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STRUCTURED METHODS FOR SOLVING HANKEL MATRIX
APPROXIMATION PROBLEMS

SULIMAN AL-HOMIDAN

Abstract: The problem of finding the nearest positive semidefinite Hankel matrix of a given rank to an
arbitrary matrix is considered. The problem is formulated as a nonlinear minimization problem with positive
semidefinite Hankel matrix as constraints. Then an algorithm with rapid convergence is obtained by the
Sequential Quadratic Programming (SQP) method. A second approach is to formulate the problem as a
smooth unconstrained minimization problem, for which rapid convergence can be obtained by, for example,
the BFGS method. This paper studies both methods. Comparative numerical results are reported.
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Introduction

Hankel matrices appear naturally in a variety of problems of engineering: communication,
control, filter design, identification, model reduction and broadband matching and in differ-
ent fields of mathematics: e.g., in systems theory, integral equations and operator theory
[10, 13, 19, 22].

Hankel matrices possess certain properties regarding their rank and positive semidefinite
structures depending on the construction or arrangement of their elements. In practical
applications, these matrices are constructed from noisy observations and hence some of
their nice properties may be destroyed or changed. The signal processing problem estimates
the matrices with desired properties so that the estimated matrix is close to the given
observation in some reasonable sense.

We consider the following problem: Given an arbitrary data matrix F € IR"*", find the
nearest positive semidefinite Hankel matrix H of rank m to F, i. e.,

minimize ¢ = ||F — H||
subject to H € K. (1.1)

Throughout this paper, the matrix norm is the Frobenius norm. K is the set of all n x n
symmetric positive semidefinite Hankel matrices

K={H:HeR"™, H>0, Rank(H)=m and H € H}, (1.2)

where H is the set of all Hankel matrices.
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The problem was studied by MacInnes [14]; he proposed a method for finding the best
approximation of a matrix A by a full rank Hankel matrix. In [14], the initial problem of
best approximation of one matrix by another is transformed into a problem involving best
approximation of a given vector by a second vector whose elements are constrained so that
its inverse image is a Hankel matrix. Related signal processing problems have also been
studied by [15, 17] and [18].

Another, related problem is the solution of the least square problem mwin || Ax — b|| where

A has a special structure such as Toeplitz, Hankel or is a large, sparse matrix. When A is
noisy, the least square solution is no longer optimal and it suffers from bias and increased
covariance due to the accumulation of noise errors. To alleviate this problem, a generalization
of the least square solution was formally introduced by Golub et al. [11], called total least
square (TLS) which attempts to remove the noise in A and b using a perturbation on A and
b of the smallest 2-norm which makes the system of equations consistent. Abatzoglou et al.
[1] discuss a reformulation of the method in view of the linear algebraic relation among the
noise entries of A and b. They apply Newton’s method to the new formula to obtain the
precise minimum point. Rosen et al. [16] generalized TLS using other norms, in addition
to the Frobenius norm. An advantage of using the other norms is that they preserve the
structure of the matrix A and b.

In the past ten years, there has been much interest in the interior point methods applied
to problems with semidefinite matrix constraints (e.g. the survey papers [21, 20, 23] and
references therein). Semidefinite programming optimizes a linear function subject to positive
semidefinite matrix constraints. It is a convex programming problem since the objective
and constraints are convex. In this paper, we deal with a slightly different problem since
the objective is quadratic; also an additional rank constraint is added which makes the
problem unconvex and harder to solve. Here, we use a different approach. A similar problem
was studied in [3] but with no restriction on the rank. One approach followed in [3] is a
projection algorithm which converges globally but the rate of convergence is very slow;
another approach is the I; SQP method which converges faster but requires the knowledge of
the rank. The approach in Section 2 closely follows the one in [3] but (1.1) is first formulated
as a nonlinear minimization problem and then solved using techniques related to filterSQP
[9].

In [4], we studied a similar problem with no restriction on the rank. One approach we
followed is a projection algorithm which converges globally but the rate of convergence is
very slow. Another approach is the Newton method which is faster but requires tedious
calculations of the Hessian matrix. Then we used a hybrid method to combine the best
features of both. In Section 3, a more efficient method is introduced to solve (1.1), where
it is formulated as a smooth unconstrained minimization problem using the BFGS method
which converges at a superlinear order rate and does not require the second derivative [8].
Finally, in Section 4, numerical comparisons of these methods are carried out.

A Hankel matrix H is denoted by

hi he ... hy,
h2 h3 . hn+1

H = . . X R = Hankel(hl,hg,hg,...,hQn_l). (13)
hn hn+1 .. h2n—1

The trace inner product of the matrices is defined by

A:B= Zaijbij = t’l"(ATB), (14)
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where “tr” means trace of the matrix A7 B.

Section 2 contains a brief description of the SQP method for solving (1.1). The problem
is formulated as a nonlinear minimization problem and then solved using techniques related
to filterSQP . In Section 3, the problem is formulated as a smooth unconstrained minimiza-
tion problem and then solved using the BFGS method. Finally, in Section 4, numerical
comparisons of these methods are carried out.

The SQP Methods

In this section an iterative scheme is investigated in order to develop an algorithm for solving
problem (1.1). The problem is formulated as a nonlinear minimization problem and then
solved by using techniques related to filterSQP [9] which provides global convergence at a
second order rate.

It is difficult to deal with the matrix set constraint in (1.2) since it is not easy to specify
if the elements are feasible. Using partial LDLT factorization of H, this difficulty can be
overcome. Since m, the rank of H, is known and for F sufficiently close to H, commuting
rows and columns if necessary, and partitioning

Hyq H£:|
H = 2.1
[Hm Hys |’ 2.1)

where H;; is m x m invertible matrix, the partial factors H = LDLT can be calculated such

that
| Lna | Dy
N oo

where L1y, Dy and are m X m matrices; I, Dy and Hsy are n —m X n — m matrices; Loy
and Hy; are n —m X m matrices; D; is diagonal and D; > 0 and D- have no particular
structure other than symmetry. At the solution, D = 0 and H is the symmetric positive
semidefinite Hankel matrix. In general,

Dy(H) = Hyy — HyH'HY. (2.3)
Now, if the structure of the matrix H is in a Hankel form, i.e.,
1 cee Tn
H = = Hankel(zy,- -, z2,—1) = Hankel(x), (2.4)
Tn - T2pn-1
then (2.3) enables the constraint H € K to be written in the form
Dy(H(x)) = 0. (2.5)
Hence, (1.1) can now be expressed as
minimize ¢
subject to Dy(H(x)) = 0=Z2"HZ, (2.6)
—Hy' Hy)

where Z = I is the basis matrix for the null space of H when Dy = 0. The

Lagrange multipliers for the constraint (2.5) are A relative to the basis Z and the Lagrangian

for problem (2.6) is
LM ARy = ¢ —A:ZTHZ. (2.7)
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The above approach has been studied in a similar way in [7, 5].
Using the structure of the Hankel matrix H given in (2.4),

n

=Y (fiy—hi)* =Y (fij —wirj 1), (2.8)

i,j=1 i,j=1
and Yo = [g—i - 8z2f_1]T’ where V denotes the gradient operator
(0/0z1, ..., 0/0x2,_1)T. Therefore,
0¢ °
6xs:2;(ms_fis—i+l) 821,...,’)1
a¢:22§s(aj — frn—i i—n) S=n+1 2n—1 (2.9)
85[75 v s n—i+1l s+i—n FE) . .
Differentiating gives
0%
7 ]
0z,0x if r#s
where s,r =1,---,2n — 1, and
2
g—x(g:%’ s=1,...,n
82
am(g:Q(Qn—s). s=n+1,...,2n -1 (2.10)

The advantage of formula (2.5) is that expressions for both the first and second derivatives
of the constraints with respect to the elements of H can be obtained. The simple form of
(2.3) is utilized by writing the constraints D2 (H) = 0 in the following form:

dij(x) = Tirj1— » Tipr 1 [Hy' T 2001 =0, (2.11)
k=1
where i,7 =m+1,---,n and [Hﬁl]kl denotes the element of Hﬁl in kl-position. Thus

(2.6) can be expressed as

n
minimize ¢ = Z (fij — $i+j—1)2
ij=1

subject to d;;(x) = 0. (2.12)

In this problem, since the equivalent constraints d;;(x) = 0 and dj;(x) = 0 are both present,
they would be stated only for i > j.

In order to write down the SQP method applied to (2.12), it is necessary to derive first
and second derivatives of d;;.

Let I; be an m X m matrix given by

I, = Hankel(0,...,0,1,0,...,0),
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where the “1” appearing in the first row is in the sth column and the “1” appearing in the
first column is in the sth row. Hence the matrix I, is a matrix that contains ones in one

across anti—diagonal and zeros elsewhere. Now differentiating Hi, H1_11 = I gives
OH
7ﬁi-: - Hi' I, H 5<2m
H71
6# =0 s > 2m.
0z
Hence from (2.3),
oD
2 = IL+VTLV +UT + U,
0xs
where OH OH
VT = —HyH;', U=1IILV, II,=="2 and IIl, = =2,
8:135 61'5

(2.13)

(2.14)

II; and III; are matrices similar to I; with II; being an n — m X n — m matrix which
contains ones in one across anti—diagonal and zeros elsewhere, and I1I; is an n —m X m

matrix which contains ones in one across anti—diagonal and zeros elsewhere.
Furthermore, differentiating (2.13), we get

02Dy

——— =Y +Y"
0x,0x, +r

where
Y=-Z'H'Z, and Z,=1ILV —III}.

Table 1 summarizes the state of the gradient and Hessian of Dy with respect to

Table 1: Gradient and Hessian formulas for Ds.

% Zt S
VT,V LV 0<s<m
VILV+UT+U | LV - ITI} m < s<2m
Ur+u —IIIF 5=2m
II,+UT+U —IIIF 2m<s<n+m
I, 0 n+m<s<2n-—1

Now, let

W = V2L(x,A)

= Vi - Y Vg,
i,j=m+1
where V2¢ is given by (2.10) and
8%d;; 8%d;;
Zi7j Aij Ox1021 T Zi,j Aij Ox10x,

n
2
E Ai;Vidy; = : . :
i,j=m+1 82dij 82dij
Zid Aij 8z, dxy Eid Aij Oy Oy

(2.15)
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Usually, V2L is positive definite, in which case, if x(*) is sufficiently close to x*, the basic
SQP method converges and the rate is second order, where superscripts (k) and * mean the
kth iteration and optimal solution, respectively (Fletcher [8]). However, the method may
not converge globally. An algorithm with better convergence properties, when x(¥) is remote
from x*, is suggested by Fletcher et al. [9] in which the filterSQP can be used to solve (2.12).
Now, since the gradient and Hessian are both available, therefore filterSQP can be used to
solve the problem.

This description of iterative schemes for solving (2.12) has so far ignored an important
constraint, that is, D; > 0 in which the variables x(*¥) must permit the matrix H*) to be
factorized as in (2.2). However, since m is identified correctly and x(*) is near the solution,
this restriction will usually be inactive at the solution. If x(*) is remote from the solution,
additional constraints

dg’;)>0. r=1,2,...,m

are introduced. However, strict inequalities are not permissible in an optimization problem
and it is also advisable not to allow dw(x(k)) to come too close to zero, especially for small
r, as this is likely to cause the factorization to fail. Hence the constraints

md® /r >0 r=1,2,...,m
are added to problem (2.12). Finally, it is possible that partial factors of the matrix H (k)
in the form (2.2) do not exist for some iterates. In this case, the parameter in the filterSQP
method p(**+1) = p(k) /4 is chosen for the next iteration in the trust region method.

Solution by Unconstrained Minimization

In this section, we consider a different approach to problem (1.1). The main idea is to
replace (1.1) by a smooth unconstrained optimization problem in order to use superlinearly
convergent quasi-Newton methods. A partial connection between the problem and signal
processing is given in the following factorization.

Classical results about Hankel matrices that go back to [6] may be stated according to
which a positive semidefinite real Hankel matrix can be represented as the product of a
Vandermonde matrix and its transpose and a diagonal matrix in between

H=vDVT, (3.1)

where D is an m x m diagonal matrix with positive diagonal entries and V' is an n x m real
Vandermonde matrix

V=[], i=0,...,n—-1, j=1,....,m (3.2)

(see [2, 12]).

Since m, the rank of the matrix H*, is known, it is possible to express (1.1) as a smooth
unconstrained optimization problem in the following way: Since the unknown in (1.1) is
the matrix H, therefore the unknowns are chosen to be the elements of the matrices V;
Y1,--,Ym and D; di1,...,dmm introduced in (3.1). This gives us an equivalent uncon-
strained optimization problem to (1.1) in 2m unknowns expressed as

minimize $(V, D) = ||F — VDV |%. (3.3)
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Now, the objective function ¢(V, D) can be readily calculated by first forming H from V and
D as indicated by (3.1) and (3.2), after which ¢ is given by ¢(V, D) = ||F — H||% = ||F —
VDVT|%. The elements of the matrix H take the form

hij = Y diky, 70 (3.4)
k=1
Hence
¢(V,D) = > (hj — f)
ij=1
= > O duy T — i) (3.5)
ij=1 k=1

Our chosen method to minimize ¢(X) is the BFGS quasi-Newton method (see, for ex-
ample, [8]). This requires expressions for the first partial derivatives of ¢, which are given
from (3.5) by

o n m e i
0= S AN Y — fi (3.6)
88 i,j=1 k=1
0 " - i L il
% = S oS T = f)i - 2y (3.7)
s ig=1 k=1
i=jA1

The BFGS method also requires the Hessian approximation to be initialized. Where neces-
sary, we do this using an identity matrix.

Some care has to be taken when choosing the initial value of the matrices V' and D, in
particular the rank m. If not, the minimization method may not be able to increase m. An
extreme case occurs when the initial matrix V' = 0 and D = 0 is chosen, and F # 0. It can
be seen from (3.6) and (3.7) that the components of the gradient vector are all zero, so that
V =0and D = 0is a stationary point, but not a minimum. A gradient method will usually
terminate in this situation, and so fail to find the solution.

Numerical Results

In this section, we report our numerical results. Fortran codes have been written to program
solver for (1.1) to both filterSQP and BFGS methods and executed on a SUN workstation.

The results were obtained by applying the methods of Sections 2 and 3 as follows: A
matrix H was formed from (3.1) by randomly choosing m weights d;, 0 < d; < 1.0, j =
1,...,m. These are the diagonal elements of the matrix D € IR™*™. Also, we randomly
choose m values y;,0 < y; < 1.0 to determine the elements of the Vandermonde matrix V' as
in (3.2). The matrix thus obtained by (3.1) was perturbed to produce F' by adding random
noise matrix S to H, where elements of S vary between —0.10 and 0.10. The problem is
to recover the m frequencies y; and weights d; that determine the matrix before the noise
was added. The convergence criterion is that the maximum changes of the matrix H(*)
should be less than 1 x 1075. Typically, n was chosen to be 20, 10, 4 with m = 10, 4, 2,
respectively.

Both filterSQP and BFGS converge to essentially the same values ¢. For both algorithms,
the housekeeping associated with each iteration is O(p?), where in the filterSQP, p = 2n — 1



606

SULIMAN AL-HOMIDAN

Table 2: Comparing both methods with n = 20 and m = 10 .

dj Yj
05916 0.7590 | m | nq | Is | & & Vi
0.6690 0.4677 10 | 113 | 10 | 0.32737 | 0.5823 0.7078 | 0.7771 0.4824
0.1158 0.2630 0.1126 0.5037 | 0.2148 0.1595
0.5040 0.1299 0.5820 0.3518 | 0.7768 0.5333
0.5890 0.7915 0.2236 0.0377 | 0.6231 0.7414
0.3539 0.5301 0.0419 0.0380 | 0.5118 0.7417
0.1753 0.6123 9 87 8 | 0.32731 | 0.6514 0.6848 | 0.7402 0.4836
0.0388 0.7089 0.0912 0.4733 | 0.2772 0.1409
0.0647 0.5516 0.6193 0.3613 | 0.7940 0.4529
0.0822 0.7284 0.1581 0.0797 | 0.6479 0.7349
0.0622 0.5377
8 72 | 27 | 0.32729 | 0.6878 0.7484 | 0.7274 0.4478
0.0563 0.4243 | 0.3155 0.1194
0.5840 0.4262 | 0.7979 0.4715
0.1386 0.1157 | 0.7275 0.7214
7 96 | 39 | 0.32729 | 0.7069 0.7380 | 0.7265 0.4652
0.0755 0.4493 | 0.3005 0.1296
0.6266 0.4144 | 0.7956 0.4699
0.1707 0.7276
6 | 116 | 21 | 0.32730 | 0.8067 0.7309 | 0.7223 0.4603
0.0819 0.4611 | 0.2936 0.1356
0.6954 0.4053 | 0.7931 0.4885
5 89 | 25 | 0.32730 | 0.7948 1.0051 | 0.7191 0.4619
0.1707 0.4875 | 0.4655 0.1373
0.7232 0.7921
4 | 120 | 30 | 0.32738 | 1.2740 0.9119 | 0.7743 0.5323
0.3758 0.6196 | 0.4785 0.1668
3 80 | 31 | 0.32738 | 1.2796 1.2719 | 0.7741 0.5177
0.6299 0.1685
2 79 | 12 | 0.33105 | 1.5741 1.6007 | 0.7593 0.3602
1 54 6 | 0.75111 | 2.8019 0.6735
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d; Yi
0.5326 0.8249 m | nq | Is ¢ d; yj
0.7690 0.3051 5 | 70 | 55 | 0.1649725 | 0.5793 0.4719 | 0.8233 0.2515
0.4558 0.5136 0.6305 0.2394 | 0.5186 0.5163
0.2040 0.7090 0.0429 0.2326
4 | 65 | 41 | 0.1649723 | 0.5789 0.5183 | 0.8233 0.2509
0.6029 0.2639 | 0.5183 0.5194
3 | 77 | 28 | 0.1649723 | 0.5788 0.5192 | 0.8234 0.2512
0.8660 0.5188
2 | 63 | 12| 0.166825 | 0.6925 1.2675 | 0.8095 0.3981
1189 | 8 | 0573705 | 1.6696 0.6814

and in BFGS, p = 2m. Also, if care is taken, it is possible to calculate ¢ and V¢ in O(4m?)
operations.

Table 2 illustrates an example of the approximation described in Sections 2 and 3. The
first two columns give the weights d; and frequencies y; used to generate the matrix H
before the noise is added using (3.1). The matrix is 20 x 20 and of rank 10 before the
perturbation. In the last six columns, the approximations are obtained, decreasing the rank
of the approximation by 1 at each step. m is the rank of the approximation, nq is the number
of quadratic programming problems solved by the filter-SQP method to get convergence, ls
is the number of line searches in the BFGS method to get convergence, ¢ gives the norm
of F'—H where H is the approximated matrix, d; and y; are the weights and frequencies
in the approximating matrix.

Because approximation will increase the bias but decrease the variance, ¢ decreases as
the rank of the approximation increases from one to seven, then ¢ starts increasing as the
rank of the approximation increases. Hence the variance decreases but the bias increases
more which leads to an increase in the error. It is clear that the rank changes from ten to
seven and ¢ remains nonzero; this is because of the remaining noise.

Table 3, shows an example of a 10 x 10 matrix and of rank 4 before the perturbation.
Comparing ¢ in all three tables, we find them proportional with the size of the matrix. The

Table 4: Comparing both methods with n =4 and m = 2.

d; Yi
0.1763 0.9218 m | nq | Is 10) d; yj
0.4057 0.7382 3 | 51 | 12 | 0.058136 | 0.1280 | 0.9386
0.2530 | 0.6789
0.1924 | 0.8297
2 |47 | 6 | 0.059907 | 0.1730 | 0.9382
0.3999 | 0.7242
1172 8 | 0.066124 | 0.5584 | 0.8124
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process of the methods is to obtain the nearest positive semidefinite Hankel matrix that
tends to minimize the effect of the noise. It is to be expected that the noise would be more
significant in smaller matrices. The computations have shown that for matrices as large as
50 x 50, the results are quite good compared with 10 x 10. The results are not as good in
the 4 x 4 case; see Tables 2, 3 and 4. It seems that the noises are quite big for the smaller
matrices which makes ¢ almost equal in all cases in the four tables. Also, since ¢ is very
small, this means that the approximated matrix is very close to the original H.

Conclusions

In this paper, we have studied the Hankel matrix approximation problem involving the posi-
tive semidefinite matrix constraint using both the filterSQP and BFGS methods. Numerical
comparisons are given. The problem needs more study in terms of the hybrid methods
involving both the current method and the projection method [3, 4]. Also, some numerical
experiment comparisons with the hybrid and projection methods need to be carried out.
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