o2 Pug 4

@ Yokohama Publishers i 3y

J ISSN 1349-8169 ONLINE JOURNAL

A
0w

Singe 199

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM
NUMBER GENERATORS

CeLso C. RIBEIRO, REINALDO C. SouzA AND CARLOS EDUARDO C. VIEIRA

Dedicated to Toshihide Ibaraksi.

Abstract: Randomization plays a very important role in algorithm design. Metaheuristics such as simulated
annealing, GRASP, genetic algorithms, and VNS make systematic use of randomization at different levels.
Therefore, the use of consistent random number generators is highly recommended. We considered three
well known generators and we investigated some of their properties. The three generators were submitted
to two different classes of statistical tests. We conclude by showing some good properties of the Mersenne
Twister generator that do not seem to be met by the others.

Key words: random numbers, generators, statistical tests, randomized algorithms

Mathematics Subject Classification: 65C10, 68W20, 90C59

Introduction

Random number generators simulate the abstract mathematical idea of independent uni-
formly distributed random variables over the interval [0,1]. Random variables following
other distributions can be simulated by appropriate transformations from uniform distri-
butions [17]. The generators are specific algorithms that behave deterministically once
initialized with the same seed. The generated numbers are, in fact, pseudo-random.

Randomization plays a very important role in algorithm design. In the context of opti-
mization by metaheuristics, randomization can be used e.g. to break ties so as that different
solution paths can be visited from the same initial solution on multi-start methods or to
unbiased sample fractions of large neighborhoods. One particularly important use of ran-
domization appears in the context of greedy randomized algorithms. The latter are based
on the same principles of pure greedy algorithms, but make use of randomization to build
different solutions at different runs. Greedy randomized algorithms are used e.g. in the
construction phase of GRASP heuristics [6, 7, 33, 34] or to create initial populations for
population methods such as genetic algorithms [13, 14, 35, 36]. Randomization is also a ma-
jor component of metaheuristics such as simulated annealing [1, 2, 12] and VNS [9, 10, 11, 32],
in which a solution in the neighborhood of the current one is randomly generated at each
iteration.

Therefore, random number generators have a strong influence on the effectiveness of
metaheuristics for optimization problems. In this work, we evaluate and compare three
random number generators widely used in the implementation of metaheuristics: the old

Copyright © 2005 Yokohama Publishers http://www.ybook.co.jp

566 C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

UNIX rand() generator implemented and used in the ANSI C language [37], the widely used
generator proposed by Lewis et al. [24] and implemented in a portable way by Schrage [38],
and the more recent Mersenne Twister generator of Matsumoto and Nishimura [31]. The
three generators are described in Section 2. Two packages of statistical tests are applied
to the three generators and experimental results are presented in Section 3. Concluding
remarks are drawn in the last section.

Some Random Number Generators

Old UNIX Rand Generator

The old UNIX rand() generator [37] referred by UR in this work is a mized linear congruential
generator defined as

Tni1 = (11035152452, + 12345) mod(2%!), (1)

where x,, is the n-th number in the generated sequence. This recursion generates integer
numbers in the interval [0,23! — 1].

@ Schrage’s Generator

The generator proposed by Lewis et al. [24], implemented in a portable way by Schrage [38]
and referred by LS in this work is a popular multiplicative linear congruential generator
defined as

Tpi1 = 7z, mod (2%t — 1), (2)

where z, is the n-th number in the generated sequence and 23' — 1 = 2147483647 is
Mersenne’s prime number. This recursion generates integer numbers in the interval [1,23! —
2]. This is a full cycle generator, since a = 7° is a primitive root of 23! — 1. Therefore, every
integer in the interval [1,23! — 2] is generated exactly once in the cycle. The initial seed may
be any integer in the interval [1,23! — 2].

Mersenne Twister Generator

The third algorithm considered in this work is the Mersenne Twister (MT) generator de-
veloped by Matsumoto and Nishimura [31]. It has a very large period equal to 219937 — 1,
being a variant of the generator previously proposed in [29, 30]. We used the mt19937ar
implementation available from the Mersenne Twister web site in [28].

Testing Random Number Generators

Two classes of tests are often applied to evaluate random number generators [20]. Theo-
retical or structural tests take into account the structure of the generator to evaluate its
mathematical properties, such as the period and lattice structure. Generators without good
properties should be avoided [19].

We consider as an example the period of a generator. The period of a generator cannot
exceed the cardinality of its state space. Consequently, the period should be as close as
possible to the latter. Many generators satisfy this property if their parameters are ap-
propriately chosen [16, 18], including the three considered in this work. The period of a
generator imposes a limit on the size of the samples. L’Ecuyer [17, 20, 23] emphasizes that

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM NUMBER GENERATORS 567

generators with a period close to 23! should be discarded, since it can be exhausted in a few
minutes of computation. He also emphasizes that periods lower than 2°0 are small and that
periods greater than 22°° should be used. Ripley [37] suggests periods of 23! for samples
with up to 103 points and of at least 2°° for samples with more than 10° points.

Statistical tests are used as a complement to the tests that consider structural properties.
They evaluate the quality of long sequences produced by the generator [22]. Since the three
generators considered in this work have good structural properties, this work is focused into
their statistical evaluation.

The statistical tests consider the random number generators as black boxes and check
their behavior against the null hypothesis Hp: the observations are independent and uni-
formly distributed in the interval [0,1]. Their main idea consists in attempting to find
situations in which the behavior of some output function of the generator is significantly dif-
ferent from that of the same function applied to a sequence of independent random variables
uniformly distributed in the interval [0,1] [21].

We first applied classical tests extracted from [15, 16]. However, as several suspected
generators have passed them [3, 22], we also applied the stronger Diehard tests developed
by Marsaglia [26]. All tests were performed on a Pentium ITI machine with a 750 MHz clock
and 256 Mbytes of RAM memory running under Linux RedHat 7.0. For each test and each
generator, 100 runs using 100 different seeds have been performed.

Classical Tests

We use the same notation and tests in Knuth [16]. Tests are applied to sequences ug, w1, 2, . . .
of real numbers or to sequences yo, y1,¥2, - - . of integer numbers, with y; = |d-u;] for every
index j in the sequence. In the first case, we assume that the sequence is independent and
uniformly distributed in the interval [0,1], while in the second it is assumed to be inde-
pendent and uniformly distributed in the interval [0,d — 1]. The integer d is appropriately
chosen. For instance, d = 64 = 2% implies that y; represents the six most significant bits of
u;. The significance level considered in all tests is o = 0.05.

1. Chi-square test in the interval [0,1]: A sequence of n random numbers uy,us, ..., Uy,
is generated in the interval [0,1], which is divided into k subintervals. We used k = 5,
10 and n = 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000.

2. Frequency test or chi-square test in the interval [0,d]: A sequence of n random numbers
Y1,Y2,---,Yn is generated in the interval [0,d). For every integer r € [0,d), we count
the number of times y; = r for j = 1,...,n and we apply the chi-square test for d
categories. We used d = 32, 64 and n = 500, 1000, 5000, 10000, 50000, 100000, 500000,
1000000, 5000000.

3. Kolmogorov-Smirnov (KS) test: The random numbers uy,us, .. ., u, are sorted in non-
decreasing order and the statistics K+ = \/n maz; [j/n—z;] and K~ = \/n maz; [x;—
(j —1)/n] are computed. We used n = 500, 1000, 5000, 10000, 50000, 100000, 500000,
1000000, 5000000; see also [15].

4. Two-level test: This test consists in applying the Kolmogorov-Smirnov test to p sam-
ples of size N and then applying KS to the p statistics so obtained. We used N = 1000
and p = 5, 10, 50, 100, 500, 1000, 5000; see also [15].

5. Serial test: A sequence of n = 2p random numbers uy,us,...,u, is generated in the
interval [0,1]. For every pair of integers (¢,r) with 0 < ¢,r < d, we count the number

568

10.

11.

C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

of occurrences of the pair (y2j4+1,¥y2j+2) = (¢,7), for j =0,...,p— 1. We used d = 2,
3, 4, 5 and p = 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000.

Permutation test: The input sequence wuy,us,...,u, is divided into g groups of ¢
elements each, i.e. n = gt. Elements in each group may follow up to ¢! possible
relative orders. The number of times in which each relative order appears is counted.
We used t = 2, 3, 4, 5 and g = 1000, 5000, 10000, 50000, 100000, 500000, 1000000,
5000000.

Gap test: Let a and 3 be two real numbers with 0 < a < 8 < 1. This test considers
the size of subsequences of consecutive numbers w;, %;j41,...,%j4, in which the last
is the only one in the interval [a, 8]. This subsequence of size r + 1 is a gap of size
r. Applied to a sequence of n real numbers in the interval [0,1] and for any values of
«a and (3, this test counts the number of gaps of size 0,1,...,¢t — 1 and the number
of gaps of size greater than or equal to ¢, until s subsequences have been found. We
used a = 0.25, 8 = 0.5, t =6, and s = 500, 1000, 5000, 10000, 50000, 100000, 500000,
1000000, 5000000.

Coupon collector’s test: A sequence of n random numbers yi,¥s, ..., ¥y, is generated
in the interval [0,d). We count the number of minimal segments y;y1,Y;+2,---,Yj+r
of length r = d,d+ 1,...,t — 1 and the number of segments of length greater than
or equal to ¢ containing all integers in the interval [0, d), until s segments have been
found. We used d = 3, t = 6, and s = 500, 1000, 5000, 10000, 50000, 100000, 500000,
1000000, 5000000.

Poker test: This test considers g groups of five successive integer random numbers
{Ysj+1,Ysj+2,---> Y5545}, for j =0,...,9 — 1, and counts the number of groups with
r different values. We used d = 5, r = 5 and g = 5000, 10000, 50000, 100000, 500000,
1000000, 5000000.

Maximum of ¢ test: Let V; = maz(usj, wejr1,- - ., Utjye—1) for 0 < j < g. This test
consists in applying the KS test to the sequence Vy, V1, ..., V,_1 with the distribution
function F(z) = z¢, for 0 < z < 1. We used ¢t = 5, 6, and g = 5000, 10000, 50000,
100000, 500000, 1000000, 5000000.

Serial correlation test: The covariance between pairs u; and u;4r of numbers k posi-
tions away in the sequence should be a normal distribution with expected value equal
to 0 and variance 1/[144(n — k)]. We used k£ = 1,2,...,15 and n = 500, 1000, 5000,
10000, 50000, 100000, 500000, 1000000, 5000000; see also [15].

In order to validate the random number generators on the classical tests, we used the
well known statistical tool known as two-way analysis of variance (ANOVA) for sampling
without replacement [39]. The two factors considered in the analysis are the generator and
the sample size used in each test. Therefore, two hypotheses could be tested:

1.
2.

There is no significant difference among the generators.

There is no significant difference among the sample sizes.

If the two hypotheses are confirmed, one can also state that there is no relationship between
the two factors. On the other hand, if they are not confirmed, one can check what was
the cause of the dependency (the generator or the sample size). The following step in the
analysis consists in the implementation of another statistical test known as the LSD method

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM NUMBER GENERATORS 569

(Least Significant Difference), which points out the statistically significant means of the
factor that has caused the dependency.

Table 1 shows the way the data (generators and sample sizes) are organized to perform
the two-way ANOVA without replacement. The rows represent the generators (i = 1,2, 3),
the columns represent the sample sizes, and z;; denotes the number of errors that happened
in 100 statistical tests (with 100 seeds) of the generator 4 for the sample size j.

Table 1: Two-way analysis of variance for sampling without replacement.

| 1 2 ... m
1 I11 12 PN L1m
2 I21 22 PN L2m
3 I31 32 . L3m

Table 2 displays the results of the ANOVA procedure for the classical tests, where an
“A” means acceptance of the null hypothesis and an “R” means rejection of the null hy-
pothesis. Out of 34 tests, in 24 of them the null hypothesis was accepted. For these tests,
one can conclude that there is no relationship between the generator and the sample size.
Individually, one can also conclude that there is no significant difference of performance
among the three generators on the test, as well as on the sample size within each test. Out
of the ten tests where the null hypothesis was rejected, six of them had the generator as the
cause of the dependency, while four had the sample size causing the dependency.

It is recommended, particularly for the tests where a significant difference of generator
was detected, to apply the LSD test mentioned above aiming the indication of which means
are statistically significant. Table 3 displays the results of the LSD procedure applied to
the six tests, where a “YES” in columns Difygrrs, Difurmr, and Difr sy indicates
a significant difference respectively among the UR and LS generators, the UR and MT
generators, and the LS and MT generators, while a “NO” means the opposite.

Figures 1 and 2 display the means of the errors, making it easier the understanding of
Table 3. For the serial test with d = 3 and the serial correlation test with &k = 2, the
MT generator is responsible for the means differences and there is no significant difference
from the statistical viewpoint between the UR and LS generators. Therefore, these two
generators have a better performance than the MT generator in these tests. For the serial
correlation test with k = 4, the generators LS and MT outperformed UR. Considering the
serial correlation test with & = 8, there is a statistical difference between the generators UR
and MT, with the former outperforming the latter. The LS generator is outperformed by
the others in the case of the correlation test with £ = 11, while MT outperformed the two
others in the case of the frequency test with d = 32.

Since there is not a consistent predominance of one generator over the others in these
tests, one can conclude that there is no significant difference among the three generators
considered on the classical tests and their corresponding parameters and sample sizes.

Diehard Tests

The Diehard tests designed by Marsaglia [3, 22, 25] are considered stronger than the classical
tests. Their output is a series of p—values that should be uniform in [0,1). These p—values
are obtained by p = F(X), where F is the assumed distribution of the sampled random
variable X, which is often normal. When a bit stream really fails, the p—values will be

570 C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

Table 2: Results of the ANOVA procedure for the classical tests.

Tests Parameters | Results
Chi-square k=5 A
k=10 A
Frequency d=32 R
d =64 R
Serial d=2 A
d=3 R
d=4 A
d=5 A
Poker — A
Permutation t=2 A
t= A
t=4 A
t= R
Maximum of ¢ t= A
t=26 A
Coupon collector A
Serial correlation k=1 A
k=2 R
k=3 A
k=4 R
k=5 A
k=6 A
k= A
k=28 R
k= A
k=10 A
k=11 R
k=12 A
k=13 A
k=14 R
k=15 A
KS — A
Two-level — R
Gap t=06 A

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM NUMBER GENERATORS 571

Table 3: LSD method applied to the tests for which the cause of the dependency is the
generator.

Tests Difurrs | Difurmr | Difrsmr
Serial (d = 3) NO YES YES
Serial correlation (k = 2) NO YES YES
Serial correlation (k = 4) YES YES NO
Serial correlation (k = 8) NO YES NO
Serial correlation (k = 11) YES NO YES
Frequency (d = 32) NO YES YES

6.9
6.5 %
6,1)
5.7
5,3
49
45
4,1
3.7
3,3

Means of the errors

Serial (d=3)
Serial correlation (k=2)
Serial correlation (k=4)

ey

29
25

R LS WT
Generatars

Figure 1: Means of the errors: serial test with d = 3 and serial correlation test with k = 2
and k = 4.

of 0 or 1 to six or more decimal places. Moreover, these tests also apply the Kolmogorov-
Smirnov test to the p—values themselves. If the null hypothesis of the KS test is rejected,
the generator fails the test [26]. As for the classical tests, 100 seeds have been used.

The following tests were applied: birthday spacings test, greatest common divisor (GCD)
test, gorilla test, overlapping 5-permutation test, binary rank test, bitstream test, overlapping-
pairs-sparse-occupancy (OPSO) test, overlapping-quadruples-sparse-occupancy (OQSO) test,
DNA test, count-the-1’s test, count-the-1’s test for specific bytes, parking lot test, minimum
distance test, 3D-spheres test, squeeze test, overlapping sums test, runs test, and craps test.

Table 4 displays the summary of the results obtained from the application of the Diehard
tests to the UR, LS, and MT generators. A symbol “P” is an indication of success, i.e., the
generator passed in the test, while an “F” indicates a failure in the test, i.e., the generator
failed when submitted to the specific test.

The MT generator passed in all 23 tests of the battery, while the other generators passed
in only five. It is interesting to notice that the choice of the starting seed does not pose any
difference on the test, i.e., a failure (resp. success) of a generator with a seed in a particular
test implies also in the failure (resp. success) of the generator for all other seeds of the same

572 C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

8.5

8.0 . —C— Serial correlation (k=8)
7a -O- Serial correlation (k=11)
- ~#- Frequency (d=32)

70
6.5 ' o

6.0 T
55
50
45
40
35
3.0
25

Means of the errors

R LS WT
Generatars

Figure 2: Means of the errors: correlation test (with £ = 8 and k& = 11) and frequency test.

test. A particular standard also happens for the generators of the same class (UR and LS):
they fail and pass in the same tests. For these generators, the results are very unsatisfactory
on the lower order bits, showing that they are not random even when the module is a power
of two (UR generator) or a prime number (LS generator). For example, for the OPSO,
0QSO, and DNA tests, both generators failed on the bits from 1 to 10, 1 to 5, and 1 to 2,
respectively. The MT generator showed an excellent statistical performance in all tests.

Speed and Parallelization

Tables 5 and 6 display the processing times taken by each generator to produce samples of
different sizes. For each sample size n, they give the average processing times for generators
UR, LS, and MT over 100 runs with different seeds. Table 5 gives the average computation
times in microseconds for smaller samples (for n ranging from 1000 to 1000000), while Table 6
gives the average computation times in seconds (s) for larger samples (for n ranging from
5000000 to 2000000000). The same information is displayed in graphical form in Figures 3
and 4. We can see that the generator LS is considerably slower than the others, while MT
seems to be slightly faster than UR.

Metaheuristics offer a wide range of possibilities for effective parallel algorithms running
in much smaller computation times, but requiring efficient implementations. Cung et al. [4]
and Martins et al. [27] showed that parallel implementations of metaheuristics appear quite
naturally as an effective approach to speedup the search for good solutions to optimization
problems. They lead to more robust algorithms, less-dependent on parameter tuning and
not limited to few or small classes of problems. However, developing and tuning efficient
parallel implementations of metaheuristics require a thorough programming effort.

In the case of parallel implementations of metaheuristics, the random number generators
should ensure additionally that the sequences of random numbers generated at each processor
should be independent one from the other [5]. Even reliable generators are not necessarily
safe when used in parallel by multiple processors. There are basically two methods to
generate random numbers on parallel processors [8]:

1. Assign p different generators to p different processors.

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM NUMBER GENERATORS 573

3,5e5

385 -

25e5

2e5

1,585 |

Time {microsecaonds)

1ed

40000

0 1e5 2eb 3ed 4e3 Ged Ges 7ed ged des 1eb
Sample size

Figure 3: Processing times for the smaller samples.

600 |-

a00

400

300

Time {secands)

200

100 ¢

1] 2ed 4ed Ged ged 1ed 1,2e8 1,4e9 16ed 1.8ed Zed
Sample size

Figure 4: Processing times for the larger samples.

574 C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

Table 4: Results of the Diehard tests.

=
=
=
H

Tests

Birthday spacings I
Birthday spacings II
GCD 1

GCD 11

Gorilla

Overlapping 5-permutation
Binary rank (31x31)
Binary rank (32x32)
Binary rank (6x8)
Bitstream

OPSO

0QSO

DNA

Count-the-1’s
Count-the-1’s for specific bytes
Parking lot
Minimum distance
3D-spheres

Squeeze

Overlapping sums
Runs

Craps I

Craps II

“U*U“U'ﬁ'ﬁ'ﬁ“vﬁj'ﬁ'ﬁ'ﬁﬁjﬂjﬁj'ﬁ'ﬁﬂj“vﬂj”d'ﬁ'ﬁﬂjg

e B> lav s B> e Mav e Bes Mes Bles Mo Bies BiesBies Mo Mo Biaw s Biav lles Mcs Bles|
aeBacBaviacRaviiaeBaviiav e igv iy Baviise B lisv e Baviise Bvliso Bse Bav e

2. Assign p different subsequences of one large-period generator to p processors.

The first approach cannot be recommended, since in general there are no results on corre-
lations between different generators. The second approach is not safe since some generators
may produce bad or correlated subsequences. Generators with small periods are particularly
dangerous to be used in parallel due to possible superpositions of subsequences.

Concluding Remarks

We evaluated the behavior of three random number generators. The analysis was mainly
based on two sets of statistical tests: classical tests and the stronger tests in the Diehard
package.

Large problem instances faced by state-of-the-art algorithms require the generation of
very large samples of random numbers. The use of generators with large periods is strongly
recommended. Generators with large periods are also recommended to be used in parallel
algorithms, to avoid the repetition of subsequences in different processors.

The intrinsic nature of linear congruential generators leads to the appearance of lattice
structures in k—dimensional spaces. They also show a cyclic behavior in low order bits, as
confirmed by its rejection in the harder OQSO, OPSO, and DNA tests.

There are not significant differences between the three tested generators regarding the

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM NUMBER GENERATORS 575

Table 5: Processing times for the smaller samples.

Sample size n UR LS MT
1000 207.74 316.34 226.56
5000 879.99 1520.61 888.54
10000 1722.91 3024.38 1690.08

50000 8489.52 | 15080.81 8300.72
100000 16876.70 | 30106.67 | 16199.46
500000 84737.59 | 150997.77 | 80861.47
1000000 168820.43 | 301479.76 | 160853.59

Table 6: Processing times for the larger samples.

Sample size n UR LS MT
5000000 0.86 1.53 0.79
10000000 1.68 3.00 1.63
20000000 3.33 6.02 3.21
50000000 8.36 | 15.02 8.05

100000000 16.65 | 30.02 | 16.08
200000000 33.35 | 60.04 | 32.18
500000000 83.33 | 150.05 | 80.37
1000000000 | 166.62 | 300.14 | 160.74
2000000000 | 333.25 | 600.18 | 321.51

classical tests. However, the Mersenne Twister generator of Matsumoto and Nishimura [31]
clearly outperformed the two others concerning the stronger Diehard tests. The algorithm
used by the Mersenne Twister generator to generate the sequence of random numbers is also
faster than those used by the other generators. Furthermore, its astronomical period favors
large samples without repetitions, as well as its use in parallel implementations.

References

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A stochastic
Approach to Combinatorial Optimization and Neural Computing, Wiley, New York,
1989.

[2] E. Aarts and J. Korst, Selected topics in simulated annealing, in Essays and Surveys
in Metaheuristics, C.C. Ribeiro and P. Hansen (eds.), Kluwer Academic Publishers,
Boston, 2002, pp. 1-37.

[3] S.L. Anderson, Random numbers generators on vector supercomputers and other ad-
vanced architectures, STAM Rev. 32 (1990) 221-251.

[4] V.-D. Cung, S.L. Martins, C.C. Ribeiro and C. Roucairol, Strategies for the parallel im-
plementation of metaheuristics, in Essays and Surveys in Metaheuristics, C.C. Ribeiro
and P. Hansen (eds.), Kluwer Academic Publishers, Boston, 2002, pp. 263-308.

576 C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

[5] W.F. Eddy, Random number generators for parallel processors, J. Comput. Appl. Math.
31 (1990) 63-71.

[6] T.A. Feo and M.G.C. Resende, A probabilistic heuristic for a computationally difficult
set covering problem, Oper. Res. Lett. 8 (1989) 67-71.

[7] T.A. Feo and M.G.C. Resende, Greedy randomized adaptive search procedures, J.
Global Optim. 6 (1995) 109-133.

[8] P. Hellekalek, Good random number generators are (not so) easy to find, Math. Comput.
Simulation 46 (1998) 485-505.

[9] P. Hansen and N. Mladenovié¢, An introduction to variable neighbourhood search, in
Metaheuristics: Advances and Trends in Local Search Procedures for Optimization, S.
Voss, S. Martello, I.LH. Osman and C. Roucairol (eds.), Kluwer Academic Publishers,
Dordrecht, 1999, pp. 433-458.

[10] P. Hansen and N. Mladenovié¢, Developments of variable neighborhood search, in Essays
and Surveys in Metaheuristics, C.C. Ribeiro and P. Hansen (eds.), Kluwer Academic
Publishers, Boston, 2002, pp. 415-439.

[11] P. Hansen and N. Mladenovié, Variable neighborhood search, in Handbook of Meta-
heuristics, F. Glover and G. Kochenberger (eds.), Kluwer Academic Publishers, Boston,
2003, pp. 145-184.

[12] D. Henderson, S.H. Jacobson, and A.W. Johnson, The theory and practice of simu-
lated annealing, in Handbook of Metaheuristics, F. Glover and G. Kochenberger (eds.),
Kluwer Academic Publishers, Boston, 2003, pp. 287-319.

[13] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

[14] J.H. Holland, Genetic algorithms, Scientific American 267 (1992) 44-50.

[15] R. Jain, The Art of Computer Systems Performance Analysis — Techniques for Exper-
imental Design, Measurement, Simulation, and Modeling, Wiley, New York, 1991.

[16] D.E. Knuth, The Art of Computer Programming, Volume 2 — Seminumerical Algo-
rithms, Addison Wesley, 2nd. edition, 1981.

[17] P. L Ecuyer, Random numbers, in International Encyclopedia of Social and Behavioral
Sciences, N.J. Smelser and P.B. Baltes (eds.), Pergamon Press, Oxford, 2002, pp. 12735—
12738.

[18] P. L’Ecuyer, Random numbers for simulation, Communications of the ACM 33 (1990)
85-97.

[19] P. L"Ecuyer, Uniform random number generation, Ann. Oper. Res. 53 (1994) 77-120.

[20] P. L Ecuyer, Testing random numbers generators, Proceedings of the 1992 IEEE Winter
Simulation Conference, 1992, pp. 305-313.

[21] P. L’Ecuyer, Random number generation, Chapter 4 in Handbook of Simulation, J.
Banks (ed.), Wiley, New York, 1998, pp. 93-137.

A COMPARATIVE COMPUTATIONAL STUDY OF RANDOM NUMBER GENERATORS 577

[22] P. L Ecuyer and P. Hellekalek, Random number generators: Selection criteria and
testing, Lectures Notes in Statist. 138 (1998) 223-266.

[23] P. L Ecuyer, R. Simard, E.J. Chen, and W.D. Kelton, An object-oriented random-
number package with many long streams and substreams, Oper. Res. 50 (2002) 1073—
1075.

[24] P.A. Lewis, A.S. Goodman, and J.M. Miller, A pseudo-random number generator for
the System /360, IBM Systems Journal 8 (1969) 136-146.

[25] G. Marsaglia, A current view of random number generators, in Computer Science and
Statistics: The Interface, L. Billard (ed.), Elsevier, Amsterdam, 1985, pp. 3-10.

[26] G. Marsaglia, The Diehard battery of tests of randomness, online reference at
http://stat.fsu.edu/pub/diehard, last visited on March 12, 2005.

[27] S.L. Martins, C.C. Ribeiro and I. Rosseti, Applications and parallel implementations
of metaheuristics in network design and routing, Lecture Notes in Comput. Sci. 3285
(2004) 205-213.

[28] M. Matsumoto, Mersenne Twister Home Page, online reference at http://www.math.
sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html, last visited on April 16, 2005.

[29] M. Matsumoto and Y. Kurita, Twisted GFSR generators, ACM Transactions on Mod-
eling and Computer Simulation 2 (1992) 179-194.

[30] M. Matsumoto and Y. Kurita, Twisted GFSR generators II, ACM Transactions on
Modeling and Computer Simulation 4 (1994) 254-266.

[31] M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator, ACM Transactions on Modeling
and Computer Simulation 8 (1998) 3-30.

[32] N. Mladenovi¢ and P. Hansen, Variable neighbourhood search, Computers and Opera-
tions Research 24 (1997) 1097-1100.

[33] M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures, in
Handbook of Metaheuristics, F. Glover and G. Kochenberger (eds.), Kluwer Academic
Publishers, Boston, 2003, pp. 219-249.

[34] M.G.C. Resende and C.C. Ribeiro, GRASP with path-relinking: Recent advances
and applications, in Metaheuristics: Progress as Real Problem Solvers, T. Ibaraki, K.
Nonobe and M. Yagiura (eds.), Kluwer Academic Publishers, Boston, 2005, pp. 29-63.

[35] C.R. Reeves, Genetic algorithms, in Modern Heuristic Techniques for Combinatorial
Problems, C.R. Reeves (ed.), Wiley, New York, 1993, pp. 151-196.

[36] C.R. Reeves, Genetic algorithms, in Handbook of Metaheuristics, F. Glover and G.
Kochenberger (eds.), Kluwer Academic Publishers, Boston, 2003, pp. 65-82.

[37] B.D. Ripley, Thoughts on pseudorandom number generators, J. Comput. Appl. Math.
31 (1990) 153-163.

[38] L. Schrage, A more portable Fortran random number generator, ACM Transactions on
Mathematical Software 5 (1979) 132-138.

578 C.C. RIBEIRO, R.C. SOUZA AND C.E.C. VIEIRA

[39] K.S. Trivedi, Probability and statistics with reliability, queuing and computer science
applications, Prentice-Hall, 1992.

Manuscript received 14 March 2005
revised 238 April 2005
accepted for publication 28 April 2005

CeLso C. RIBEIRO

Universidade Federal Fluminense, Department of Computer Science, Rua Passo da Patria 156,
Niterdi 24210-240, Brazil

E-mail address: celsoQic.uff.br

REINALDO C. Souza

Pontificia Universidade Catoélica do Rio de Janeiro, Department of Electrical Engineering,
Rua Marqués de Sao Vicente 225, Rio de Janeiro 22453-900, Brazil

E-mail address: reinaldo@ele.puc-rio.br

CarrLos EpvuarDo C. VIEIRA

Pontificia Universidade Catdlica do Rio de Janeiro, Department of Computer Science,
Rua Marqués de Sao Vicente 225, Rio de Janeiro 22453-900, Brazil

E-mail address: cadu@inf.puc-rio.br

