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ON THE LEVEL-BOUNDEDNESS OF THE NATURAL
RESIDUAL FUNCTION FOR VARIATIONAL INEQUALITY
PROBLEMS*

NoOBUO YAMASHITA AND MASAO FUKUSHIMA

Abstract: In this paper we consider the level-boundedness of the natural residual function for the variational
inequality problem (VIP). We first introduce the concept of strong coercivity for vector-valued mappings.
The strong coercivity is related to the weak coercivity of vector-valued mappings and is weaker than the
strong monotonicity of mappings. We show that the natural residual function associated with VIP is level-
bounded under the strong coercivity of the mapping involved in the VIP.

Key words: variational inequality problem, level-boundedness, coercivity, natural residual

Mathematics Subject Classification: /7J20, 65K10, 90C30

Introduction

The purpose of this paper is to give a sufficient condition under which the natural residual
function for the variational inequality problem is level-bounded. The variational inequality
problem (VIP) [2] is to find a vector « € S such that

(F(z),y —x) >0 Vyes, (1)

where F' : R — R™, S is a nonempty closed convex subset of R™, and (-, -) denotes the inner
product. Throughout we assume that S is not a singleton. We note that the continuity of
F' is not assumed.

For solving VIP (1), reformulation approaches have drawn much attention in the last
decade [3, 4, 8, 10]. A reformulation approach constructs a system of equations or a mini-
mization problem equivalent to VIP, and solves the equivalent problem instead of the original
VIP. The objective function of the equivalent minimization problem is called a merit func-
tion. In this approach, it is important to use a merit function which has some desirable
properties such as differentiability, level-boundedness and error boundedness [2].

Until now, a number of merit functions for VIP have been proposed. Among them, the
natural residual function and the D-gap function are particularly popular merit functions.
The natural residual function r : R™ — R for VIP (1) is defined by

r(z) := [l = [z = F(z)l+],
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where [z]; denotes the projection of x onto S and || - || denotes the Euclidean norm. It is
well-known that r(z) = 0 if and only if x is a solution of VIP. Therefore, we may obtain
a solution of VIP by globally minimizing the function r on R™. The D-gap function was
proposed by Peng [7] and further studied by Yamashita et al. [10]. The D-gap function is
differentiable everywhere, while the natural residual function is not.

Recently, various descent methods based on the natural residual function or the D-gap
function have been proposed [8, 3, 4, 10]. Such methods have global convergence under the
level-boundedness of a merit function. A function f : R™ — R is said to be level-bounded
[9] if for every a € R the set {z € R™ | f(z) < a} is bounded. The level-boundedness of f
corresponds to the following property:

lim f(z) = 0. (2)

llz]|—o0

Therefore, we may also regard (2) as the definition of the level-boundedness. If f is level-
bounded, then a sequence generated by an appropriate descent method for f has at least
one accumulation point. Since the D-gap function and the natural residual function have
the same growth property [7], the D-gap function is level-bounded if and only if the natu-
ral residual function is level-bounded. Therefore we will confine ourselves to investigating
conditions under which the natural residual function is level-bounded.

A well-known sufficient condition for the natural residual function r to be level-bounded
is the strong monotonicity of F' [8]. In this paper, we give a weaker condition for the level-
boundedness of . The condition is related to the weak coercivity of the mapping F' and is
weaker than the strong monotonicity of F'.

Strong Coercivity

In this section, we introduce the concept of strong coercivity of a vector-valued mapping and
study its properties. First we recall the definition of the weak coercivity of a vector-valued

mapping [5].
Definition 2.1. A mapping F': R™ — R" is said to be weakly coercive if there existsy € R™

such that
(F(z),x —y)

lell—o0 ||z —yll ¥

By definition, for the weak coercivity of the mapping F' it is sufficient to have at least
one vector y satisfying (3). The following example shows that the natural residual function
r is not necessarily level-bounded even if F is weakly coercive. Let F : R? = R? be defined

by
oo (7} + 22) .
<—x1(w%+m§)+m2 itz 20

F(z) = (4)

zo (2} + 23) + 23 £
<—a:1(a:% +13) — 22172 + T2 itz <0.

This mapping is weakly coercive since

<F(1‘),1‘ - y>

im = +00 5
lellsoo |l —yll ®)

holds with y = (0,1)T. Now let S = {(z;,0)T € R? | ; > 0}. Then the natural residual
function r is not level-bounded. To see this, consider the sequence z* = (k,0)T,k =1,2,---.
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Then we have F(z*) = (0,—k*)T. Moreover, z* — F(z*) = (k,k*)T, and hence [z* —
F(z%)])+ = (k,0)T. Therefore r(z*) = ||z* — [z* — F(2*)]4|| = 0 for all k, that is, r is not
level-bounded.

To give a sufficient condition for the level-boundedness of r, we define the following
stronger concept of coercivity.

Definition 2.2. Mapping F : R™ — R"™ is said to be strongly coercive if

<F(1‘),1‘ - y>

1im = +00
lellso0 |l —yll

holds for all y € R™.

The strong coercivity implies the weak coercivity, but not vice versa. To see this, consider
the weak coercive mapping F : R? — R? defined by (4). Since

(F(z),z) =0

for all  such that z; > 0 and z5 = 0, (5) fails to hold for y = 0, implying F' is not strongly
coercive.

Recall that a mapping F' : R® — R"™ is said to be strongly monotone if there exists a
constant g > 0 such that

(F(z) = Fy),z —y) > plle — ylI”

for all z,y € R™ It is easy to see that any strongly monotone mapping F' is strongly
coercive. The converse is not true in general. For example, the mapping F' : R — R defined

by
[ Vx ifx>0
F(a:)—{ —/|z] ifz<0

is strongly coercive. But this mapping is not strongly monotone, although it is monotone.
Next, we give a condition equivalent to the strong coercivity, which will be useful in the
subsequent analysis.

Theorem 2.1 The mapping F' : R™ — R™ is strongly coercive if and only if, for any
bounded set B C R™, any sequence {y*} C B, and any sequence {z*} such that ||z*|| — oo,

we have (F(ab, ot b
Fx"), 2" —y
lim ————2———~= % — . 6
L ©
Proof. The “if” part is evident. So we show the “only if” part. Suppose that F' is strongly
coercive. Let B be any bounded subset of R™. First, we show

i (P, — gty

Pl [ = too. ()

Since B is bounded, there exists a bounded box L := {z € R™ |l < z < u} containing B,

where [, u € R™ are vectors such that I; < wu;,i = 1,...,n. Since B C L, we have
F k k _ k F k k _
<(93),9;; y") > inf<(ﬂf),zf y)
[z yeB llz* ||
F k k _
o g FED =)

T ®)

y€EL
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Since L is a bounded box, the infimum on the right-hand side of (8) is attained at an extreme
point of L. Let T be the set of extreme points of L. Then, by the strong coercivity of F',

lim <F(1.k),1.k - y>

= 400
P e PO +

holds for each y € T. Since T is a finite set, we have

F k k _ F k k_
lim min —< (@%),2" ~y) = lim min —< (@), 2" —y)
k—o0 yEL [|*] k—>o00 yeT [lz*]|

= +4o00.

It then follows from (8) that (7) holds. Moreover, from the triangle inequality and the
boundedness of {y*}, we have

: <F(wk)7mk - yk> . <F(wk)awk - yk>
lim k _ ok Z % %
k—oo  [lzk —yk| koo |z + [|ly* ||
kY ok _ ok
g @R =y
= koo 2||z*||
This along with (7) shows (6). O

Level-Boundedness of the Natural Residual Function

We give the main result of the paper.
Theorem 3.1 If F is strongly coercive, then the natural residual function r is level-bounded.

Proof. Let y be any point belonging to S and let {z*} be any sequence such that ||z*|| — oc.
Suppose that there exists an M > 0 such that r(z*) < M for all k. Then {z*—[z*—F(2*)]+}
are bounded. Since {z*} is unbounded, {[z* — F(z*)],} is also unbounded. Without loss of
generality, we assume that there exists a positive constant 7 such that ||[z* —F(z*)] —y|| > 7
for all k.
From the well-known property [1, Proposition B.11 (b)] of the projection mapping, we
have
(@ — F(a*) — [2* = F(a")]4,y — [2* — F@")]y) <0 9)

for all k. On the other hand, we have

(@* = [z" = F(a")]y = F(a¥),y - [2* = F(z")]1)
= (o" —[¢" = F@a")]s,y = [2" = F(@"))4) + (F(a"), [¢" = Fa")]4 - p)
> —[l2* — " = F@")llllz* = F(a*)]s —yll + (F(a), [2" = F(a")]+ —y)

.’L'k .’L'k — ij —
qu—mym_w<Wmﬁlﬂjh§%ykﬂo,

where the first inequality follows from Cauchy-Schwarz inequality and the last inequality
follows from r(z*) = ||z* — [2* — F(2%)]4|| < M. Let y* = 2% — [2% — F(2*)], +y for all k.
Then {y*} is bounded. Moreover, we have

(P [t = P —y) _ () et —yh)

(10)

lim
k—oo  |[[zF — F(z%)]4 — yll h—oo  [[zk —yk||
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where the last equality follows from the strong coercivity of F' and Theorem 2.1. Hence the
right-hand side of (10) eventually becomes positive as k tends to co. This contradicts (9).
Consequently we have r(z*) — co. Since {z*} is arbitrary, r is level-bounded. a

Note that, since the D-gap function has the same growth property as the natural residual
function, the D-gap function is also level-bounded if F' is strongly coercive. Moreover, this
theorem immediately yields the following local error bound result.

Corollary 3.1 If F' is strongly monotone and locally Lipschitz continuous, then for any
by > 0, there exists a by > 0 such that

r(@) <b = boflz—a"| <r(z),
where x* is the unique solution of VIP.

Proof. Since the strong monotonicity of F' implies the strong coercivity of F', the natural
residual function r is level-bounded. So the level sets {z | r(z) < by} are bounded for all
b1. Therefore, by the local Lipschitzian property of F, for any fixed b; > 0, there exists an
L > 0 such that

1F(y) - F()l| < Llly - 2|

for all y,z € {z | r(z) < by }. It then follows from [6, Theorem 3.1] that we have the desired
property. O

Concluding Remarks

In this paper we have introduced the concept of strong coercivity for a vector-valued map-
ping. Moreover, we showed that the natural residual function associated with VIP is level-
bounded under the strong coercivity of the mapping involved in the VIP.

The definition of strong coercivity does not depend on the feasible set S, whereas the
level-boundedness of a merit function usually depends on S. Therefore it would be interesting
to consider conditions that take into account the structure of the set S. For example, let S
be defined as S := Hf\il S; with S; C R™ and n = Ef\il n;. Then we can show that the
natural residual function is level-bounded provided that, for all y € S,

(Fi(2), i —yi)

lim max = 400, (11)

le=o01<i<N [lz —y||
where F;(z),z; and y; are n;-dimensional vectors such that F(z) = (Fy(z)7, -, Fx(2)")T,
z = (2f, - 28)T and y = (yI,---,y%)?. Note that a uniform P-function satisfies (11)

when S is the nonnegative orthant in R™, that is, when VIP is a nonlinear complementarity
problem.
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