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Furthermore,
∑
i,j

Aijij = 1 and A is positive semi-definite in the sense that

A×1u×2v×3u
∗×4v

∗ :=

m∑
i,i′=1

n∑
j,j′=1

Aiji′j′uivju
∗
i′v

∗
j′ ≥ 0, ∀ u = (ui) ∈ Cm, v = (vj) ∈ Cn.

(1.3)
The problem (1.1) arises from the evaluation of the (symmetrized) geometric discord,

which is a natural extension of the geometric measure of quantum discord [4, 17]. The latter
in turn is motivated by the quantum discord and related measures of quantum correlations
in quantum information theory [9, 16, 18, 20]. The geometric discord is a significant mea-
sure for quantum correlations, and has been regarded as a key resource for certain quantum
communication tasks and quantum computational models without entanglement. In quan-
tum mechanics, a state of a system is generally described by a density matrix (non-negative
matrix on a complex Hilbert space with unit trace). For an mn-th dimensional bipartite
density matrix (operator) ρab on the tensor product space Cm ⊗ Cn, the (symmetrized)
geometric discord is defined as

Q(ρab) = min
Πa,Πb

∥ρab −Πab(ρab)∥2F ,

which can be rewritten as

Q(ρab) = min
pij ,Πa

i ,Π
b
j

∥ρab −
∑
i,j

pijΠ
a
i ⊗Πb

j∥2F

with pij ≥ 0 and
∑
i,j

pij = 1. Here

Πab(ρab) =
∑
i,j

(
Πa

i ⊗Πb
j

)
ρab

(
Πa

i ⊗Πb
j

)
represents the post-measurement state after the von Neumann measurements Πa = {Πa

i }m1 ,
Πb = {Πb

j}n1 on Cm and Cn, respectively, i.e., Πa
i = |kai ⟩⟨kai | with {|kai ⟩}m1 being an or-

thonormal basis of Cm, and Πb is defined similarly. Now any mn-th dimensional density
matrix (operator) ρab on tensor product space Cm ⊗ Cn can be expressed as

ρab =
∑
i,j

cijXi ⊗ Yj ,

where cij = trρab(Xi⊗Yj), {Xi}m
2

1 and {Yj}n
2

1 are respectively a set of Hermitian operators
on Cm and Cn, which constitute orthonormal bases for the Hilbert-Schmidt spaces L(Cm)
and L(Cn) of linear operators on Cm and Cn, respectively. The density matrix ρab, as
an mn-th dimensional Hermite matrix with unit trace, can be folded into a rectangular
fourth-order m× n×m× n dimensional partially Hermite tensor A by setting [6]

Aiji′j′ = ρabst

with
∑
i,j

Aijij = 1, where i = ⌈ s
n⌉, j = mod(s, n), i′ = ⌈ t

n⌉, j
′ = mod(t, n). Based on this

convention, the evaluation of the (symmetrized) geometric discord is formulated as problem
(1.1).

As a constrained optimization problem [13, 23], the problem (1.1) is quite complicated
since complex variables and unitary matrix constraints [1] are involved [1, 3, 24]. It cannot be
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handled efficiently by the classical gradient-type optimization methods such as Lagrangian
multiplier method [19], as the generated iterates always depart from the unitary constraints
and it is difficult to retract them to the feasible set [1].

To attack problem (1.1), we first reduce it to a homogenous polynomial optimization
problem on the product of two unitary matrices by discussing its optimality condition, and
then appeal to the Riemannian manifold theory [10, 11, 7] to design a numerical method to
solve it. It is well known that a set of orthogonal constraints defines a Riemannian manifold
[7], and the unitary constraint defines a Lie group which is a special Riemannian manifold
[8, 12, 15, 22]. Based on this, we convert the reduced problem as an unconstrained problem
on an appropriate differentiable manifold, and then use the geodesic curve searching strategy
to design an alternative steepest direction method to solve the problem. In this strategy, the
tangent direction of the geodesic plays the same role as that in the line search method in flat
spaces [15]. Compared with the classical gradient-type optimization method such as SQP
method and Lagrangian multiplier method [19], the new designed method can generate a
critical point of concerned problem. The given numerical simulation shows that the method
can generate good solutions.

The content of this paper is organized as follows. In Section 2, we establish a reduced
version of the problem by discussing the optimality condition of the problem. In Section 3, we
design an alternative steepest direction method for problem (1.1) based on the Riemannian
manifold and Lie group theory. The numerical performance of the method is presented in
Section 4.

In the end of this section, we present some notations used in this paper. For the fourth
order partially Hermite tensor A in form (1.2) with dimension m× n×m× n, and vectors
u = (ui) ∈ Cm,v = (vj) ∈ Cn, define

A×1 u×3 u
∗ :=

(∑
i,i′

Aiji′j′uiu
∗
i′

)
n×n

, A×2 v ×4 v
∗ :=

(∑
j,j′

Aiji′j′vjv
∗
j′

)
m×m

,

and denote

A×1 u×2 v ×3 u
∗ ×4 v

∗ :=
m∑

i′,i′=1

n∑
j,j′=1

Aiji′j′uivju
∗
i′v

∗
j′

simply as Auvu∗v∗.
For tensors A and B in form (1.2), their inner product is defined as

⟨A,B⟩ =
∑

i,j,i′,j′

Aiji′j′B∗
iji′j′ ,

and the F -norm of tensor A is defined as

∥A∥F =
√

⟨A,A⟩ =
( ∑

i,j,i′,j′

Aiji′j′A∗
iji′j′

)1/2

=
( ∑

i,j,i′,j′

|Aiji′j′ |2
)1/2

.

2 Reduction of the Problem

Before deriving a simplified version of the problem (1.1), we first consider the case that the
optimal value of the objective function in problem (1.1) vanishes. In this case, tensor A has
the following decomposition

A =
m∑
i=1

n∑
j=1

pijxi ◦ yj ◦ x∗
i ◦ y∗

j . (2.1)
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Furthermore, for any i, j, each term xi◦yj ◦x∗
i ◦y∗

j is a rank-1 fourth-order partially Hermite
tensor, and it is orthogonal to any other terms on the right-hand side of (2.1) in the sense
that

⟨xi ◦ yj ◦ x∗
i ◦ y∗

j , xi′ ◦ yj′ ◦ x∗
i′ ◦ y∗

j′⟩
= ⟨xi,xi′⟩⟨yj ,yj′⟩⟨x∗

i ,x
∗
i′⟩⟨y∗

j ,y
∗
j′⟩,

= (x†
ixi′)(y

†
jyj′)(x

⊤
i x

∗
i′)(y

⊤
j y

∗
j′) = 0

for any i ̸= i′ or j ̸= j′. Hence, these rank-1 tensors constitute a complete orthogonal
decomposition of tensor A [14]. For the general case of the optimal value of the objective
function in problem (1.1) being nonzero, we have the following conclusion.

Proposition 2.1. Let {xi}m1 and {yj}n1 be orthonormal bases of complex spaces Cm and
Cn, respectively. Put

Tij = xi ◦ yj ◦ x∗
i ◦ y∗

j , T =
∑
i,j

pijTij ,

where pij ∈ R, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Then for any fourth-order partially Hermite
tensor A satisfying

∑
i,j

Aijij = 1 and (1.3), infT ∥A − T ∥ is achieved by T satisfying

⟨A − T , Tij⟩ = 0, pij = ⟨A, Tij⟩ ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (2.2)

and
∥A − T ∥2 = ∥A∥2 −

∑
i,j

p2ij .

Proof. Clearly, for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, the rank-1 tensor xi ◦ yj ◦ x∗
i ◦ y∗

j is partially
Hermite. Thus, from the assumption, it follows that

⟨A, Tij⟩ = ⟨A,xi ◦ yj ◦ x∗
i ◦ y∗

j ⟩ = Axiyjx
∗
iy

∗
j ∈ R.

To prove the first equation in (2.2), suppose on the contrary, there exist 1 ≤ i0 ≤ m, 1 ≤
j0 ≤ n such that

⟨A − T , Ti0j0⟩ = ε ̸= 0.

Then ε ∈ R and

∥A − T − εTi0j0∥2 = ∥A − T ∥2 − 2ε⟨A − T , Ti0j0⟩+ ε2∥Ti0j0∥2
= ∥A − T ∥2 − ε2 < ∥A − T ∥2,

which leads to a contradiction. Hence the first equation in (2.2) holds. Furthermore, using
the orthogonality of {Tij}, one has that for any 1 ≤ k ≤ m, 1 ≤ l ≤ n,

0 = ⟨A −
∑
i,j

pijTij , Tkl⟩ = ⟨A, Tkl⟩ − ⟨
∑
i,j

pijTij , Tkl⟩

= ⟨A, Tkl⟩ − pkl.

Thus, for any 1 ≤ i ≤ m, 1 ≤ j ≤ n,

pij = ⟨A, Tij⟩.

From (1.3), one has
pij = ⟨A, Tij⟩ = Axiyjx

∗
iy

∗
j ≥ 0.
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Finally,

∥A − T ∥2 = ∥A∥2 − 2⟨A, T ⟩+
∑
i,j

p2ij = ∥A∥2 −
∑
i,j

p2ij . �

Certainly, when condition (2.1) holds, then ∥A∥2 =
∑
i,j

p2ij which reduces to the case that

tensor A has a complete orthogonal decomposition.

Proposition 2.2. For any fourth-order partially Hermite tensor A such that
∑
i,j

Aijij = 1

and any orthonormal basis {xi}m1 of Cm and {yj}n1 of Cn, it holds that∑
i,j

Axiyjx
∗
iy

∗
j =

∑
i,j

Aijij =
∑
i,j

pij = 1.

Proof. For any orthonormal base {xi}m1 of Cm,

A(x) :=

m∑
i=1

A×1 xi ×3 x
∗
i

is an n-dimensional Hermite matrix, and for any orthonormal base {yj}n1 of Cn,

∑
i,j

Axiyjx
∗
iy

∗
j =

n∑
j=1

y†
jA(x)yj = tr(A(x)).

Similarly,

B(y) :=

n∑
j=1

A×2 yj ×4 y
∗
j

is an m-dimensional Hermite matrix, and for any orthonormal base {xi}m1 of Cm,

∑
i,j

Axiyjx
∗
iy

∗
j =

m∑
i=1

x†
iB(y)xi = tr(B(y)).

This means that
∑
i,j

Axiyjx
∗
iy

∗
j is independent of the choice of orthonormal bases {xi}m1 and

{yj}n1 . Hence, we may take a set of special base {xi}m1 such that the i-th element of xi is
one and other elements are all zero, and similarly for {yj}n1 , to obtain∑

i,j

Axiyjx
∗
iy

∗
j = trA(x) = trB(y) =

∑
i,j

Aijij =
∑
i,j

pij = 1.

The desired result follows. �
From Propositions 2.1 and 2.2, the problem (1.1) is reduced to

min ∥A −
∑
i,j

pijxi ◦ yj ◦ x∗
i ◦ y∗

j∥2F

s.t. x†
ixi′ = δii′ , i, i′ = 1, 2, . . . ,m,

y†
jyj′ = δjj′ , j, j′ = 1, 2, . . . , n,

pij ∈ R
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which is also equivalent to

maxF (X,Y ) =
∑
i,j

(
Axiyjx

∗
iy

∗
j

)2
s.t. x†

ixi′ = δii′ , i, i′ = 1, 2, . . . ,m,

y†
jyj′ = δjj′ , j, j′ = 1, 2, . . . , n.

(2.3)

where X = (x1,x2, . . . ,xm) ∈ Cm×m and Y = (y1,y2, . . . ,yn) ∈ Cn×n.
Problem (2.3) is a continuously differentiable optimization problem on the product of two

complex Riemannian manifolds, which is also the product of two Lie groups [11]. Note that
here each Riemannian manifold is not connected, or more precisely, it has two components
[21]. However, we can maximize the objective function over one component, as for any unit
vectors xi ∈ Cm and yj ∈ Cn, it holds that

Axiyjx
∗
iy

∗
j = A(−xi)yj(−x∗

i )y
∗
j

= Axi(−yj)x
∗
i (−y∗

j )
= A(−xi)(−yj)(−x∗

i )(−y∗
j ).

It should be noted that the condition described in Proposition 2.1 is not sufficient since
for any orthonormal bases {xi}m1 and {yj}n1 , it always holds that

⟨A − T , Tij⟩ = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

and
∥A − T ∥2 = ∥A∥2 −

∑
i,j

p2ij .

3 Alternative Steepest Direction Algorithm

In this section, we design a numerical method for solving problem (2.3). As complex variables
are involved in this problem, we need to introduce the gradient of a function w.r.t. complex
variables. In general, for a real-valued function G(z) in complex variables z ∈ Cd, if it is
analytic with respect to variables z and z∗ independently, then its gradient can be described
by a pair of complex-valued operators in terms of real differentials w.r.t. the real part and
imaginary part [3], i.e.,

Gz :=
1

2

( ∂G

∂zR
− i

∂G

∂zI

)
, Gz∗ :=

1

2

( ∂G

∂zR
+ i

∂G

∂zI

)
,

where zR and zI respectively denote the real part and the imaginary part of z. From
Theorem 2 in [3], z is a critical point of function G(z) if and only if Gz = 0 and/or Gz∗ = 0

Based on gradients Gz∗ and Gz, we obtain the first-order Taylor expression of G(z):

G(z0 +△z) = G(z0) +G⊤
z (z0)△z+G⊤

z∗(z0)△z∗ + o(∥△z∥).

Since Gz∗(z0) = G∗
z(z0), we have

G⊤
z (z0)△z+G⊤

z∗(z0)△z∗ = 2R(G⊤
z (z0)△z) = 2R(G†

z∗(z0)△z),

where R(·) denotes the real part of a quantity. This means that Gz∗(z0) can be taken as the
steepest direction of the real-valued function G(z) at z0, and based on Gz∗ , we may design
a steepest direction method to optimize a real-valued function in complex spaces.
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As the objective function in (2.3) is maximized on the product of two special Riemannian
manifolds, i.e., two Lie groups, we recall some related definitions on the Riemannian manifold
M = {X ∈ Cn×n | X†X = I} which will be used subsequently. The tangent space at point
X ∈ M is defined as [5]

TX(M) = {∆ ∈ Cn×n | X∆† +∆X† = 0}.

Any tangent vector ∆ ∈ TX(M) can be written as ∆ = SX for some S ∈ Cn×n such that
S + S† = 0 by setting S = ∆X†. For function G(X) defined on Cn×n, denote the n × n
matrix of partial derivatives of G with respect to the elements of X by GX , i.e.,

(GX)ij = (∂G/∂Xij).

Then the gradient of G(X) on the manifold M , denoted by ∇G, is defined via [7]

R
(
tr(G†

X∆)
)
=

1

2
R
(
tr(∇G†∆)

)
, ∀ ∆ ∈ TX(M),

and can be evaluated as [1, 2]:

∇G = GX −XG†
XX. (3.1)

It can be taken as the projected gradient of function G(X) on the tangent space TX(M).
Another useful notion is the geodesic which is a curve with minimal length on the manifold
and is uniquely determined by the tangent vector at the initial point. For manifold M
defined above, the Geodesics along tangent direction ∆ = SX from X has the following
expression [11]

X(t) = exp(tS)X.

Based on the above analysis, we now design a steepest direction method for problem
(2.3). Since two unitary matrix constraints are involved, i.e., two independent manifolds are
involved, we need to handle them independently and alternatively in the iteration.

First, consider the optimization problem in X = (x1,x2, . . . ,xm) ∈ Cm×m:

max
∑
i

(
Axiyjx

∗
iy

∗
j

)2
s.t. x†

ixi′ = δii′ , i, i′ = 1, 2, . . . ,m

with Y = Y k = (yk
1 ,y

k
2 , . . . ,y

k
n) ∈ Cn×n fixed. After Xk+1 = (xk+1

1 ,xk+1
2 , . . . ,xk+1

m ) ∈
Cm×m, the solution of the optimization problem above, is obtained, then consider the opti-
mization problem in Y

max
∑
i

(
Axiyjx

∗
iy

∗
j

)2
s.t. y†

jyj′ = δjj′ , j, j′ = 1, 2, . . . , n

with X = Xk+1 fixed. Repeat this process until certain optimal conditions are satisfied.
The following is the proposed steepest direction method for problem (2.3).

Algorithm 3.1.

Step 0. Choose parameters η > 0, ε ≥ 0 and σ, γ ∈ (0, 1). Take initial point X0 = Im, Y 0 =
In, set k = 0, and flag1 = flag2 = 1.
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Step 1. Compute the steepest direction of function F (X,Y k) at Xk on the Riemannian
manifold MX = {X ∈ Cm×m | X†X = Im}, i.e., compute ∇X∗F (Xk, Y k) via formula (3.1)
and denote it as dXk . If ∥dXk ∥F ≤ ε, set Xk+1 = Xk and flag1 = 0, goto Step 3; otherwise,
goto the next step.

Step 2. Determine stepsize sk via Armijo rule, i.e., take the smallest nonnegative integer
mk such that

F (Xk(sk), Y
k) ≥ F (Xk, Y k) + σskR

(
⟨dXk ,∇XF (Xk, Y k)⟩

)
where sk = ηγmk and Xk(s) = expsd

X
k Xk†

Xk. Set Xk+1 = Xk(sk) and goto the next step.

Step 3. Compute the steepest direction of function F (Xk+1, Y ) at Y k on the Riemannian
manifold MY = {Y ∈ Cn×n | Y †Y = In}, i.e., compute ∇Y ∗F (Xk+1, Y k) via (3.1) and
denote it as dYk . If ∥dYk ∥F ≤ ε, set Y k+1 = Y k, flag2 = 0 and goto Step 5; otherwise, goto
the next step.

Step 4. Determine stepsize tk via Armijo rule, i.e., take the smallest nonnegative integer mk

such that

F (Xk+1, Y k(tk)) ≥ F (Xk+1, Y k) + σtkR
(
⟨dYk ,∇Y F (Xk+1, Y k)⟩

)
where tk = ηγmk and Y k(t) = exptd

Y
k Y k†

Y k. Set Y k+1 = Y k(tk) and goto the next step.

Step 5. If flag1 = flag2 = 0, stop; otherwise, set k = k + 1 and goto step 1.

In this method, the new iteration is obtained by searching along the projected curve
of the steepest direction. Hence, the generated sequence {F (Xk, Y k)} of the algorithm is
monotonically increasing and each cluster point of the generated sequence {Xk, Y k} is a
critical point of the problem.

4 Numerical Simulation

To test the efficiency of the proposed method, we perform some numerical experiments. In
our numerical computing, the parameters used in the algorithm are set as η = 1, ρ = 0.1, γ =
0.5. We take ε = 10−2 as the stop criterion. All codes are written in MATLAB 7.0 and run
on a PIV 2.0 GHz personal computer.

It should be noted that Algorithm 3.1 is a gradient-type method, and the generated
sequence only converges to a critical point of the problem [1] and the global minimizer can
hardly be obtained. Here, we test two partially Hermite tensors with max{m,n} > 2. The
following numerical experiments show that the algorithm can find a good solution of the
problem.

Example 4.1. Take m = 2, n = 3, and take A with randomly generated elements

A(:, :, 1, 1) =

(
0.2732 + 0.0000i −0.0816− 0.0347i 0.1448− 0.0977i
0.0706− 0.0365i 0.0338− 0.0320i 0.0530− 0.0288i

)

A(:, :, 2, 1) =

(
0.0706 + 0.0365i 0.0473 + 0.0052i 0.0562 + 0.0263i
0.1458 + 0.0000i −0.0404− 0.0187i 0.0782− 0.0509i

)
A(:, :, 1, 2) =

(
−0.0816 + 0.0347i 0.1772 + 0.0000i 0.0171 + 0.1154i
0.0473− 0.0052i −0.0349 + 0.0149i 0.0091− 0.0167i

)
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Figure 4.1: Numerical result of Example 4.1.

A(:, :, 2, 2) =

(
0.0338 + 0.0320i −0.0349− 0.0149i 0.0167− 0.0040i
−0.0404 + 0.0187i 0.0905− 0.0000i 0.0096 + 0.0596i

)
A(:, :, 1, 3) =

(
0.1448 + 0.0977i 0.0171− 0.1154i 0.2042 + 0.0000i
0.0562− 0.0263i 0.0167 + 0.0040i 0.0547− 0.0282i

)
A(:, :, 2, 3) =

(
0.0530 + 0.0288i 0.0091 + 0.0167i 0.0547 + 0.0282i
0.0782 + 0.0509i 0.0096− 0.0596i 0.1091− 0.0000i

)
This tensor has a highly approximated complete orthogonal decomposition. For this

tensor, Algorithm 3.1 terminates after 16 iteration with the objective function value 0.0413.
The computer running time is 0.25 seconds. The varying tendency of the objective function
of problem (1.1) is shown in Figure 4.1.

Example 4.2. Take m = 5, n = 2, and take A with randomly generated elements

A(:, :, 1, 1) =


0.1399 + 0.0000i 0.0523 + 0.0411i
−0.0107− 0.0703i 0.0274− 0.0208i
0.0378− 0.0582i 0.0315− 0.0170i
−0.0298− 0.0041i −0.0098 + 0.0084i
0.0111− 0.0228i 0.0131− 0.0075i



A(:, :, 2, 1) =


−0.0107 + 0.0703i −0.0220 + 0.0367i
0.1545− 0.0000i 0.0550 + 0.0409i
0.0697− 0.0232i 0.0347 + 0.0094i
0.0565 + 0.0505i −0.0014 + 0.0277i
0.0005 + 0.0178i −0.0019 + 0.0046i



A(:, :, 3, 1) =


0.0378 + 0.0582i −0.0088 + 0.0301i
0.0697 + 0.0232i 0.0162 + 0.0296i
0.1558 + 0.0000i 0.0509 + 0.0336i
−0.0248− 0.0091i −0.0172− 0.0139i
0.0825− 0.0159i 0.0256 + 0.0109i


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A(:, :, 4, 1) =


−0.0298 + 0.0041i 0.0041 + 0.0016i
0.0565− 0.0505i 0.0326− 0.0127i
−0.0248 + 0.0091i −0.0099− 0.0148i
0.0979 + 0.0000i 0.0354 + 0.0268i
−0.0006 + 0.0552i −0.0070 + 0.0056i



A(:, :, 5, 1) =


0.0111 + 0.0228i −0.0056 + 0.0127i
0.0005− 0.0178i 0.0020− 0.0048i
0.0825 + 0.0159i 0.0242 + 0.0180i
−0.0006− 0.0552i −0.0016− 0.0193i
0.1254− 0.0000i 0.0388 + 0.0235i



A(:, :, 1, 2) =


0.0523− 0.0411i 0.0817 + 0.0000i
−0.0220− 0.0367i 0.0170− 0.0496i
−0.0088− 0.0301i 0.0125− 0.0404i
0.0041− 0.0016i 0.0113 + 0.0147i
−0.0056− 0.0127i 0.0051− 0.0188i



A(:, :, 2, 2) =


0.0274 + 0.0208i 0.0170 + 0.0496i
0.0550− 0.0409i 0.0809 + 0.0000i
0.0162− 0.0296i 0.0387− 0.0186i
0.0326 + 0.0127i 0.0139 + 0.0341i
0.0020 + 0.0048i −0.0002 + 0.0036i



A(:, :, 3, 2) =


0.0315 + 0.0170i 0.0125 + 0.0404i
0.0347− 0.0094i 0.0387 + 0.0186i
0.0509− 0.0336i 0.0656− 0.0000i
−0.0099 + 0.0148i −0.0293 + 0.0079i
0.0242− 0.0180i 0.0277− 0.0010i



A(:, :, 4, 2) =


−0.0098− 0.0084i 0.0113− 0.0147i
−0.0014− 0.0277i 0.0139− 0.0341i
−0.0172 + 0.0139i −0.0293− 0.0079i
0.0354− 0.0268i 0.0531 + 0.0000i
−0.0016 + 0.0193i −0.0144 + 0.0039i



A(:, :, 5, 2) =


0.0131 + 0.0075i 0.0051 + 0.0188i
−0.0019− 0.0046i −0.0002− 0.0036i
0.0256− 0.0109i 0.0277 + 0.0010i
−0.0070− 0.0056i −0.0144− 0.0039i
0.0388− 0.0235i 0.0453 + 0.0000i


This tensor also has a highly approximated complete orthogonal decomposition. For this

tensor, Algorithm 3.1 terminates after 37 iteration with the objective function value 0.0216.
The computer running time is 0.64 seconds. The varying tendency of the objective function
of problem (1.1) is shown in Figure 4.2.

For the case m = n = 5, the numerical result on one randomly generated tensor can be
seen from the following figure with running time being 8.859 seconds. The varying tendency
of the objective function of problem (1.1) is shown in Figure 4.3.

From our large amount of numerical experiments, we see that the objective function
value has a large decrease during the iteration in most cases and its is efficient for solving the
problem. It should be noted that the algorithm encounters difficulties for larger dimensions
m,n. Hence, how to make the algorithm to be efficient for large scale problem is an important
topic for future research.
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Figure 4.2: Numerical results of Example 4.2
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Figure 4.3: Decreasing procedure of the objective function (1.1) with m = n = 5
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