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also [6]. Related results are summarized in Section 5.3 of [5]. In this case, the defining map-
ping in the VI(F,K) is single-valued, and a main tool is the theory of topological degree.

If the solution is not locally unique, [18] discussed the stability of the solution set of a
monotone linear complementarity problem, [13] presented a comprehensive study of the sta-
bility of the solution set when the defining mapping F is set-valued and maximal monotone
(see also [2]), [8] discussed the stability of solution set when the mapping F is set-valued and
stably pseudomonotone, which is of a broader class than (maximal) monotone mappings.
From these references, it can be seen when the solution is not locally unique, a certain kind
of monotonicity is needed for studying the stability of the solution set. Though monotonicity
is somewhat restrictive, a merit of of this kind results is that they can apply to variational
inequality defined by a set-valued mapping.

When the solution is not locally unique and the mapping has no monotonicity, Chapter 5
of [5] and [14, Proposition 6.2] studied the solvability of the perturbed variational inequality
defined by a single-valued mapping. In particular, Corollary 5.5.12 in [5] shows that if
a coercivity condition holds, then a perturbed variational inequality VI(F + q,K) has a
solution. The assumed coercivity condition implies that the solution set is nonempty and
bounded, and the perturbation mapping q is nonlinear. The theoretical tool is topological
degree.

This paper presents two results on the solvability of a perturbed variational inequality.
Theorem 3.1 extends the aforementioned result of [5] in two ways: the defining mapping is
allowed to be set-valued, and the coercivity condition is relaxed. Moreover, we do not use
the theory of topological degree. Theorem 3.3 of this paper shows that another coercivity
condition can ensure the solvability of a perturbed variational inequality VI(F−q,K), which
is new even if the mapping F is single-valued. The assumed coercivity condition implies that
VI(F,K) has a solution but the solution set is not necessarily bounded, and the perturbation
term q is along a direction in the barrier cone of the set K.

2 Preliminary Results

For r > 0, let Kr := {x ∈ K : ∥x∥ ≤ r}, B(0, r) := {x ∈ X : ∥x∥ < r}, and B(0, r) := {x ∈
X : ∥x∥ ≤ r}.

Definition 2.1. F : K⇒Rn is said to be upper semicontinuous on K if for every open set
V ⊂ Rn, the set {x ∈ K : F (x) ⊂ V } is open in K.

Definition 2.2. F is said to be upper hemicontinuous on K if the restriction of F to every
line segment of K is upper semicontinuous.

Definition 2.3. F is said to have variational inequality property on K if for every nonempty
bounded closed convex subset D of K, VI(F,D) has a solution.

Proposition 2.4 ([9, Proposition 3.2]). The following classes of mappings have the varia-
tional inequality property.

(i) Every upper semicontinuous set-valued mapping with nonempty compact convex values.

(ii) Every upper hemicontinuous and quasimonotone set-valued mapping with nonempty
compact convex values.

Now let us list some coercivity conditions.

(A1) There exists r > 0 such that for every x ∈ K \ Kr, there is y ∈ K with ∥y∥ < ∥x∥
satisfying supx∗∈F (x)⟨x∗, y − x⟩ ≤ 0.
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(A2) There exists r > 0 such that for every x ∈ K \ Kr, there is y ∈ K with ∥y∥ < ∥x∥
satisfying supx∗∈F (x)⟨x∗, y − x⟩ < 0.

(B1) There exists r > 0 such that for every x ∈ K \ Kr, there is y ∈ Kr satisfying
supx∗∈F (x)⟨x∗, y − x⟩ ≤ 0.

(B2) There exists r > 0 such that for every x ∈ K \Kr, there exists some y ∈ Kr such that
supx∗∈F (x)⟨x∗, y − x⟩ < 0.

(C1) There exists y0 ∈ K such that the set

{x ∈ K : sup
x∗∈F (x)

⟨x∗, y0 − x⟩ > 0}

is bounded, if nonempty.

(C2) There exists y0 ∈ K such that the set

{x ∈ K : sup
x∗∈F (x)

⟨x∗, y0 − x⟩ ≥ 0}

is bounded.

The conditions (A1) and (B1) are proposed in [3]. Single-valued versions of (C1) and (C2)
can be seen in [5, Proposition 2.2.3]. The following proposition is easy to see; see Proposition
3.4 in [9].

Proposition 2.5. The following statements hold.

(i) (C2)=⇒(B2)=⇒(A2).

(ii) (C1)=⇒(B1)=⇒(A1).

(iii) (C2)=⇒(C1), (B2)=⇒(B1), and (A2)=⇒(A1).

Proof. (iii) holds obviously.
If (C2) holds, take r > ∥y0∥, then (B2) holds. If (B2) holds, then (A2) holds obviously.

Thus (i) is verified. In a same manner, one can verify (ii).

So, if F has the variational inequality property on K, then each of (C2), (B2), and (A2)
implies that the solution set of variational inequality is bounded (actually, if (A2) holds,
then the solution set is contained in Kr), and each of (C1), (B1), and (A1) implies the
existence of solution (see Theorem 3.8 in [9]).

3 Solvability of Perturbed Variational Inequality

3.1 Perturbed by Nonlinear Mapping

We use B(0; ε,Km) to denote the set of continuous functions q : Km → Rn satisfying
∥q(x)∥ < ε for all x ∈ Km. Sol(F,K) is used to denote the solution set of VI(F,K).

Theorem 3.1. Assume that F is upper semicontinuous with nonempty compact convex
values and the coercivity condition (A2) holds. Then for every m > r there exists ε > 0 such
that

Sol(F + q,K) ∩ B(0,m) ̸= ∅, ∀ q ∈ B(0; ε,Km). (3.1)
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Proof. Let m > r. If the conclusion does not hold, then for every ε > 0, there exists
qε ∈ B(0; ε,Km) such that Sol(F +qε,K)∩B(0,m) = ∅. By the definition, Km is a bounded
closed convex set. Take xε ∈ Sol(F + qε,Km). Then ∥xε∥ ≤ m.

If for some ε > 0, ∥xε∥ < m, then xε solves VI(F + qε,K). Therefore, xε ∈ Sol(F +
qε,K) ∩ B(0,m) ̸= ∅.

If for each ε > 0, ∥xε∥ = m. Without loss of generality, we assume that limε→0+ xε =
d ∈ K where ∥d∥ = m. Then the coercivity condition implies the existence of y0 ∈ K such
that ∥y0∥ < ∥d∥ = m and supξ∈F (d) ⟨ξ, y0 − d⟩ < 0.

Since supx∈Km
∥qε(x)∥ < ε, limε→0+ ⟨qε(xε), y0 − xε⟩ = 0. Since F is upper semicontin-

uous with nonempty compact values, it follows that

lim sup
ε→0+

{ sup
ξ∈F (xε)

⟨ξ, y0 − xε⟩+ ⟨qε(xε), y0 − xε⟩} ≤ sup
ξ∈F (d)

⟨ξ, y0 − d⟩ < 0.

So there exists δ > 0 such that

sup
ξ∈F (xε)

⟨ξ, y0 − xε⟩+ ⟨qε(xε), y0 − xε⟩ < 0, ∀ ε ∈ (0, δ). (3.2)

Since ∥y0∥ < m, for any given y ∈ K, there is t ∈ (0, 1) such that y0 + t(y − y0) ∈ Km.
It follows that for ε ∈ (0, δ),

0 ≤ sup
ξ∈F (xε)

⟨ξ + qε(xε), y0 + t(y − y0)− xε⟩

≤ t sup
ξ∈F (xε)

⟨ξ + qε(xε), y − xε⟩+ (1− t) sup
ξ∈F (xε)

⟨ξ, y0 − xε⟩+ (1− t) ⟨qε(xε), y0 − xε⟩

< t sup
ξ∈F (xε)

⟨ξ + qε(xε), y − xε⟩ .

This shows that xε ∈ Sol(F + qε,K) for sufficiently small ε > 0, and hence xε ∈ Sol(F +
qε,K) ∩ B(0,m) ̸= ∅.

In either case, a contradiction is obtained.

Remark 3.2. Theorem 3.1 extends Corollary 5.5.12 in [5]. The latter assumes the mapping
F is single-valued and the coercivity condition (C2), while Theorem 3.1 allows F to be set-
valued and relaxes the coercivity condition.

3.2 Perturbed Along a Direction

In the following, we use K∞ and barr(K) to denote the recession cone and the barrier cone
of K, respectively. That is,

K∞ := {d ∈ Rn : ∃tn ↓ 0 and xn ∈ K such that tnxn → d},
barr(K) := {ξ ∈ Rn : sup

x∈K
⟨ξ, x⟩ < +∞}.

It is known that for a closed convex set, K∞ = {0} if and only if K is bounded; barr(K)
is a convex cone; barr(K) = Rn if and only if K is bounded; the recession cone K∞ is the
negative polar cone of the barrier cone barr(K). One can refer to [19] and [1] for related
results. We use int(K) to denote the interior of K.

Theorem 3.3. Assume that F has the variational inequality property on K and the co-
ercivity condition (B1) holds. Then for any q ∈ int(barr(K)), there is δ ∈ (0, 1/r) such
that

Sol(F − ε q,K) ∩ B(0, 1/ ε) ̸= ∅, ∀ ε ∈ (0, δ).
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Proof. If the conclusion is not true, then for any m ∈ N satisfying m > r, there exists εm > 0
such that εm < 1/m, and Sol(F − εm q,K) ∩ B(0, ε−1

m ) = ∅.
Let Em := {x ∈ K : ∥x∥ ≤ ε−1

m }. Since Em is bounded, Sol(F − εmq, Em) is nonempty
for each m ∈ N. Let xm ∈ Sol(F − εmq, Em).

If there is m such that ∥xm∥ < ε−1
m , then xm ∈ Sol(F − εmq,K).

If for each m, ∥xm∥ = ε−1
m . Since ε−1

m > r, it follows that xm ̸∈ Kr. By the assumption
(B1), there exists ym ∈ Kr such that

sup
ξ∈F (xm)

⟨ξ, ym − xm⟩ ≤ 0.

Without loss of generality, assume xm

∥xm∥ → d. Then d ∈ K∞ and d ̸= 0. Since K∞ is the

negative polar cone of the barrier cone barr(K) and q ∈ int(barrK), we have ⟨q, d⟩ < 0.
For any given y ∈ K \Kr, let t ∈ (0, 1) satisfy t < r

∥y∥−r . Then for each m,

∥ym + t(y − ym)∥ ≤ t∥y∥+ (1− t)∥ym∥ < 2r < ε−1
m ,

so ym + t(y − ym) ∈ Em. Since xm ∈ Sol(F − εmq, Em), it follows that

0 ≤ sup
ξ∈F (xm)

⟨ξ − εmq, ym + t(y − ym)− xm⟩

= t sup
ξ∈F (xm)

⟨ξ − εmq, y − xm⟩+ (1− t) sup
ξ∈F (xm)

⟨ξ, ym − xm⟩+ εm(1− t)(⟨q, xm⟩ − ⟨q, ym⟩)

≤ t sup
ξ∈F (xm)

⟨ξ − εmq, y − xm⟩+ εm(1− t)(⟨q, xm⟩ − ⟨q, ym⟩).

Since ∥xm∥ = ε−1
m , εm ⟨q, xm⟩ =

⟨
q, xm

∥xm∥

⟩
→ ⟨q, d⟩ < 0. Since {ym} ⊂ Kr, {ym} is

bounded, and so εm ⟨q, ym⟩ → 0. It follows that for large enough m,

sup
ξ∈F (xm)

⟨ξ − εmq, y − xm⟩ ≥ 0.

Therefore, xm ∈ Sol(F − εm q,K).
In either case, we obtain a contradiction to Sol(F − εm q,K) ∩ B(0, ε−1

m ) = ∅.

Corollary 3.4. Assume that F is single-valued and continuous on K. If for some y0 ∈ K,
the set {x ∈ K : ⟨F (x), y0 − x⟩ > 0} if nonempty, is bounded, then for any q ∈ int(barr(K)),
there is δ > 0 such that

Sol(F − ε q,K) ∩ B(0, 1/ ε) ̸= ∅, ∀ ε ∈ (0, δ).

Remark 3.5. It can be seen that the coercivity condition assumed in Corollary 3.4 is a
single-valued version of the condition (C1) listed in the last section. To the best of our
knowledge, this result is the first one to deal with stability of variational inequality under
such weak coercivity condition.
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