
2014

114 Y.-D. SHEN AND S.-J. CHEN

labor agreement rules and operational constraints are to be considered. As indicated by
Laplagne [25], all labor rules and constraints can be regarded as two levels of constraints:
shift-level and schedule-level. The shift-level constraints consist of a set of labor agreement
rules and other regulations which govern the legality of a shift. Different types of shifts have
their own corresponding constraints. The schedule-level constraints represent restrictions
imposed on the final solution of the problems (i.e. schedule consisting of a set of shifts).
For crew scheduling problems, an indispensible schedule-level constraint is that each piece
of vehicle work must be covered by at least one shift in the schedule. Consequently, they can
be naturally represented as a set covering formulation (SCF), as usually done in previous
literatures [21, 24, 26, 30, 32, 34].

In the SCF, each binary variable means whether a shift is selected from a large set of
shifts into a solution. Although a standard SCF has been extensively used to solve crew
scheduling problems [8, 22, 23, 29, 30, 40], the solutions obtained may not be applicable due
to the following two reasons. One reason is that the standard SCF does not consider some
practical operational constraints. For example, the number of a type of shifts that must
be executed by the crews with particular skills may exceed available crews, so the solution
cannot be implemented in practice. A typical issue arising in the crew scheduling problems
with multiple crew bases is that the number of shifts assigned for a crew base may exceed
corresponding available crews. Some researches proposed base constraints to restrict the
number of shifts for each crew base [1, 7, 21, 34]. Other similar schedule-level constraints
have also been presented to reflect some operational properties in crew scheduling. The
reader can be referred to Ernst et al. [12], Dias et al. [11], Portugal et al. [32] and Abbink
at al. [3]. Another reason is that the standard SCF cannot reflect the transit operators’
preferences or expectations about some special types of shifts. For example, transit operators
may require that some specific type of shifts must take at least (or at most) certain proportion
of all shifts in the schedule. Although the preferences can be handled by imposing a big
penalty cost to the non-preferred shifts [2], it will spend much time to adjust the penalty
costs such that the solutions fit for the operator’s expectation. Moreover, setting the values
of penalty costs often frustrates the human schedulers lacking optimization knowledge [32].
In many cases, transit operators’ requirements are hard constraints that must be satisfied.
Therefore, it is necessary to extend the standard SCF with the additional constraints to
respect these requirements.

Up to now, only few literatures have addressed some of the additional constraints [2,
3, 11, 14, 15, 40]. In these researches, some works neglected the additional constraints
or did not provide detail information for handling the additional constraints when solving
the problems [14, 15, 40]. Other works detailed solving approaches to deal with additional
constraints, but they are only applicable to the problems with specific features [2, 3, 11].
Consequently, it needs to develop new formulations and corresponding solving method to
adapt to the changes on scenarios or specific requirements. Based on the previous works, this
paper presents a more generic formulation with considering five typical types of additional
constraints from the view point of practice. The five additional constraints can include most
of additional constraints proposed in previous literatures as special cases.

As the SCF is well-known NP-hard [18], a large number of meta-heuristic solution ap-
proaches such as genetic algorithm [11], tabu search [35], ant colony optimization [33], and
greedy randomized adaptive search procedure [27, 28] have been proposed. These approaches
can solve the problems quickly, but the quality of solutions cannot be guaranteed. Moreover,
the additional constraints will make the problem more complex and difficult to solve [11, 32].
In order to solve the proposed formulation, we design a column generation algorithm, which
belongs to the exact approach family and is one of the most successful methods to solve var-

COLUMN GENERATION FOR CREW SCHEDULING 115

ious large-scale practical integer Linear programming (ILP) problems in transportation and
industry, such as line planning [5], vehicle routing [10], crew scheduling problems [34], and
production planning and scheduling in iron and steel industry [36, 37, 38]. For the reviews
of column generation technique, the reader can refer to Barnhart et al. [4], Lubbecke and
Desrosiers [31], Desaulniers et al. [9]. Column generation is an iterative improving method,
in which a restricted master problem and a subproblem are solved in turn iteratively. When
using the column generation to solve crew scheduling problems, the subproblem is called to
generate new columns, i.e. the shifts with the least negative reduced cost to improve the
solution of current restricted master problem. Under the standard SCF, one or more shifts
with the least reduced cost can be generated by solving a resource constrained shortest past
problem (RCSPP) in a directed graph. And the graph is constructed by all pieces of vehicle
work to be covered [20]. However, the difficulty of solving the subproblem will be encountered
when considering the SCF with additional constraints. This is mainly because a traditional
formula of calculating the reduced cost of a shift cannot represent the additional constraints.
Therefore, some new strategies have to be designed to deal with additional constraints. For
crew scheduling problems with crew base constraints, the subproblem is usually partitioned
into smaller subproblems, each of which is employed to generate shifts for one crew base
[17, 34]. Inspired by this decomposition idea, we firstly reclassify all shifts into several
sets of disjoint shifts according to the types of additional constraints proposed, and then
design a more generic decomposition approach to solve the column generation subproblem
based on reclassified set of shifts. The proposed approach can deal with multiple additional
constraints in schedule-level. Moreover, some of the column generation based approaches
dealing with additional constraints (e.g. crew base constraints) in previous literature can be
regarded as its special cases.

Finally, in order to get integer solutions we design a branching strategy based on relief
opportunities (ROs). First, a relief opportunity is selected according to a predefined rule
(see Section 3.3) for the current node with fractional solutions. Then, the solution space is
divided into two disjoint branches. One branch requires that the selected RO not be used
and the other branch requires the selected RO must be used. When one fails to select a RO,
we use a traditional branch-and-bound method (branching on fractional variables) to search
integer solutions within the shift set that corresponds to the solution of current node.

The two major contributions of this paper are as follows. One is to build an extended
set covering formulation while considering five typical specific requirements or constraints
derived from real-world problems. Another is to design a generic column generation approach
to solve the subproblem with multiple additional constraints.

The remaining sections are organized as follows. Section 2 presents an extended set cov-
ering formulation with five typical additional constraints after some basic notions about the
crew scheduling problem is introduced. Section 3 describes our proposed column generation
algorithm, decomposition approaches for solving the subproblem and a RO-based branch-
ing strategy for getting integer solutions. The experimental tests on real crew scheduling
problems are displayed in Section 4 while the conclusions are drawn in Section 5.

2 Problem Description

2.1 Crew Scheduling Problem

To describe the crew scheduling problem, some definitions are first given as follows.
Assume the vehicle schedule is given in advance, which consists of a group of vehicle

blocks. A block represents a set of vehicle tasks to be operated consecutively by one vehicle

116 Y.-D. SHEN AND S.-J. CHEN

during a day, beginning with a pull-out from, and ending with a pull-in to, a depot. Usually
it contains a sequence of predetermined relief opportunities (ROs) which can be used for
crew’s relieving, where a relief opportunity (RO) is formed by a relief time and a relief point
(i.e. a time/location pair). Note that any RO may be used or not be used in the final
solution.

In order to define the notion of shift, some other definitions are needed to be given. The
vehicle task between any two adjacent ROs is defined as a piece of work (piece for short).
One or more consecutive pieces contained in the same block form a spell of work. A shift is
formed by one spell or several spells which are separated by one or more breaks. In addition,
a shift generally starts working with a sign-on activity and finishes working with a sign-off
activity. Figure 1 displays an example of two blocks in a vehicle schedule, where each dot
denotes a relief opportunity and its corresponding relief point is coded by a single alphabet.
For example, block 1 contains five ROs and their corresponding relief points are A, C, B, C,
A. The means of piece, spells are also illustrated in Figure 1, where both spell 1 and spell 2
contain two pieces. Moreover, spell 1 and spell 2 can be linked to form a shift (if it satisfies
the constraints described in the following context).

Figure 1: Vehicle work and crew shift

Notice that a feasible (or valid) shift must respect to a series of labor rules or regulations
(i.e. shift-level constraints) according to union agreement. The content of these regulations
may vary in different operations enterprises and may vary according to the shift type. In our
context, according to the practical situations from Chinese public transport operations, we
consider three types of shift, which are straight shift, split shift and tripper shift. A straight
shift consists of two or three spells, and there must be has at least one meal break (or short
break) between them. A split shift consists of two spells, and there must be has a long rest
break between them. Tripper shift only contains one spell. A shift is valid if it satisfies
the following seven shift-level constraints: (1) the length of any spell contained is no longer
than a given value Q1

max; (2) the number of spells contained is no more than a given number
Q2

max; (3) its driving time is no longer than a given value Q3
max; (4) its working time is no

longer than a given value Q4
max; (5) its spread-over is no longer than a given value Q5

max;
(6) its meal-break time is no shorter than a given value Q1

min if it is a straight shift; (7) its
long break time is no shorter than a given value Q2

min if it is a split shift.

Thus, crew scheduling consists of generating a set of notional shifts (i.e. a crew schedule)
such that:

(1) Each piece of work is assigned to a shift;

(2) All shifts must be subject to all labor rules and operational constraints;

(3) The total number of shifts and/or the total cost (payable work in minutes) is mini-
mized.

COLUMN GENERATION FOR CREW SCHEDULING 117

2.2 Standard Set Covering Formulation

Generally, the crew scheduling problem can be represented as a set covering formulation.
Let M = {1, 2, . . . ,m} be the set of pieces and N = {1, 2, . . . , n} be the set of all valid
shifts. The cost of shift j is denoted by dj which can be calculated by some predefined
computational methods. With each piece i ∈ M and shift j ∈ N , we associate a binary
parameter aij that takes value 1 if shift j covers piece i, and 0 otherwise. Finally, define a
binary decision variable xj for each shift j ∈ N that indicates whether shift j is selected in a
solution or not. Now, crew scheduling problem can be formulated as a set covering problem:

Minimize
∑
j∈N

djxj (2.1)

subject to :
∑
j∈N

aijxj ≥ 1, ∀i ∈M (2.2)

xj ∈ {0, 1} , ∀j ∈ N. (2.3)

The objective function (2.1) is to minimize the total cost of shifts in the final schedule.
Constraints (2.2) ensure that each piece is covered by at least one shift. Constraints (2.3)
define the decision variables as binary. In general, minimizing the number of crew shifts is
more important than the total operational time. Hence, we calculate the dj (called weighted
cost) as follows:

dj = W + wjcj (2.4)

Where cj is the payable working time (in minutes), W is a constant value (which is larger
than maxj∈N{wjcj} and is set to 5000 in this context) and it ensures minimizing the number
of shifts is the overriding objective, and wj is the preference coefficient that is defined as:

wj =

 1 If j is a straight shift
1.2 If j is a split shift
1.5 If j is a tripper shift

(2.5)

According to the practical situation, the cost cj is calculated by the following way: for
straight and tripper shifts, cj is the sum of sign-on time, sign-off time, driving time and
mealbreak time; for split shifts, cj is the sum of sign-on time, sign-off time and driving time.
For the cost dj defined by (2.4), its two special cases are often appeared. If dj(j ∈ N) are
set to 1, then the objective is only to minimize the number of shifts; If W is set to 0, the
objective is only to minimize the payable working time.

2.3 Extended Set Covering Formulation with Multiple Additional Constraints

In this section, we first consider five typical additional constraints from the view point of
practice. Then, we present an extended set covering formulation with multiple additional
constraints.

2.3.1 Five Types of Additional Constraints

As indicated in Section 1, the single SCF may not be applicable when there are specific hard
requirements or limits on the numbers/percentages for some particular types of shifts in crew
schedules (e.g. a requirement is that the percentage of straight shifts has to be more than
85% in overall shifts of the schedule). Note that such requirements may vary from different

118 Y.-D. SHEN AND S.-J. CHEN

countries or different scenarios and they are determined by the practical characteristics of
the problems to be solved and transit operators’ preferences. In this context, we consider
five typical types of specific requirements from the viewpoint of general cases and some
requirements are derived from the practice of Chinese urban public transport. Each type
of the specific requirements is used to restrict some attributes (e.g. number, percentage) of
one or several sets of shifts in crew schedules.

For the convenience of description, specific requirement is also called additional constraint
in the following context. Now, we detail the five types of additional constraints by using
some examples that may arise in real public transport.
(1) Transit operators may require that some preferred types of shifts should take more
percentage (e.g. 80%) in all shifts of the schedule. For example, straight shifts, especially
two-spell shifts (two spells contained) working more than six hours with a mealbreak in
between, are preferred. Denote NP1 ⊂ N the preferable shift set, the number of NP1 should
take a percentage at least α in the crew schedules, which can be represented as:∑

j∈NP1

xj − α
∑
j∈N

xj > 0 (2.6)

(2) Some types of preferred shifts may be required that their numbers must be at least a
given value. For the preferred shift set NP2 ⊂ N , its number is at least a given number u,
which can be represented as: ∑

j∈NP2

xj − u > 0 (2.7)

(3) Some non-preferred types of shifts may be required that their percentages should be
equal or less than a given percentage (e.g. 10%) in all shifts of the schedule. For example,
some non-preferred types of shifts may be tripper shifts, the shifts with the spread-over more
than ten hours, the shifts with the number of spells more than three, etc. Denote NUP1 ⊂ N
the non-preferred shift set, the number of NUP1 should take a percentage at most β in shift
set N , which can be represented as:∑

j∈NUP1

xj − β
∑
j∈N

xj 6 0 (2.8)

(4) In a similar way, the number of some non-preferred types of shifts may be required to
be no more than a given number. For the shift set NUP2 ⊂ N , its number is no more than
a given number v, which can be represented as:∑

j∈NUP2

xj − v 6 0 (2.9)

(5) In some situations, comparison-type requirements may be imposed to ensure that the
number of some types of shifts should be more than (or less than) the others type of shifts.
For example, the transit operators may require that the number of two-spell shifts be more
than shifts with three spells. Given two shift set NC1 ⊂ N and NC2 ⊂ N , the number of
NC1 is at least γ times more than that of NC2, which can be represented as:∑

j∈NC1

xj − γ
∑

j∈NC2

xj > 0 (2.10)

COLUMN GENERATION FOR CREW SCHEDULING 119

Note that the five types of constraints described above can include most of the require-
ments or constraints presented in previous literatures as special cases. For example, the
formula (2.7) can represent the constraints on the number of available crews (i.e. crew base
constraints) that most frequently used in literatures [1, 3, 7, 34]. The formula (2.9) can
represent the constraints on the maximum number of shifts that cover each piece of work
[32]. In addition, by adding appropriate coefficients for some (or all) variables, the formulas
(2.6) to (2.10) can represent the constraints on the duration or workload of shifts in crew
schedules. For example, the formula (2.7) can represent the workload constraints presented
by Ernst et al. [12] and the operational constraints addressed by Dias et al. [11]. The
formula (2.9) can represent the constraints on the average duration of a set of shifts pre-
sented by Abbink at al. [3] and Freling et al. [16]. And the formula (2.10) can represent the
constraints on comparison between the total amount of work on A-train and B-train [3]. In
summary, most of the constraints on certain attributes of shifts (e.g. number, percentage,
working time) can be represented by the above five types of constraints.

2.3.2 Extended Set Covering Formulation with Multiple Additional Constraints

In this section, we present an extended set covering formulation by taking into account the
five types of constraints (2.6) to (2.10). Since the only difference between formula (2.6)
and formula (2.8) is the inequality signs, they can be seen as the same type of constraints
and be handled in the same way. In similar, formulas (2.7) and (2.9) can be seen as the
same type of constraints. Consequently, we neglect the constraint (2.8) and (2.9) and only
consider three types of constraints, i.e. (2.6), (2.7), and (2.10). In addition, for each type
of additional constraints, several concrete constraints belonging to it may be required in
practice. For example, for the type of constraint (2.6), the transit operators may require
that the percentage of straight shifts take more than 80% in crew schedules, and also require
that the percentage of two-spell shifts take more than 90%. Similarity, for each of the other
two types of additional constraints (2.7) and (2.10), there may also exist several specific
constraints that correspond to it. Therefore, each type of constraints (2.6), (2.7), and (2.10)
corresponds to a set of additional constraints. Before describing the extended set covering
formulation, some notations are firstly defined.

|S|, the cardinality of a given set S

H = {1, 2, . . . , |H|}, a set of additional constraints belonging to the type of constraint
(2.6)

K = {1, 2, . . . , |K|}, a set of additional constraints belonging to the type of constraint
(2.7)

S = {1, 2, . . . , |S|}, a set of additional constraints belonging to the type of constraint
(2.10)

Nh
P1
, a shift set that restricted by the additional constraint h, h ∈ H

Nk
P2, a shift set that restricted by the additional constraint k, k ∈ K

Ns
C1, the first shift set that restricted by the additional constraint s, s ∈ S

Ns
C2, the second shift set that restricted by the additional constraint s, s ∈ S

bhj , a coefficient, which takes the value 1 if the shift j ∈ Nh
P1
, and 0 otherwise; h ∈ H,

j ∈ N

ekj , a coefficient, which takes the value 1 if the shift j ∈ Nk
P2, and 0 otherwise; k ∈ K,

j ∈ N

fsj , a coefficient, which takes the value 1 if the shift j ∈ Ns
C1, and 0 otherwise; s ∈ S,

j ∈ N

120 Y.-D. SHEN AND S.-J. CHEN

gsj , a coefficient, which takes the value 1 if the shift j ∈ Ns
C2, and 0 otherwise; s ∈ S,

j ∈ N
An extended set covering formulation with three types of additional constraints can be

represented as:

Minimize
∑
j∈N

djxj (2.11)

subject to :
∑
j∈N

aijxj ≥ 1, ∀i ∈M (2.12)

∑
j∈N

(bhj − αh)xj > 0, ∀h ∈ H (2.13)

∑
j∈N

ekjxj > uk, ∀k ∈ K (2.14)

∑
j∈N

(fsj − γsgsj)xj > 0,∀s ∈ S (2.15)

xj ∈ {0, 1} ,∀j ∈ N. (2.16)

Where αh is a lower bound for the percentage of the shifts that is restricted by the additional
constraint h, h ∈ H; uk is a lower bound for the number of the shifts that is restricted by
the additional constraint k, k ∈ K; γs is a constant. Since |N | (i.e. the number of shifts) is
usually considerable, the proposed formulation is solved by a column generation algorithm
to be described in the next section.

3 Solution Approaches

3.1 Column Generation Algorithm

Column generation is a successful technique to solve large-scale (variables are considerable)
linear programming (LP) problems, and it is usually embedded in a branch-and-bound
framework to solve the original ILP formulation. For more details, the reader can refer to
Desaulniers et al. [9]. The basic idea of column generation for crew scheduling is as follows.
When using the column generation to solve the LP relaxation (called master problem, MP) of
an original ILP, it only need to consider a serials of restricted master problems (RMP), each
of which contains partial variables (columns) of MP. An initial RMP0 can be constructed
by using artificial or heuristic methods. At the rth iteration, RMPr is firstly solved and the
dual multipliers that correspond to the constraints of MP are obtained. Then, a subproblem
(SP) with the objective function based on the dual multipliers is called to generate one or
more new shifts with the least negative reduced costs. The new generated shifts are added
into the RMPr and a new restricted master problem RMPr+1 is formed. At the r + 1th

iteration, the procedure is similar to the rth iteration, i.e., RMPr+1 is firstly solved, then
the subproblem SPr+1 is solved. The procedure repeats iteratively until the subproblem
cannot generate any new shifts with negative reduced costs. In this paper, the master
problem MP corresponding to the extended SCF is formed by relaxing the binary variables
of the formula (2.16). At the rth iteration, let πr

i (> 0), θrh(> 0), δrk(> 0) and µr
s(> 0) denote

the dual multipliers that correspond to the constraint (2.12), (2.13), (2.14) and (2.15) in
RMPr respectively. For each shift j ∈ N , denote

Fj =
∑
h∈H

(αh − bhj)θ
r
h −

∑
k∈K

ekjδ
r
k +

∑
s∈S

(γsgsj − fsj)µ
r
s (3.1)

COLUMN GENERATION FOR CREW SCHEDULING 121

Then its reduced cost rcj is calculated as:

rcj = dj −
∑
i∈M

aijπ
r
i + Fj (3.2)

For simplicity, denote SP(D) the subproblem for a given shift set D, which is defined as:

p = arg minj∈D {rcj |rcj < 0} (3.3)

Denote N̄ ⊂ N the set of shifts contained in RMPr, the subproblem SPr can be represented
as SP(N\N̄). Because the set of all feasible shiftsN is not known in advance, the subproblem
SP(N\N̄) cannot be solved directly. Therefore, it needs to generate the shift with the least
negative reduced cost by constructive approach. Since the shift generated must satisfy all
shift-level constraints described in Section 2.1, the subproblem SP(N\N̄) can be modeled
as a resource constrained shortest path problem (RCSPP) (see the Section 3.2), which can
be solved by dynamic programming algorithm [20]. When solving the RCSPP, several shifts
with negative reduced cost are to be generated, if exist, instead of only one. Because adding
several of shifts more than one to the RMP can accelerate the solution speed of the column
generation algorithm [9].

The main steps of column generation algorithm (CGA) are as follows.

Step 1: Construct initial shift set N0 and form initial restricted master problem RMP0,
r ← 0;

Step 2: Solve RMPr (corresponding to shift set Nr) and obtain dual multipliers πr
i , θ

r
h, δ

r
k

and µr
s;

Step 3: Solve the subproblem SP(N\Nr) and obtain nNRC negative reduced cost shifts;

Step 4: If nNRC = 0, then return to Step 7;

Step 5: Add nNRC negative reduced cost shifts to Nr and obtain Nr+1 and RMPr+1;

Step 6: r ← r + 1, return to Step 2;

Step 7: If the solution of RMPr is integer, then the optimal solution is obtained and stop.

Step 8: Implement Step 1 to Step 6 at every node of a branch-and-bound tree to get an
optimal (or near-optimal) integer solution.

In the CGA described above, the initial shift set N0 in Step 1 can be constructed by
generating efficient shifts with heuristic methods. Since heuristic methods need problem-
specific knowledge, we adopt a more convenient way to construct RMP0, i.e. generating
artificial variables. By setting large penalty costs to all artificial variables, they will be elim-
inated in later iterations of the column generation algorithm. The main work of generating
artificial variables is to construct an initial artificial coefficient matrix Ā0 for RMP0 such
that RMP0 has at least a feasible solution. Denote m̄ the number of constraints contained
in RMP0, i.e. m̄ = m+ |H|+ |K|+ |S|. We construct the initial matrix Ā0 as follows: it
consists of m columns and each column is a m̄-dimensional vector. The values of elements
in the jth(j ≤ m) column are set as follows: ∀i ∈M , if i = j then aij = 1, otherwise aij = 0;
∀h ∈ H, bhj = 1; ∀k ∈ K, ekj = 1; ∀s ∈ S, fsj = 0, gsj = 0. Then, all artificial variables
with the value 1 form a feasible solution for RMP0.

The subproblem SP(N\Nr) in Step 3 is formulated as a RCSPP, which will be introduced
in Section 3.2. It is very time-consuming to solve the subproblem RCSPP, which is NP-hard

122 Y.-D. SHEN AND S.-J. CHEN

and usually needs to be called for hundreds of thousands times. To reduce the times of calling
the RCSPP solver embedded in a column generation algorithm, we use an idea similar to the
one proposed in literature [6], i.e., construct a shift pool that is used to generate negative
reduced cost shifts. In this context, we construct a shift pool PSP for each node of branch-
and-bound tree. For the root node, let the shift pool PSP = ∅; for other node, the shifts
in PSP are inherited from its parent node, which include the shifts in PSP of its parent
node and the shifts generated by the column generation algorithm in its parent node. When
solving a subprolem in a non-root node, the negative reduced cost shifts are first selected
from its corresponding PSP. The RCSPP solver is called to generate new shifts only when
there are no negative reduced cost shifts in PSP.

3.2 The Subproblem Solution

When using column generation to solve vehicle routing and crew scheduling problem, the
subproblem is usually formulated as a resource constrained shortest past problem (RCSPP)
[20]. The main idea is to firstly construct a directed graph G(V,A) (V and A represent its
node set and arc set respectively) by using all vehicle works (blocks), and properly define
the reduced cost on arc set A, such that any feasible shift can be represented by a path
in graph G and the shift with the least negative reduced cost corresponds to the shortest
path. However, some (partial) paths may be invalid since they may violate the shift-level
constraints described in Section 2.1. So it needs to define the shift-level constraints on the
arc set A in the form of resource consumptions (one shift-level constraint corresponds to one
type of resource), such that the accumulated amount of resources consumed by valid (partial)
paths do not exceed their corresponding available resources. When defining the reduced cost
on arc set A, it also requires that the reduced cost for any valid path be equivalent to the
reduced cost of its corresponding shift. After all resources and reduced cost are defined in
graph G, the shortest (i.e. least reduced cost) valid path can be obtained by multi-label
dynamic programming. When using dynamic programming, a label represents a partial path
originate from the source node. In this paper, we use the dynamic programming framework
proposed by Feillet et al. [13] for solving variants of vehicle routing problems.

In the following context, we will detail the construction of graph G(V,A) in Section
3.2.1, and the resource definition in Section 3.2.2. It must be mentioned that it is difficult
to directly define the reduced cost rcj (see formula (3.2)) on arc set A, because we do
not know the term Fj (which is determined by the additional constraints) beforehand. In
order to deal with the difficulty, we propose a decomposition approach in which the original
subproblem is firstly divided into several subproblems according to the additional constraints
and then the term Fj can be determined before solving each subproblems. We will detail the
decomposition approach (include reduced cost definition and subproblem solving) in Section
3.2.3.

3.2.1 Construction of Graph G(V,A)

First, define a source node S and a sink node T , which respectively represent the sign-on
point and the sign-off point of a shift. Then, all ROs are used to define two other types of
nodes, i.e. start node and end node, which represent the start point and end point of spells
respectively. Since all ROs (except the start RO and the end RO) in a vehicle block can be
as the start point of spells or the end point of spells, they are defined as end nodes of spells
and their individual duplications are defined as start nodes of spells. At last, the start ROs
and the end ROs of vehicle blocks are defined as start nodes and end nodes respectively.
Then, some pair of nodes can be linked to form five types of directed arcs in the following:

COLUMN GENERATION FOR CREW SCHEDULING 123

sign-on: which links the node S with any possible start node of a spell
sign-off: which links any possible end node of a spell with the node T
piece: which links a start node with its adjacent end node in the same vehicle block
null: which links an end node with its adjacent start node in the same vehicle block
break: which links an end node with all possible start nodes that can form mealbreak time

Figure 2: A partial directed graph G for shift generation

Figure 2 illustrates a partial network of the graph G, where ’null’ represents a virtual arc
with the length of 0. And the lengths of other four types of arcs are defined as: sign-on time
(corresponding to sign-on arc), sign-off time (corresponding to sign-off arc), the duration of
piece (corresponding to piece arc), the length of break time (corresponding to break arc).

Note that three types of shifts (i.e. straight, split and tripper) are considered in this
context, we construct three directed graphs (i.e. straight graph, split graph and tripper
graph) for generating each type of shifts. The difference between the straight graph and the
split graph is the break arc set, which is constructed according to the minimum break time
Q1

min or Q2
min stipulated by the shift-level constraints. For the tripper graph, there is no

break arc.

3.2.2 Resource Definition

As indicated before, it needs to define several types of resources to model the shift-level
constraints. Since the constraints about the minimum break time have been incorporated
into the graph G, we only need to consider the remaining five shift-level constrains, which are
maximum length of a spell Q1

max, maximum number of spells Q2
max, maximum driving time

Q3
max, maximum working time Q4

max and maximum spreadover time Q5
max. So, we define

five types of resources: length of a spell (denoted as Tspell), number of spells (denoted as
Nspell), driving time (denoted as Tdive), working time (denoted as Twork) and spreadover
time (denoted as Tspread).

For the convenience of description, we firstly define some notations. Denote Rp the
partial path that originates from source node S to the node p, and denote T k

p the amount

of the kth resource accumulated by Rp, 1 ≤ k ≤ 5. Let skpq be the amount of kth resource
consumed by arc (p, q) ∈ A, 1 ≤ k ≤ 5. When using the multi-label dynamic programming
to search the path with least reduced cost, each partial path Rp will be extended to node
q ∈ V to form a new partial path Rq, i.e. Rq = Rp ∪ (p, q), if (p, q) ∈ A and T k

q ≤ Qk
max,

where T k
q = T k

p + skpq(1 ≤ k ≤ 5).

Now the main work is to define skpq(1 ≤ k ≤ 5), ∀(p, q) ∈ A, such that T k
q (1 ≤ k ≤ 5,

∀q ∈ V) can correctly reflect the validity of partial path Rq. For each arc (p, q) ∈ A, let lpq
be its length (see Section 3.2.1). According to the arc type, the amount skpq of kth resource
consumed by (p, q) ∈ A is defined in Table 1.

In table 1, rate = 1 if the type of shifts that will be generated is straight; otherwise
rate = 0. Because a spell is defined as the vehicle works of the same block, it needs to
recalculate the length of a new spell when a partial path passes break arcs. Therefore, s1pq

124 Y.-D. SHEN AND S.-J. CHEN

Table 1: Definition of resource consumption
Arc type Tspell Nspell Tdrive Twork Tspread

sign-on-arc lpq 1 lpq lpq lpq
sign-off-arc lpq 0 lpq lpq lpq
null-arc 0 0 0 0 0
piece-arc lpq 0 lpq lpq lpq
break-arc −T 1

p 1 0 lpq × rate lpq

is set to −T 1
p if (p, q) is a break arc. In addition, note that the resource definition is usually

problem-specific and depends on the types of shift-level constraints. For more details about
the general resource definitions, the reader can refer to Irnich and Desaulniers [20].

3.2.3 A Decomposition Approach to Solve the Subproblem

In this section, we consider the reduced cost definition and propose a generic decomposition
approach that can deal with multiple additional constraints for solving the subproblem in a
column generation algorithm.

As addressed before, the subproblem solver aims to generate a shift with the minimum
negative reduced cost in the directed graph G. Therefore, it needs to set a reduced cost for
each arc in G, such that the reduced cost of any feasible path in G is equal to the reduced
cost of its corresponding shift. For any arc (p, q) ∈ A, its cost and reduced cost are denoted
as cpq and rcpq respectively. Where, cpq is equal to the amount of working time consumed
by the arc (p, q) (according to the cost definition of a shift described in Section 2.2). Now,
we need to calculate rcpq and define it on arc (p, q). Assume a shift j ∈ N corresponds
to a path R in the graph G, the calculation formula (3.2) of its reduced cost rcj can be
transferred into as follows:

rcj = dj −
∑
i∈M

aijπ
r
i + Fj

= W + wjcj −
∑
i∈M

aijπ
r
i + Fj

= W + wj

∑
(p.q)∈R

cpq −
∑

(p.q)∈R

πr
pq + Fj

= W +
∑

(p.q)∈R

(wjcpq − πr
pq) + Fj

(3.4)

Where, if the arc (p, q) corresponds to the piece i, then πr
pq = πr

i (dual multiplier);
otherwise, πr

pq = 0. Since W is a constant in formula (3.4), so it can be defined as a part
of cost of all sign-on arcs to ensure that it contributes to the cost and the reduced cost of
any shift to be generated. Similarly, the term (wjcpq − πr

pq) can be directly defined on arc
(p, q). However, the term Fj cannot be directly defined on an arc (p, q) ∈ A, because we do
not know its value beforehand. It cannot be calculated unless we know which the additional
constraints restrict shift j (see formula (3.1)).

In order to deal with the difficulty, we present a decomposition strategy. The main idea
is as follows. Firstly note that each shift set that is restricted by the additional constraints
has some particular attributes (e.g. two-spell), hence it can be seen as a particular type of
shifts. So, all shifts in N can be classified into several disjoint types of shift set according to
the (particular) types of shift sets restricted by the formulas (2.13) to (2.15). Then, Fj can
be calculated for each types of shift set, and can be handled as a constant. Consequently,
the subproblem is divided into several subproblems and each subproblem corresponds to a
generation of one type of shift set.

COLUMN GENERATION FOR CREW SCHEDULING 125

First, we classify all shifts in N into several types of shifts. Denote Nst the all straight
shift set, Nsp the all split shift set, and Ntr the all tripper shift set (i.e. Ntr = N\Nst\Nsp);
Denote NA = {Nh

P1
(h ∈ H), Nk

P2(k ∈ K), Ns
C1(s ∈ S), Ns

C2(s ∈ S), Nst, Nsp, Ntr}. In
fact, some shift set in NA may be the same. If so, we remove the duplicate shift set in NA
and get |Z| types of shift set Ni(i ∈ Z). Now, we reclassify shift set NA into several of
more detailed disjoint shift set. Note that for any j ∈ N and any i ∈ Z, there exist two
possibilities: j ∈ Ni or j /∈ Ni. So the type of shift j can be represented by a |Z|-dimension
0-1 vector, where the ith element of the vector indicates whether j belongs to Ni. Therefore
in theory, all shifts in N can be reclassified into 2|Z| disjoint types of shift set. However in
practice, |Z| is not too large (usually less than 15) and many combinations (i.e. 0-1 vectors)
are infeasible because of the restrictions of labor rules. For example, if a shift is straight then
it cannot be split or tripper. Similarly, a tripper shift cannot be a two-spell or three-spell
shift. Therefore, we use an enumerative approach to remove all infeasible 0-1 vectors and
obtain the remaining disjoint types of shift set Di(i ∈ V).

Then, the subproblem is decomposed into |V | subproblems SP (Di) (i ∈ V), and each
subproblem SP (Di) is solved independently. Before solving SP (Di), Fj (j ∈ Di) is first
calculated by the formula (3.2), then the reduced cost of arc (p, q) ∈ A is defined. At the
ith iteration, the solving process for SP (Di) is the following:

Step 1: Fj := 0;

Step 2: For each h ∈ H, if Di ⊆ Nh
P1
, then Fj := Fj + (αh − 1) θrh; Fj := Fj + αhθ

r
h

otherwise;

Step 3: For each k ∈ K, if Di ⊆ Nk
P2, then Fj := Fj − δrk;

Step 4: For each s ∈ S, if Di ⊆ Ns
C1, then Fj := Fj − µr

s;

Step 5: For each s ∈ S, if Di ⊆ Ns
C2, then Fj := Fj + γsµ

r
s;

Step 6: For each (p, q) ∈ A, its reduced cost rcpq is defined as follows:

rcpq =

{
W + (wjcpq − πr

pq) + Fj If (p, q) is a sign-on arc
(wjcpq − πr

pq) otherwise
(3.5)

Step 7: Define some additional resources to make the shifts generated belong to Di;

Step 8: Call the dynamic programming algorithm proposed by Feillet et al. [13] to solve
the RCSPP in graph G, and get a negative reduced cost shift set NEG(Di).

The approach proposed to solve subproblem above is generic, and it can deal with the
crew scheduling problems without additional constraints or with particular constraints. For
example, when solving the problems without additional constraints, Fj is equal to 0 and the
subproblem solving process corresponds to Step 6 to Step 8. When solving the problems
with crew base constraints [17, 34], all shifts are first reclassified by crew bases into disjoint
set of shifts (one set of shifts corresponds to one crew base), and then implement Step 1 to
Step 8.

3.3 Branching Strategy

If the LP solution is integer, then it is the optimal solution of the extended SCF; otherwise,
it needs to design approaches (e.g. branch-and-bound method) to obtain integer solutions.

126 Y.-D. SHEN AND S.-J. CHEN

In order to get integer solutions, one simple way is to use the traditional branch-and-bound
method to search the integer solution within the set of shifts generated by the column
generation. Although the approach is easy to implement, it may not obtain an optimal or
good integer solution.

In order to get optimal or near-optimal solutions, we design a branching strategy to
search integer solutions in a binary tree and implement the column generation at each node
of the search tree. In the traditional branch-and-bound approach for solving 0-1 integer
programming, branching on variables (0-1 branching rule) is the generic strategy to branch
the search tree. One branch (1-branch) requires that the fractional variable selected must be
within the solution while the other branch (0-branch) requires that the variable must not be
within the solution. However, this branching strategy isn’t suitable for column generation
due to two reasons. One is that it makes the search tree unbalanced, and the other is that
it is difficult to implement the 0-branch when solving the subproblems, as the 0-branch will
change the subproblem structure. In this paper, a relief opportunity (RO) branching rule
that is similar to the one proposed by Fores et al. [15] is designed based on the characteristics
of crew scheduling problems. The RO branching rule bans all shifts which use the selected
RO on one hand, and bans all shifts which do not use the selected RO on the other hand.
However, Fores et al. [15] did not give exact RO selection rules. Moreover, it is easier to
implement RO branching rule in Fores et al. [15], since they need not to generate new shifts
after branching.

Firstly, we give some notations. For the current LP problem with fractional solutions,
let N̄ be the shift set that their corresponding variables are fractional, and let RO be the set
of ROs contained in all vehicle blocks. For each r ∈ RO, we define a shift set Jr as follows:

Jr = {j | r is contained in shift j,but not used by the shift j, j ∈ N̄}.

Now, we describe the RO branching strategy adopted as follows:

Step 1: Select a RO p ∈ RO according to a selection rule. In this context, we consider two
RO selection rules:

(1) minimum infeasibility:

p = arg max
r∈RO

{
∑
j∈Jr

xj | 0 <
∑
j∈Jr

xj < 1} (3.6)

(2) maximum infeasibility:

p = arg min
r∈RO

{|
∑
j∈Jr

xj − 0.5| | 0 <
∑
j∈Jr

xj < 1} (3.7)

Step 2: If such a p exists, return to Step 4; otherwise, return to Step 3;

Step 3: Search an integer solution for the current node, update the current upper bound.

Denote J the shift set which consists of shifts that have nonzero value in the solution of
current node (generally, |J | is not too large). Implement traditional branch-and-bound
(0-1 branching) to get optimal integer solution within the shift set J . Where, we use the
maximum infeasibility rule to select branching variable, i.e. xk = min{|xj − 0.5| | 0 <
xj < 1, j ∈ J}, and use best-bound strategy to select the next node to branch.

COLUMN GENERATION FOR CREW SCHEDULING 127

Step 4: Branch the current node into two nodes:

Left node (not use the RO p): ∑
j∈Jp

xj = 1 (3.8)

Right node (use the RO p): ∑
j∈Jp

xj = 0 (3.9)

Such a RO-branching rule is easy to implement when solving the subproblems of column
generation. For the left node, we only need to remove the arcs that coming in to the RO p
and coming out from its duplicate RO p

′
. For the right node, we only need to remove the

null arc that link the RO p with its duplicate RO p
′
.

4 Computational Results

4.1 Test Instances and Parameters Setting

To test the proposed formulation and the solution approaches, we consider the 12 groups of
instances which are derived from Chinese public transport. For each instance, Table 2 lists
its number of pieces (np), vehicle blocks (nb), and relief points (nr), where all instances are
sorted in an increasing order of the number of pieces contained.

Table 2: Description of data instances

All procedures are implemented in C++ and the computation is carried out on a laptop
with a Pentium Dual-Core T4300 2.1 GHz processor and 2 GB of RAM, using CPLEX 12.4
as underlying linear programming solver.

After implementing some preliminary experiments, we found that the column generation
algorithm has the property of snow convergence as addressed by many literatures [4, 9]. For
some instances, it needs to take too much time to solve the linear relaxation solution. In
order to obtain good solutions in reasonable time, we adopt some parameters and strategies
to control the process of column generation algorithm:
(1) The maximum number of node to be explored

In preliminary experiments for some instances, the solution of a node improves only a
little comparing with its parent node. The possible reason is that there are too many shifts
that can substitute the shifts that are banned by branching. So, it needs to explore a large
number of nodes to search the optimal solutions. Considering the limited memory space
and computational time, the maximum number of node (which is generated by using RO
branching rule) to be explored in branch-and-bound tree is set to 500. Especially for the
largest instance (i.e. the 12th instance) that contains 830 pieces, it needs too much time to
solve a node of the search tree. So we set its maximum number of node to 200.
(2) Node selection strategy

We test two usually used node selection strategy: depth-first strategy and best-bound
strategy.

