ≤ ∥Φ1(x, λ)∥ ≤ κ2dist[(x, λ),K], ∀(x, λ) ∈ K +Bε

Define

ρ1(x, λ) = ∥Φ1(x, λ)∥σ, σ ∈ (0, 1). (2.5)

Based on Lemma 2.2 and Theorem 2.3, we have the following result which has been given
in [7, Theorem 3.7] and [14, Theorem 2.2].

Corollary 2.4. Let x∗ be an isolated stationary point of problem (1.1). The MFCQ (1.5)
and the SOSC (1.6) are satisfied at x∗. Then the function ρ1(x, λ) defined in (2.5) is an
identification function for K.

In the definition of the identification function ρ1(x, λ), the NCP-function ψ1(a, b) =
min{a, b} is used. A function ψ(a, b) : R2 → R is called a NCP-function (see, e.g. [2, 15, 11])
if and only if

ψ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

In the following, we will consider using other NCP-functions to construct identification
functions ( see, e.g. [2, 15, 11]), and compare their numerical behaviors. The following
NCP-functions are considered in this paper:

ψ2(a, b) = ψFB(a, b) =
√
a2 + b2 − (a+ b),

ψ3(a, b) = ψCCK(a, b) = ψFB(a, b)− αa+b+, α > 0,

ψ4(a, b) =
√
[ψ2(a, b)]2 + α(a+b+)2, α > 0,

ψ5(a, b) = ψY F (a, b) =
√
[ψ2(a, b)]2 + α[(ab)+]4, α > 0,

ψ6(a, b) =
√
[ψ2(a, b)]2 + α[(ab)+]2, α > 0.

(2.6)

where for ∀v ∈ R, v+ = max{v, 0}. The following result has been established in [15, Lemma
1].

Lemma 2.5. All ψj , j ∈ {2, 3, 4, 5, 6} are strongly semismooth functions and all (ψj)
2, j ∈

{2, 3, 4, 5, 6} are continuously differentiable.
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For j = 2, 3, . . . , 6, define

Φj(x, λ) =

(
∇xL(x, λ)
ψj(c(x), λ)

)
, (2.7)

ρj(x, λ) = ∥Φj(x, λ)∥σ, σ ∈ (0, 1), (2.8)

where the functions ψj(c(x), λ) (j = 2, 3, . . . , 6) are all taken componentwise, i.e. ψj(c(x), λ) =
(ψj(c1(x), λ1), ψj(c2(x), λ2), . . . , ψj(cm(x), λm))T , where ψj(·, ·) (j = 2, . . . , 6) are defined in
formula (2.6). Below we will prove that the functions ρj(x, λ) (j = 2, 3, . . . , 6) are all iden-
tification functions.

Lemma 2.6. Let functions ψj(a, b) (j = 2, 3, . . . , 6) be defined in formula (2.6). Define
DM = {(a, b) ∈ R2 | |a| ≤ M, |b| ≤ M and |ab| ≤ 1}. Then for all (a, b) ∈ DM , there exist
positive constants κ1, κ2 with 1 ≥ κ1 > 0 and κ2 > 1 such that for all j ∈ {2, 3, . . . , 6}, we
have

κ1|ψ1(a, b)| ≤ |ψj(a, b)| ≤ κ2|ψ1(a, b)|. (2.9)

Proof. First consider the function ψ2 =
√
a2 + b2− (a+ b). There are two cases to consider,

i.e. ab ≤ 0 and ab > 0. In case of ab ≤ 0, we may assume that a ≥ 0, b ≤ 0 without loss of
generality. Then we get

|ψ2| = |
√
a2 + b2 − (a+ b)| = (

√
a2 + b2 − a)− b = (

√
a2 + b2 − a) + |b|. (2.10)

Since 0 ≤
√
a2 + b2 − a ≤ |b| for a ≥ 0, by (2.10) we get

|ψ1| = |b| ≤ |ψ2| = (
√
a2 + b2 − a) + |b| ≤ 2|b| = 2|ψ1|. (2.11)

In case of ab > 0, we have the following two cases to consider.

1. If a < 0, b < 0, we have |ψ2| =
√
a2 + b2−a−b =

√
a2 + b2+|a|+|b| and max{|a|, |b|} =

|min{a, b}| = |ψ1|. So we get

|ψ2| =
√
a2 + b2 + |a|+ |b| ≤ (2 +

√
2)max{|a|, |b|}| = (2 +

√
2)|ψ1|, (2.12)

and
|ψ2| = (

√
a2 + b2) + (|a|+ |b|) ≥ 2max{|a|, |b|}| = 2|ψ1|. (2.13)

2. If a > 0, b > 0, we may assume a ≥ b without loss of generality. Then we have

|ψ2| = (a+ b)−
√
a2 + b2 =

2ab√
a2 + b2 + a+ b

≥ 2ab

(2 +
√
2)a

=
2

2 +
√
2
|ψ1|, (2.14)

and
|ψ2| = b+ (a−

√
a2 + b2) ≤ b = |ψ1|, (2.15)

Hence by (2.11)–(2.15), for all cases we have

2

2 +
√
2
|ψ1| ≤ |ψ2| ≤ (2 +

√
2)|ψ1|. (2.16)

Next we consider the function ψ3(a, b) = ψ2(a, b)− αa+b+(α > 0). If a ≤ 0 or b ≤ 0, we
have |ψ3| = |ψ2| and the result follows from (2.16). Otherwise if a > 0, b > 0, we have

|ψ3| = |
√
a2 + b2 − (a+ b)− αab| = αab+ a+ b−

√
a2 + b2 ≥ |ψ2(a, b)|, (2.17)
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Since |a| ≤M, |b| ≤M , we have
√
a2 + b2 + a+ b ≤ (2 +

√
2)M . So we get

|ψ2| = |(a+ b)−
√
a2 + b2| = | 2ab√

a2 + b2 + a+ b
| ≥ 2

(2 +
√
2)M

|ab|. (2.18)

By (2.18) we obtain

|ψ3| ≤ α|ab|+ |ψ2| ≤

[
1 +

(2 +
√
2)Mα

2

]
|ψ2|. (2.19)

By (2.17)–(2.19) and (2.16) we have (2.9) for j = 3.
Finally we consider the functions ψ4, ψ5 and ψ6. According to their definitions in (2.6),

we have |ψj | ≥ |ψ2| for j = 4, 5, 6. Since |ab| ≤ 1, we have [(ab)+]
4 ≤ [(ab)+]

2 ≤ |ab|2 and
(a+b+)

2 ≤ |ab|2. Then by (2.18) it is easy to see that there exists a constant κ3 > 1 such
that |ψj | ≤ κ3|ψ2| for j = 4, 5, 6. Therefore by (2.16) we get (2.9) for j = 4, 5, 6.

Based on Theorem 2.3 and Lemma 2.6, we can get the following result.

Theorem 2.7. Let x∗ be an isolated stationary point of problem (1.1), and Λ,K be defined
in (1.4). If the MFCQ (1.5) and the SOSC (1.6) are satisfied at x∗, then the functions
ρj(x, λ), j = 2, 3 . . . , 6 defined in (2.8) are all identification functions for K.

Proof. By the properties of NCP-functions (see, e.g. [15] and references therein), we know
that Φj(x, λ) = 0 ⇔ (x, λ) ∈ K. Since the MFCQ (1.5) is satisfied, we know that the set Λ
is a compact convex set by the Theorem in [9], and so is the set K by the isolation of x∗.
Hence there exist positive constants ε1 > 0 and M > 0 such that for all (x, λ) ∈ K + Bε1 ,
we have ci(x) ≤ M,λi ≤ M and λici(x) ≤ 1 (i = 1, . . . ,m). Then by Lemma 2.6 there
exists positive constants κ1, κ2 with 0 < κ1 ≤ 1, κ2 > 1 such that for all i = 1, . . . ,m and
all j = 2, 3, . . . , 6, we have

κ1|ψ1(ci(x), λi)| ≤ |ψj(ci(x), λi)| ≤ κ2|ψ1(ci(x), λi)|. (2.20)

By (2.7) for j = 2, 3, . . . , 6 we have

∥Φj(x, λ)∥2 = ∥∇xL(x, λ)∥2 +
m∑
i=1

|ψj(ci(x), λi)|2. (2.21)

Note that 0 < κ1 ≤ 1 and κ2 > 1, by (2.20) and (2.21) for all (x, λ) ∈ K +Bε1 we have

κ1∥Φ1(x, λ)∥ ≤ ∥Φj(x, λ)∥ ≤ κ2∥Φ1(x, λ)∥, j = 2, 3, . . . , 6. (2.22)

Then by Theorem 2.3 and the above formula, there exist constants ε2, κ3, κ4 with ε1 ≥ ε2 >
0, 1 > κ3 > 0 and κ4 > 1 such that for all (x, λ) ∈ K +Bε2 and all j = 2, 3, . . . , 6, we have

κ3dist[(x, λ),K] ≤ ∥Φj(x, λ)∥ ≤ κ4dist[(x, λ),K] (2.23)

Then by Lemma 2.2 we get the result.

Since ψ2
1(a, b) is not continuously differentiable everywhere, nor is the identification func-

tion ρ1(x, λ). According to the Lemma 2.5 and other results presented in [15], we know that
identification functions ρj(x, λ), j = 2, 3 . . . , 6 defined in (2.8) all are continuous differen-
tiable. Hence identification functions ρj(x, λ), j = 2, 3 . . . , 6 possess better smooth property.
In the following section we will consider the numerical behaviors of the six identification
functions discussed above.
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3 Some Numerical Results

The aim of this section is to illustrate and compare the effectiveness of the above six iden-
tification functions by numerical tests. Here we use the three test problems presented in
[7, Section 4], where the (approximately) optimal solution x∗ and the corresponding sets
Λ,K are all known. For each problem, random points (x, λ) at different distances from the
solution set K were generated in the following ways. Let r be the parameter controlling the
distance, sj (j = 1, . . . , n) and wi (i = 1, . . . ,m) be the n+m random variables drawn from
the uniform distribution on (−1, 1), the perturbed point (x, λ) is defined as follows:

xj = x∗j + (
sj
|sj |

+ 0.2sj)r, j = 1, . . . , n,

λi = λ∗i + (
wi

|wi|
+ 0.2wi)r, i = 1, . . . ,m

(3.1)

For each r ∈ {0.001, 0.01, 0.05, 0.1, 0.5, 1, 10} and each test example, we generated 300 ran-
dom vectors (x, λ) in such a way. Then we use identification functions ρ1–ρ6 which are
defined in (2.5) and (2.8) to identify the active constraints at these points. In all tests,
we set the parameter σ = 1

2 for ρ1–ρ6
∗ and the parameter α = 1 for ρ3–ρ6, and compare

the true active set I(x∗) with the predicted active set A(x, λ) at each randomly generated
point (x, λ). If A(x, λ) = I(x∗), we say that the whole active set is correctly identified at
point (x, λ). Unlike the numerical results listed in [7, Section 4], we only recorded the sum
of the correct identifications of the whole active set in order to compare the performance
of the six identification functions ρ1–ρ6. For each identification function ρi (i = 1, . . . 6)
and each distance controlling parameter r ∈ {0.001, 0.01, 0.05, 0.1, 0.5, 1, 10}, we listed the
sum of correct identifications of the whole active set over the 300 randomly generated points
(x, λ) in Table 1–3 for Test example 1–3. Then we drew them in Figure 1–3.

Test example 1 is the problem 113 of [10]. It is a convex optimization problem with n =
10 variables and m = 8 inequality constraints. Its objective function f and the constraints
ci(x) (i = 1, . . . , 8) are defined as follows:

f(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)
2
+ 4(x4 − 5)

2
+ (x5 − 3)

2

+ 2(x6 − 1)
2
+ 5x27 + 7(x8 − 11)

2
+ 2(x9 − 10)

2
+ (x10 − 7)

2
+ 45

c1(x) = −4x1 − 5x2 + 3x7 − 9x8 + 105 ≥ 0

c2(x) = −10x1 + 8x2 + 17x7 − 2x8 ≥ 0

c3(x) = 8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0

c4(x) = −3(x1 − 2)
2 − 4(x2 − 3)

2 − 2x23 + 7x4 + 120 ≥ 0

c5(x) = −5x21 − 8x2 − (x3 − 6)
2
+ 2x4 + 40 ≥ 0

c6(x) = −0.5(x1 − 8)
2 − 2(x2 − 4)

2 − 3x25 + x6 + 30 ≥ 0

c7(x) = −x21 − 2(x2 − 2)
2
+ 2x1x2 − 14x5 + 6x6 ≥ 0

c8(x) = 3x1 − 6x2 − 12(x9 − 8)
2
+ 7x10 ≥ 0

†* For each identification function, each test example and each distance r ∈
{0.001, 0.01, 0.05, 0.1, 0.5, 1, 10}, the numerical performance are usually the best for σ = 1

2
among

values of σ ∈ (0, 1), e.g., σ = 0.1, 0.2, . . . , 0.9. Hence we only give numerical results for σ = 1
2

here for
brevity
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Its solution and corresponding active set are

x∗ ≈ (2.17, 2.36, 8.77, 5.10, 0.99, 1.43, 1.32, 9.83, 8.28, 8.38)T ,

λ∗ ≈ (1.72, 0.48, 1.38, 0.02, 0.31, 0, 0.29, 0)T ,

I(x∗) = {1, 2, 3, 4, 5, 7}.

Our results are summarized in Table 1 and Figure 1. Note the numbers in Table 1 and
Figure 1 are the sum of correct identifications of the whole active set over the 300 randomly
generated vectors (x, λ).

Table 1: Numerical results for Example 1

ρ r = 0.001 r = 0.01 r = 0.05 r = 0.1 r = 0.5 r = 1 r = 10
ρ1 300 300 204 146 25 4 0
ρ2 300 300 225 159 24 6 0
ρ3 300 300 256 165 23 7 0
ρ4 300 300 248 163 23 7 0
ρ5 300 300 271 161 2 0 0
ρ6 300 300 248 163 22 7 0

Figure 1: Numerical results for Example 1
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Test example 2 is modified from the problem 46 of [10]. Its objective function f and
the constraints ci(x) (i = 1, 2, 3) are defined in [7, Section 4] as follows:

f(x) = (x1 − x2)
2
+ (x3 − 1)

2
+ (x4 − 1)

4
+ (x5 − 1)

6

c1(x) = x21x4 + sin(x4 − x5)− 1 ≥ 0

c2(x) = x2 + x43x
2
4 − 2 ≥ 0

c3(x) = 1− x2 ≥ 0

Thus we have m = 3 and n = 5. The optimal solution is x∗ = (1, 1, 1, 1, 1)T and the corre-

sponding Lagrange multiplier vector is λ∗ = (0, 0, 0)
T
. It is easy to check that all constraints

are active at x∗, and (x∗, λ∗) is totally degenerate. For each r ∈ {0.001, 0.01, 0.05, 0.1, 0.5, 1, 10}
and each identification function ρi (i = 1, . . . , 6), the sum of the correct identifications of the
whole active set is recorded in Table 2 and drawn in Figure 2 over 300 randomly generated
points (x, λ).

Table 2: Numerical results for Example 2

ρ r = 0.001 r = 0.01 r = 0.05 r = 0.1 r = 0.5 r = 1 r = 10
ρ1 300 300 300 285 196 177 0
ρ2 300 300 300 287 196 177 0
ρ3 300 300 300 288 196 177 0
ρ4 300 300 300 288 196 177 0
ρ5 300 300 300 287 196 228 150
ρ6 300 300 300 288 196 177 0

Test example 3 is modified from the problem 43 of [10], which is defined in [7, Section
4] as follows:

min f(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4
s.t. c1(x) = −x21 − x22 − x23 − x24 − x1 + x2 − x3 + x4 + 8 ≥ 0

c2(x) = −x21 − 2x22 − x23 − 2x24 + x1 + x4 + 10 ≥ 0
c3(x) = −2x21 − x22 − x23 − 2x1 + x2 + x4 + 5 ≥ 0
c4(x) = x31 + 2x22 + x24 + x1 − 3x2 − x3 + 4x4 + 7 ≥ 0

The solution is x∗ = (0, 1, 2,−1)
T
and the corresponding Lagrange multipliers are

Λ =
{
(3− t, 0, t, t− 2)T |t ∈ [2, 3]

}
.

The constraints c1, c3 and c4 are active at x∗ and

∇c1(x∗)−∇c3(x∗)−∇c4(x∗) = 0.

Hence the linear independence constraint qualification (LICQ) is violated. Furthermore
strict complementarity is violated when t = 2 or t = 3.

For each r ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 10}, we first took a random number t ∈ [2, 3] and
got the corresponding “dual solution” λ∗ = (3− t, 0, t, t− 2) since the Lagrange multipliers
is not unique. Then we generated a random vector (x, λ) according to formula (3.1). We
generated 300 random vectors (x, λ) in this way to illustrate and compare the effectiveness of
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Figure 2: Numerical results for Example 2
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Table 3: Numerical results for Example 3

ρ r = 0.001 r = 0.01 r = 0.05 r = 0.1 r = 0.5 r = 1 r = 10
ρ1 300 300 138 80 1 0 0
ρ2 300 300 137 80 1 0 0
ρ3 300 300 106 72 2 0 0
ρ4 300 300 121 72 1 0 0
ρ5 300 300 129 64 13 0 0
ρ6 300 300 121 72 1 0 0

identification functions ρ1–ρ6 which are defined in (2.5) and (2.8). The results are presented
in Table 3 and Figure 3.

From the above numerical results, we can see that for r ≤ 0.01, the whole active sets of the
three test examples are all correctly identified by the six identification functions ρ1–ρ6, which
show the effectiveness of identification function method. For r > 0.01, the identification
function ρ5 seems to be the most robust one, and ρ1, ρ2 should be the next two. However,
the difference among the performances of the six identification functions does not seem to
be significant. From the above numerical results, we can see that smooth property does not
play an important role in the designing of identification functions. In further studies we will
show how to use these identification functions effectively with practical algorithms and do
more numerical tests to compare their performance.
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Figure 3: Numerical results for Example 3
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