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Abstract: For the case of a personnel planning situation for a very large car manufacturer, this paper
investigates the interaction between management decisions and scheduling. In particular, we consider the
manufacturing of car bodies or pieces of them within a press machine shop and propose an efficient procedure
to overcome deficiencies in manpower planning and in-time production. The presented model allows to
minimize the maximum number of workers required per time unit. We propose an optimal as well as a
heuristic algorithm based upon a branch-and-bound procedure.
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Introduction

Manpower planning and scheduling belong to a company’s most cost sensitive areas and
management can highly benefit from well made scheduling decisions on the operational
level. Within the car industry in particular, the ability to reduce costs and thus to follow
a low pricing strategy is of utmost importance in order to compete in today’s world wide
markets.

High labor productivity is usually achieved with the help of creating flexible labor sched-
ules, reduction of personnel as well as better use of the available capacity. However, regula-
tions and union agreements restrict the limit by which the first two aspects can be considered.
Furthermore, while machine capacity adaptations can be accomplished with relative ease,
demand fluctuations can usually only be accommodated to a small extend by changing the
capacity of personnel. Therefore, personnel planning and scheduling procedures in the au-
tomotive industry require the development of sophisticated planning procedures in order to
allow for high labor productivity while considering the inflexibility of labor capacity in the
short run.

The typical personnel planning process often starts with the assessment of work force
requirements using some kind of rough cut approach on the tactical level. A common pro-
cedure in order to estimate the work force requirements per day is to take the car volume
produced per month, multiply it by the required production time per car and divide it by
the number of working days per month as well as the work time per day and worker. To ac-
commodate different models with different features, a weighted average value is taken for the

Copyright © 2005 Yokohama Publishers  http://www.ybook.co.jp



546 E. PESCH AND U.A.W. TETZLAFF

production volume as well as for the production time per car. Additionally, corrections are
made to allow for the outsourcing of some production, the production of additional service
parts, lost production due to scrap, rework and machine downtime as well as startup times
and productivity improvements due to learning. The result is further adjusted to include
absenteeism due to vacation or illness. Once the estimate for the work force requirements
is obtained, more detailed planning is performed on the operational level by scheduling and
assigning the work force on a daily basis to different machines.

Inflexibility in work force adjustments in the short run necessitates careful planning and
makes it desirable to coordinate labor supply and demand as accurate as possible. The above
described rough cut approach, however, entails some shortcomings. In particular, the model
mix calculations using weight factors to calculate some average production volume and time
is quite inaccurate since it is based on past data. Furthermore, dynamic aspects like the
actual fluctuations in labor demand caused by the different labor requirements of different
production lots are neglected. Therefore, in what follows we present an integrated approach
which simultaneously performs labor requirements planning and personnel scheduling for
a set of parallel machines (see also related work in Blazewicz et al. [4]). The objective is
to minimize the required workforce per time period over a given planning horizon T'. For
the resulting binary integer problem we propose an optimal as well as a heuristic algorithm
based on a branch-and-bound type procedure.

This paper is structured as follows. The next section provides a detailed analysis of
the given situation at the car manufacturer. Our proposed model formulation in order to
overcome given planning deficiencies is described in section 3. Section 4 provides a detailed
outline of the solution procedures suggested to solve our model. It is followed by a description
of the data set used to benchmark and test our model and solution procedure. The obtained
test results are provided in section 6. We conclude with some final remarks in section 7.

Problem Description

This section provides a detailed analysis of the planning procedure at the car manufacturer.
The given hierarchical approach starts on the tactical level with a personnel requirements
planning step. It will be outlined in detail in the next subsection. It is followed by another
subsection which demonstrates how these results from the tactical level are then used on
the operational level to perform personnel scheduling decisions.

Personnel Requirements Planning

At the time we analyzed the car plant’s situation there were 1035 people employed in the
press machine shop. Seventy-nine people did some administrative work, while 545 operated
the press machines and 411 people were needed for manufacturing support functions like
material handling, setup operations, etc. The factory produced 839 different items needed
for 9 different car plants all over the world. These close ties to other plant locations docu-
ments the relative importance of the continuously ongoing production in the considered press
machine shop. The shop itself is divided into 3 areas. We focus in our study on the biggest
and most important one which contains 32 press machines that can be partitioned into 7
different groups. In this paper we will further limit our scope on the planning and scheduling
process of only the most important group of 7 large and expensive transfer presses. How-
ever, all planning steps can be applied to the remaining groups as well, requiring only slight
modifications in the input data. Of the machines under consideration (for convenience we
call them P1,P2,..., P7), a single large transfer press can operate more than 600 tons of
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rolled metal sheet per day.

A worker at the car plant is supposed to work 35 hours a week. Considering a lunch
break, the paid number of hours per day is 7.75. In order to avoid having a 4.5-day week,
workers either work 4 days (31 hours) a week or 5 days (38.75 hours) a week. Every worker
has an account to keep track of his or her work hours and to ensure a credit-debit equi-
librium by the end of a year. An important goal of this “corridor model” of flexible labor
schedules is to buffer differences in the order volumes implied by model changes or any
kind of seasonal effects. In order to calculate the number of people necessary to perform a
particular task, the number of paid work hours will be reduced by the number of breaks.
Thus, the work time per day of any of the workers results to 7.11 hours. Using the above
given equation of work force requirements an additional 15% is added to the obtained value
due to illness and vacation. The obtained calculated number of people is increased by an
additional 22% of which are 17% due to production failures and machine breakdowns larger
than 30 minutes and the remaining 5% due to slight production modifications that lead to
a temporary performance decrease. Additional personnel is needed for a number of minor
important tasks. We are not going to describe the calculations of the processing times since
they heavily depend on the car model produced, vary between machines and include times
for cleaning, information transfer etc.

@ The Scheduling Problem

A job produced on a press machine is a large collection of items of the same type. Thus,
a job is a batch, the size of which satisfies the demand of 3 to 5 days. Additionally, some
exceptional items are produced in very small amounts. The number of workers that service
a press machine depends on the machine as well as on the item’s weight, size and quality
requirements. Moreover, some of the machines allow a setup while processing. A comparison
of the calculated personnel requirements and the real number of people needed for production
revealed an increasing gap over the last 20 months. For instance, in June (a month without
any unusual effects) the number of people needed exceeded the calculated number by 32
(with respect to the whole press machine shop and not restricted to the large transfer press
machines P1, ..., P7) altogether accumulating 5200 overtime hours. The overtime was not
compensated by taking time off and thus was not balanced in the corridor model: within 20
months the work time balance (credit minus debit) increased from —2721 to 14188 hours. As
seasonal effects can be excluded, the question arises whether the workers are fully occupied.
Surprisingly, the main reason for the increasing number of overtime hours was an insufficient
number of workers at some of the machines where the available workers were unable to
perform job assignments that require more personnel. Consequently, they were waiting for
additional personnel to be set free when jobs are finished at other machines. Thus, it is
desirable to have a schedule that balances the number of workers over the given planning
horizon. This is even more important as all workers perform an 8 hour shift irrespectively
whether they are needed for only a short time or the complete shift. In order to achieve a
resource balance we therefore suggest to minimize the maximum number of workers required
to produce all jobs in time. In the remainder of this paper we will present such an approach
restricting our attention without much loss of generality on the 7 transfer press machines
P1,...,PT.
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Model Formulation
This section presents the model formulation to address our personnel planning problem for
a set of parallel working press machines. Next, however, we provide the notation used as

well as a list of assumptions made by our model.

Notation .

indices:
t : index for time periods, t =1,...,T;
J : index for machines, j =1,..., M;
i : index for the jobs, i =1,..., Nj;
parameters:
di; : required number of workers per period for job ¢ on machine j;
D : available number of workers per period;
M : number of machines
N; : total number of jobs for machine j to be processed during
the given planning horizon;

Dij : processing time given by the number of periods required for job ¢ on machine j;
T : planning horizon;
variables:

_J 1 if the i-th job is started at the beginning of period ¢ on machine j
Tt B {0 otherwise

Our formulation is based on the following assumptions:
1. The number of time periods for the given planning horizon is known.

2. There is a given set of jobs to be processed and for each job it is known on which
machine it has to be processed. Thus, we could simplify our model if the machine
index j is dropped.

3. Processing times are known.
4. The required number of personnel for each job is known.
5. The number of available machines is known and constant.

6. Once a job is started at a machine it has to be finished without interruption, i.e.,
service is non-preemptive.

7. Each machine can only perform one job at a time.
8. The machines are available for the complete planning horizon.
9. Jobs can only start at the beginning of a time period.

10. Workers can do any kind of task on any machine.
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The objective function of our formulation minimizes the number of workers by minimizing
the maximal requirements over all time periods within the given planning horizon. This is
achieved by minimizing the maximum value over ¢ subject to several constraints. Hence, the
number of required workers for all jobs i in process at period ¢ (indicated by an assignment
of value one to the decision variables z;;,t —p;; + 1 < ' < t) is calculated. A survey on
closely related resource constraint scheduling problems is provided in Brucker et al. [5].

The first set of constraints (2) requires that all jobs are finished within the given time
horizon. Thus the time period when the job starts plus the required processing time has to
be less than or equal to the number of time periods T available, i.e. the job’s ending period
given by p;; — 1+ ¢ is less than or at most 7' if job 4 starts at the beginning of period t.
Because the time period when we start the job is subject to our decision variable z;;; we
sum over all periods ¢ and multiply by the ending times. It ensures that the appropriate
ending time is selected since each job is only processed once and x is a binary decision
variable. The following set of constraints (3) requires that at most one job is processed at
machine j at each time period ¢. This is incorporated by summing up all decision variables
x over all jobs N; at machine j and set this sum less than or equal to one. Since a job
which is processed at time period ¢ might have started prior to ¢, to be precise, sometime
between ¢t — p;; + 1 and ¢, we also have to consider the sum of the decision variables over
these time periods. Additionally, we have to require that all jobs to be processed at machine
Jj are finished within the given planning horizon. Thus, in (4) the sum of z;; over all time
periods T" and jobs N; for machine j has to be equal to N;. Next in (5), we have to ensure
that the number of available workers at each planning period is not exceeded. Similar as
within the objective function, we take our decision variables z;;; and multiply them with the
number of workers d;; required for processing the job ¢ at machine j. By summing over all
machines, jobs at the machines, and number of processing periods required for each job, the
worker requirements are obtained for each ¢. The result is then set less than or equal to D,
the number of workers available at each period. Of course, constraints (5) may be dropped
since either the objective function ensures its satisfaction or, if (5) cannot be satisfied the
acceptance of the solution is left to the user. Finally we define our decision variable z;;; as
binary variables.

M Nj pij—1
min 113t3‘<XTZZ Tij(e—k) dij (1)
- = j=1i=1 k=0
s.t.
T
Y iy —1+8) <T Vi,Vj (2)
t=1
Nj pij—1
Z Tij—r) <1 V5, Vi (3)
i=1 k=0

Jj

T N.
> > wip=N; Vj (4)

t=1 i=1
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j pij—1

M N
ZZ Z Tije—k) dij <D Vit (5)

j=1i=1 k=0

Tije € {0)1} Vi, Vj, Vit (6)

Similar models on resource balancing and minimization of the peak of resource usage
are described in [6]. Our problem is closely related to task scheduling of multiprogramming
computer systems where each task is characterized by its processing time and memory
requirements. For details we refer to Krause et al. [9].

The problem is NP-hard even for the case of dedicated machines when index j can be
dropped in the model. It can be reduced to the one-dimensional bin packing problem, cf.
Alvim et al. [1] and Coffman et al. [7]. Consider the one-dimensional bin packing problem
that consists of finding the minimum number of bins of capacity D necessary to pack a set
of items i with weights d;; without violating the capacity constraints. There is a min-max
”dual” formulation (see [8]) in which the bin capacity D of a fixed number T of identical
bins is to be minimized. The dual bin packing problem is closely related to scheduling a set
of jobs on parallel machines subject to minimizing the makespan, cf. [4].

Solution Procedure

A solution for the model formulation provided above can be found with a branch-and-bound
type approach. Below we describe in detail such a procedure. We begin with a heuristic
in order to generate a feasible solution using it as an upper bound. It is followed by a
description of several lower bounds, the branching strategy and the fathoming criteria. We
conclude with a pseudo-code description of the complete procedure.

Upper Bound

In order to obtain an upper bound (UB), a feasible solution is generated by a heuristic
procedure. This procedure starts by generating sequences for each machine j by sequencing
the machine’s N; jobs in non-increasing order based upon worker requirements d;;. Jobs
with the same worker requirements are ordered arbitrarily. These job sequences are then
sorted according to the value of their first members such that another sequence, a machine
sequence, is obtained. The first member of the machine sequence is the machine j with the
highest first d;; of its job sequence, the second machine is the sequence with the second
highest first d;; of its job sequence and so forth until all machines are considered and sorted.
In case of a tie, the machine order is based on the comparison of the first period ¢ in which
a pair of jobs i and i’ has different worker requirements d;; # d;;;. Machine j precedes
machine j' if d;; > d; ;. In other words, we assign to every machine a T-tuple. The tuple
entries are the worker requirements of the job sequence of this machine. Hence, assuming
that the jobs dedicated to machine j are processed in non-increasing order of the worker
requirements and without any idle time on j, the tuple entry at position ¢, 1 <t < T, is d;;
if job i is processed in period ¢ on machine j. The entry is 0 if all jobs have been completed
on machine j. A lexicographic order of these tuples (starting with the largest one) delivers
the desired machine sequence. Identical sequences are considered in arbitrary order.
Finally job assignments are performed based on this machine sequence. It is achieved by
first taking the jobs of the first member of the machine sequence and assign its jobs according
to the order of its job sequence. Next the second machine of the machine sequence is taken
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and its jobs are assigned according to the reversed order of its job sequences. Thus we
continue to assign jobs to the machines by considering the machines in the order of the
machine sequence and then assigning jobs in the alternating order of their job sequences,
i.e., first starting from the beginning of the job sequence for the first machine, next starting
from the end of the job sequence for the second machine, and after that again starting
from the beginning of the job sequence for the third machine and so on. Thus the basic
idea of this procedure is to separate the jobs with the highest worker requirements as much
as possible. In our application this procedure always provides an easily computable upper
bound. However, if the available number of workers D is small, the procedure’s outcome
might violate constraint set (5) and the obtained ”upper bound” will be dominated by D.

Example : Consider the data of Table I. This procedure generates the job sequences
3,2,1,4 for the first machine, 1,3,2 and 1,2,3 for machines 2 and 3, respectively. The
three 12 — tuples are (443333222222), (444433322220) and (444422222200) for the machines
1,2 and 3, respectively. The obtained machine sequence is 2,3,1. Thus the three jobs on
machine 2 are scheduled in the sequence 1, 3,2. The jobs on machine 3 are scheduled in the
sequence 3,2,1 and the job order on machine 1 is 3,2,1,4. As a machine has no idle time
until all its jobs have been completed, the number of workers needed over all 12 periods is
10,10,9,9,8,8,9,8,8,8,4,2. The initial upper bound is therefore equal to 10.

Table I: Personnel requirements and processing times.

machine 1 machine 2 machine 3
job | pix [ da [[ job | piz [ diz || job | pis | dis
1 3 21 4 411 4 4
2 4 31 2 4 2 2 3 2
3 2 41 3 3 31 3 3 2
4 3 2

Next it can be proved that the UB is an optimal solution for the two machine case. A
proof is a consequence of a reformulation of this problem as a bottleneck assignment problem
satisfying the Monge property. For details see the paper by Bein et al. [3]. However, we
will provide a straightforward proof with some interchange arguments.

Theorem: The UB is an optimal solution for the two machine case.

Proof. Assume for the moment that all jobs are unit-time jobs and consider an optimal
solution of (1) to (6) for the case of two machines. Moreover, because of (2) assume that the
number of jobs equals T for both machines. Otherwise, if the number of jobs on a machine
is smaller than 7', say k, we can add T — k additional unit-time jobs requiring no resources,
i.e. no workers. For simplicity use the same numbering for jobs and periods. Suppose the
job orders of the solution do not satisfy the condition that all jobs on the first machine are
in non-increasing resource demand order d;;, ¢ = 1,...,T, and all the jobs on the second
machine are in non-decreasing order d;2, ¢ = 1,...,T. Let i1 and i» be the first job on the
first and the second machine, respectively, satisfying

din > da > - > dg 1y < diga
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and
dig <dap <--- < diiy_1)2 > diy2

Assume that among all optimal solutions we choose that one with a job sequence which
has a non-increasing resource demand of maximum length, i.e. i; is maximum among all
optimal solutions. Among the optimal solutions with that property we select one where i
is maximum.

Case 1: iy <i2. The worker requirements in periods i1 — 1 and 1 are d(;, —1); +d(;, —1)2
and d;,;1 + d;,2, respectively. Exchange jobs i¢; and ¢; — 1 on the first machine. Now,
the worker requirements in periods ¢; — 1 and ¢; are d;;; + d(i1_1)2 < d;;1 + diy2 and
d(i1—1)1 +d;,2 < di;1+d;, 2, respectively. Hence the exchange did not deteriorate the objective
function and the obtained solution is still optimal. Repeat this exchange argument until job
i1 is positioned on machine one in non-increasing order of the resource demand. This is a
contradiction that ¢; was maximum, because we obtained a solution where at least ¢; jobs
are ordered in non-increasing resource demand.

Case 2: i; > iy. This can be achieved applying a similar argument to the second machine
and i5. Exchange jobs iy and i, — 1 on the second machine. Now, the worker requirements
in periods iz — 1 and iz are diy2 + d(;,—1)1 < diy—1)2 + dii,—1)1 and dg,_1)2 + diy1 <
d(i,—1)2 + d(i,—1)1, respectively. Hence, the obtained solution is still optimal. Repeat this
exchange argument until job ¢ is positioned on machine two in non-decreasing order of the
resource demand. This is a contradiction that i» was maximum.

Case 3: i1 = i2. Exchange jobs iy and i; — 1 on both machines. Obviously the maximum
resource demand did not change. For the obtained solution one of the three cases applies
until job i; is positioned on machine one in non-increasing order of resource demand and
job iy is positioned on machine two in non-decreasing resource demand order.

Hence, there is an optimal solution where all jobs on machine 1 are ordered with non-
increasing resource demands while those of the second machine are ordered with non-
decreasing resource demands. A job ¢ with processing time p;; > 1 (or p;z > 1) will be
split into p;1 (or p;2) unit-time jobs, all of which the upper bound procedure positioned next
to each other. As the resource demand is the same for the whole job duration, the procedure
generates an optimal solution. O

Lower Bound

Lower bounds are generated within two steps. The first step consists of generating a candi-
date for the lower bound. This is achieved by taking the maximum of two possible bounds.
A first bound consists of the average worker requirements rounded to its next higher integer
value:

(7)

M N
LBl = ’VEjl 2ic1 Pijdij-‘
B T

A second bound is given by taking the largest worker requirement d;;, i.e.

LB2 = max{d;;} (8)
2,7
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Thus the candidate for the lower bound from the first step consists of
LB = max{LB1,LB2} (9)

Within a second step we eventually improve this candidate by taking a relaxation of the
original problem formulation in order to test if the lower bound candidate allows to obtain
a feasible solution for this relaxed formulation. If this is the case, the candidate is our
lower bound. Otherwise, the value of the candidate is increased incrementally by one until
a feasible solution for the relaxation is obtained. Hereby, the relaxation consists of the
following simplifications:

1. Jobs may be interrupted, i.e., preemption is allowed.

2. Jobs may be processed in a parallel fashion on several machines, even on machines on
which it is from a technical point of view not possible.

3. The number of machines is not restricted, thus the number of jobs processed in a
parallel fashion might surpass the value of M.

The unlimited number of machines assures that only the resource capacity, i.e. the
number of workers, but not the unavailability of a machine is a limiting factor and a reason
to schedule a job in the next period. A job requiring a small number of workers will never
be shifted to a later time period as long as the minimum number of still available workers
(not yet occupied workers needed for processing of other jobs at the same time) during the
job’s processing periods is not exceeded, even if the number of machines is not sufficient.

To obtain a solution for our relaxed formulation we proceed as follows. First, each job
¢ on machine j is split into p;; unit-time jobs each of which requires d;; workers during its
execution. Then all jobs, independent on which machine they have to be processed, are
sorted according to their worker requirements d;; in descending order. From this list we
take the first member and assign it to a machine for one time period. Next we test if we still
have further worker capacity available, by subtracting the d;; value of our assigned job from
our LB value obtained during the previous step. If we still have further worker capacity
available (LB > d;; of the assigned job) we try to assign the next unit-time job in sequence
to one of the other machines. We take the next one from the list and assign it to one of the
other machines, again under the condition that enough workers are available. Otherwise, if
the worker requirement d;; of all non-assigned jobs exceeds LB, we assign the first job in
the sequence to be processed in the next time period. We continue in this fashion always
assigning jobs to machines taken from our list in sequential order and trying to fit them in
as early as possible to a single time period, given that enough workers are still available in
that period. Once we have assigned all jobs, we calculate the obtained makespan C,4. of
our result. If C,,,. is smaller or equal to T we are finished, and we maintain our LB from
the first step. If, however, C,,q. is larger than 7', we increase our LB value by one and thus
our available worker capacity per time period and repeat the above procedure. We continue
in this way until we have C,.. < T and call the obtained new lower bound of this second
step ”artificial lower bound” ALB. Note that the preemptive version of the problem in the
second step of the lower bound calculation is still NP-hard because it is identical with the
one-dimensional bin packing problem which has been shown to be NP-hard, cf. [7].

Examples :  The first example consists of a set of three parallel machines (M = 3) and
a planning horizon of T = 14 periods. There are a total of ten jobs to be assigned. Each
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job has a duration of p;; time units with given personnel requirements of d;;. The precise
data is given in Table I.

A lower bound calculation yields LB = LB1 = [6.6] = 7. However, there is no feasible
solution for our model (1) to (6) with D = 7. The second step of the lower bound calculations
provides a bound of 8 which is optimal. An optimal solution e.g. is

T113 = T416 = L219 = L31(13) — L224 = L328 = T12(11) — L131 = T235 = T338 = 1

and z;;; = 0 for any other combination of indices ¢, j and ¢. The number of workers required
in all 14 periods is described through the vector (4,4,6,8,6,6,6,7,8,8,7,7,8,8).

The reader may have noticed that the lower bound obtained through the second step of
our lower bound calculations need not to be a true lower bound as the following example
of a schedule for 6 unit-time jobs on 3 different machines shows: Assume 7" = 2 and the
worker requirements are d11 = 2,d21 = 4,d12 = 2,d22 = 3,d13 = 2 and d23 = 3. We
obtain LB = LB1 = 8, a value that will be increased to 9 in the second step of the
lower bound calculation. However, there exists an optimal solution with just 8 workers:
Ti12 = Toge = Tz = T131 = T121 = T211 = 1 and z;;; = 0 for all other combinations of i,
Jj, and t. Hence, ”the artificial lower bound” (ALB) of the second step may cause branch
truncations of optimal solutions in the branch-and-bound tree.

Branching Strategy

In order to solve our formulation by a branch-and-bound procedure, a depth-first strategy
is applied. Moreover, every search tree node corresponds to a current scheduling period
and a subschedule (which is empty at the beginning of the branch-and-bound. Consider
a particular search tree node and the associated current scheduling period 7 which is the
minimum among all earliest possible starting times of all unscheduled jobs. As 7 is defined
by the set of non-scheduled jobs it is obviously independent of the machines and it is greater
or equal to the earliest time that a machine becomes idle again. We use a branching rule
based upon the calculation of a priority value which for a particular job is based upon the
worker requirements multiplied with the processing time:

PV; = di'pi' (10)
J

Thus, at each node out of the set of all non-delayed and feasible jobs that job is selected for
branching which has the highest priority value PV;; and which has not yet been tested. A
job is non-delayed if its earliest possible starting time coincides with the current scheduling
period 7. By the definition of the current scheduling period we can always find a non-
delayed job as long as not all jobs have been scheduled. The feasibility is hereby determined
by requiring that, for the duration of the job’s processing time, the required machine and a
sufficient number of workers are available. In that case the scheduled job will be assigned
to its machine in order to be processed for p;; time units. Thus, this branch leads to a
(left) search tree node, defined by assigning a not yet scheduled and non-delayed job i to
its machine j. Associated with this node is again a scheduling period 7, and a subschedule
which is obtained from the current one (in the current search tree node) through additionally
scheduling job i. The start time of ¢ in the obtained subschedule is 7 which is the earliest
possible start time. The completion time 74 p;; of i is a lower bound on the earliest possible
start time of every job that is not yet scheduled but supposed to be scheduled on machine
j. The scheduling period 71 is greater or equal to the scheduling period 7 of the preceding
search tree node. Again, 7 is equal to the minimum among all earliest possible starting
times of all unscheduled jobs, a set not containing job 7 any longer. An alternative branch
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and corresponding (right) search tree node with associated scheduling period 7» is generated
where scheduling of the particular job ¢ will be delayed until at least one other job in the
order of the sequence of the priority values has been scheduled. In case a job is delayed
its earliest possible start time is defined to be greater than the current schedule time 7. If
job i can be feasibly assigned to its machine but no other job is feasible that node will not
be generated. There are two reasons for delaying job i. Either ¢ cannot be scheduled on
its machine starting in period 7 because of an insufficient number of available workers, or
scheduling of ¢ cannot lead to an optimal solution. In the first case, an earliest possible
start time of ¢ is the first period ¢ where a sufficient number of workers becomes available
again over at least p;; time units. This can be the case if at least one currently scheduled
job finishes processing. In the second case, job ¢ will be delayed by one time unit, i.e. the
machine is idle for one time unit or a number of unit time periods required for processing
another job i’ on the same machine. Hence, 7 is delayed until i’ is scheduled on machine
j and the earliest possible start of 7 is set to the completion time of i'. The only reason
for keeping the machine idle for one period of time 7 is that the resource demand can be
kept smaller in 7 if machine j is idle. There is a set of jobs that is scheduled in 7. If the
same set, of jobs is scheduled in 7+ 1 then job ¢ must be delayed by at least two time units.
Continuing this argumentation, in order not to deteriorate the current objective function
value, job ¢ must be delayed at least until another job is completed. If i is not scheduled at
7 another job i’ might be scheduled (not necessarily on the same machine). Again i cannot
be started earlier than the completion time of another job in the partial schedule. Thus
job ¢ will be delayed until at least one other job is scheduled completely. The scheduling
period 75 of the successor node of the current search tree node is equal to 7 if there are
non-delayed (earliest start time is equal to 7) and feasible jobs among the set of not yet
scheduled jobs. Otherwise, 75 is set to the minimum earliest possible starting time from the
set of all unscheduled jobs. In summary, the left search tree node always leads to a schedule
where an additional job has been scheduled. The right search tree node keeps the current
schedule as it is and increases the earliest starting time of a job.

Fathoming Criteria

Fathoming criteria serve to stop the depth-first strategy in case it is foreseeable that no
feasible or no better solution than min{UB, D} can be generated. There are three different
criteria:

1. At each time period ¢ the sum of the remaining processing times for the jobs still to be
processed at a given machine j is calculated for all machines. If one or more of these
sums will exceed the remaining available time until T', no feasible solution is possible
with the subschedule obtained so far.

2. The necessary worker capacity at any time period is greater than (or equal to) min{U B,
D} and thus the solution cannot improve or does not exist.

3. The sum of priority values of the jobs not yet assigned at time period ¢ is larger than
the value of ((T'—t) min{U B, D})+(min{U B, D} —already used worker capacity at t).
Thus the equation for LB1 is applied at each time period t to check for solutions which
do not improve the upper bound.

The Pseudo-Code

1. Generate an upper bound UB (section 4.1).
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2. Calculate a lower bound LB and the artificial lower bound ALB (section 4.2).
3. Set UB :=min{UB — 1,ALB, D}

4. Perform branch-and-bound with respect to the upper bound UB and the lower bound
LB.

Generate next search tree node i
If any of the fathoming criteria in section 4.4 is met, then node i can be cut off.

)

)
(c) Repeat step 4 until all nodes are fathomed.
(a)

If a new feasible solution has been obtained with an objective function value
OV < UB then set UB := OV — 1 and perform step 4 until no feasible solution
is obtained. Last feasible OV is the optimal solution.

(b) If no feasible solution has been found so far having an objective function value
OV < D then set UB := UB+ 1 and LB = UB. If UB < D go to step 4,
otherwise stop: no feasible solution exists.

Remark: In step 4.b a node based lower bound has been calculated according to 3. of the
fathoming criteria given in section 4.4. If this bound is replaced by a node based artificial
lower bound, nodes otherwise leading to an optimal solution in the search tree might be
fathomed. In that case the run time of the branch-and-bound procedure will be decreased,
however, finding an optimal solution can no longer be guaranteed.

The Data

The given problem appeared in the automobile production in Germany. We considered
7 huge press machines which were partitioned into two groups consisting of the machines
P1,P2,P3, P4 and P5,P6,P7. There is a basic reason for machine grouping: workers
can be assigned to either of the two groups allowing for group work with increased work
motivation and satisfaction due to increased responsibility. In addition the algorithm’s run
time can be kept lower. The number of jobs to be scheduled on the machines of group 1
and 2 are 55 and 53, respectively. Each job consists of a certain lot size of several thousand
pieces. A detailed description of the data is provided in Tables II-VIII.

For every machine the first column contains the job number (i.e. in practice it corre-
sponds to a job identification and description); column 2 contains the job’s lot size, while
column 3 provides the number of items that can be produced per hour. Column 4 contains
the number of required workers. Column 5 shows the approximate processing times for the
whole lot size. These times are rounded up to full hours in order to include breaks, setup
times of no more than 10 minutes (if they are larger than one hour they are, however, in-
cluded as a separate job), and machine downtimes. Finally, the last column contains the
result of our computation, the period for the beginning of a j ob.Aproduction cycle for the
items of one specific car type consists of 5 days, for items of other car types it is only 3
days, i.e. every 3 (or 5) days the same set of items has to be produced in order to avoid
production downtimes in downstream production processes. Furthermore, some items need
to be processed only once within 3 weeks (in our data sets these are the items with no start
time entry). In order to meet the aforementioned requirements and because different car
types are produced simultaneously, the lengths of a production cycle has been set to 3 days,
i.e. T = 72 periods with one period being equal to one hour. This requires that some of
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Table II: Data for machine P1.

| job | lot size | items per hr. | # workers | proc. time | start time |
1 2000 780 5 3 46
2 3500 810 3 5 9
3 3000 840 3 4 55
4 3000 900 3 4 59
) 3000 900 3 4 63
6 4200 780 4 6 14
7 4200 780 4 6 25
8 4200 900 3 5 41
9 4200 900 3 ) 50
10 4000 960 2 5 32
11 3000 900 2 4 37
12 3500 810 3 )
Table III: Data for machine P2.
| job | lot size | items per hr. | # workers | proc. time | start time |

1 3500 960 2 4 28
2 3500 960 2 4 46
3 1800 720 3 3 60
4 2400 960 3 3 63
) 1800 960 2 2 68
6 7500 960 2 8 20
7 7500 960 4 8 12
8 7500 720 5 1 1
9 3000 960 4 4 38
10 1500 960 4 2 66
11 3000 960 4 4 42
12 1500 960 4 2

13 1800 720 3 3

557
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Table IV: Data for machine P3.

| job | lot size | items per hr. | # workers | proc. time | start time |
1 3500 900 ) 4 45
2 3500 960 2 4 39
3 3500 720 ) 5 30
4 2000 720 ) 3 57
) 2000 720 3 4 35
6 7000 750 3 10 10
7 7000 750 3 10 20
8 8000 960 4 9 1
9 3000 780 4 4 49
10 3000 780 4 4 53
11 2000 720 ) 3
Table V: Data for machine P4.
| job | lot size | items per hr. [ # workers | proc. time | start time |

1 3000 720 7 5 20
2 2000 720 7 3 35
3 2000 720 ) 3 49
4 2000 600 ) 4 31
) 1500 600 ) 3 52
6 2000 720 4 3 99
7 2000 720 4 3 58
8 3000 660 3 ) 25
9 2000 660 3 3 42
10 2000 600 3 4 38
11 2000 660 3 3 61
12 6100 780 3 8 1
13 1000 660 3 2 64
14 1500 600 ) 3 1
15 2500 780 3 4 38
16 2000 600 ) 4 66
17 2000 660 4 3 42
18 2000 660 3 3

19 1000 780 3 2
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Table VI: Data for machine P5.

| job | lot size | items per hr. | # workers | proc. time | start time |
1 11000 1140 2.5 10 1
2 3000 1080 2.5 3 o7
3 11000 1140 2.5 10 11
4 9000 1200 2.5 8 30
) 4000 900 2.5 5 52
6 7000 1080 2.5 7 38
7 7000 1020 2.5 7 45
8 7000 840 2.5 9 21
Table VII: Data for machine P6.
| job | lot size | items per hr. | # workers | proc. time | start time |

1 5000 1080 2.5 5 44
2 7000 1080 2.5 7 19
3 1000 1200 2.5 2 67
4 2000 900 2.5 3 61
) 3000 960 2.5 4 57
6 5000 900 2.5 6 26
7 5000 900 2.5 6 32
8 2000 900 2.5 3 64
9 8000 960 2.5 9 10
10 7000 1200 2.5 6 38
11 1000 900 2.5 2 69
12 2000 1200 2 2 49
13 3000 1200 1.5 3 7
14 7000 1200 1.5 6 1
15 1000 1200 2.5 2

16 5000 900 2.5 6

17 2000 900 2.5 3

18 2500 780 2.5 4

19 2000 780 2.5 3

20 5000 900 2.5 6

21 1000 900 2.5 2

22 2000 1200 2 2

23 2000 960 1.5 3
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Table VIII: Data for machine P7.

job | lot size | items per hr. | # workers | proc. time | start time

1 3000 1020 4.5 3 o4
2 7000 900 3.5 8 1
3 4000 960 3.5 5 49
4 2500 1200 2.5 3 31
) 2500 1080 2.5 3 34
6 2000 1080 2.5 2 47
7 3000 1080 2.5 3 37
8 3000 1080 2.5 3 40
9 2000 1080 2.5 2 o7
10 7500 1200 2.5 7 17
11 7000 960 2.5 8 9
12 1000 1200 2.5 2 99
13 8000 1200 1.5 7 24
14 3000 1200 1.5 3 61
15 3000 1200 1.5 3 64
16 4000 1200 1.5 4 43
17 3000 1080 1.5 3 67
18 2000 1020 1.5 2 70
19 3000 1080 2.5 3

20 2000 1200 25 2

21 3000 1200 1.5 3

22 1000 1080 1.5 2

the items with a cycle time of 5 days to be exchanged between cycles in order to meet the 5
day cycle time requirement. An item replacing another one in a previous cycle has to have
the same processing time as well as the same resource demand. Items that can replace each
other are listed in Table IX. Any two jobs of a pair can replace each other on their respective
machine.

@ The Results

The algorithm has been implemented in Delphi and all computations were performed on a PC
with a 1.4 GHz processor and 512 MB RAM. Let us first consider the 3 machine subproblem.
Its solution took less than a second. The starting times of the jobs are provided in Tables
VI-VIII.

The maximum number of workers required per period of an optimal solution is 9. The
initial solution (obtained through the procedure given in section 4.1) provides an upper
bound UB = 10. The lower bound is equal to LB = LB1 = 8. The artificial lower bound is
obtained as ALB = 9 and turns out to be a correct lower bound. Hence the first schedule
generated by the branch and bound procedure was optimal. The solution is also shown by
means of a Gantt-chart (see Figure 1). The branch-and-bound procedure selects variables
with respect to decreasing priority values PV;;, which results in a larger resource usage in
the earlier periods. Indeed, for the very last period no job is scheduled. Up to period 50 all
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Table IX: Possible job replacements.

machine || job replacements

Pl (2,12)

P2 (9,12) (3,13)

P3 (4,11)

P4 (5,14) (10,15) (4,16) (7,17) (9,18) (13,19)

P5 -

P6 (3,15) (6,16) (8,17) (5,18) (4,19) (7,20) (11,21) (12,22) (13,23)
P7 (8,19) (12,20) (17,21) (18,22)

machines are continuously busy. P7 is busy over all 71 periods because the sum of processing
times for all jobs on this machine equals 71. Periods in which P35 is idle require at most 6
workers. All jobs on P5 can be operated by only 3 workers (rounded up). Hence, any job
schedule on P5 does not effect the overall solution and a machine breakdown of P5 for at
most 13 hours does not lead to a new production plan and can be overcome requiring no
further personnel. Moreover, bottlenecks on other press machines might be overcome easily
if the workers from P5 are reassigned. Thus P5 has at least 13 hours of overcapacity for
bottlenecks in other areas.

The optimal solution of the 4-machine subproblem requires up to 12 workers in some
periods. The initial solution of the procedure from section 4.1 has an upper bound of
UB = 13. The lower bound is LB = 11. In contrast to the 3-machine subproblem all 4
machines have certain amounts of idle time for machine repairs or inspection. Again, an
overcapacity during at least 13 work hours is available to overcome bottlenecks in other
production areas. Surprisingly, for the last 3 hours all machines are idle and the 12 workers
are available for other tasks such as machine setup, material transportation etc. The solution
of the 4-machine problem is shown in the Gantt-chart of Figure 2 and Tables II-V show the
job starting times.

The original personnel requirements planning procedure for the press machine shop of the
car plant was based upon the calculation of the least average number of workers necessary.
This, however, corresponds to the calculation of our lower bound LB. To the group of 3
press machines were 8 workers assigned, while to the machine group consisting of 4 press
machines 11 workers were assigned. As a result some of the jobs could not be finished in time
and had to be worked off in overtime requiring additional work hours. For the remaining
jobs either too many workers were assigned or there were not enough workers available. In
the latter case the available workers could not do their jobs and had to wait for support
set free at other machines. These effects led to a steadily increasing number of expensive
overtime hours.

Conclusions

We considered personnel planning and scheduling in one particular area of automobile pro-
duction, the press machine shop. A simple personnel requirements planning procedure on
the tactical level combined with a planning model considering flexible labor schedules in
order to include seasonal effects and non predictable demands did not provide the required
labor capacity without an accumulation of tremendous overtime hours. The factory wished
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to produce in batches to cover the demand for 3 to 5 days. This resulted to a reduction in
the number of setups and to cycle-stock inventory policies which guarantee a highly secured
service. However, keeping the batch sizes flexible would reveal another potential for opti-
mization and probably an improved work schedule. An analysis of the real situation showed
that the number of people at work often was insufficient to produce all jobs. Thus, jobs had
to be postponed to a later time in order to be produced in avoidable overtime hours. As a
result the number of people exceeded the number required to work off the remaining jobs.
In order to overcome these shortcomings, we provided a model to balance the number of
workers subject to constraints ensuring that all jobs can be finished in time. An exact as
well as a heuristic solution procedure, both of a branch-and-bound type, generated excel-
lent results in the considered practical planning situation. The heuristic has been obtained
from the branch-and-bound through an incomplete enumeration of the search, based on an
artificial lower bound that might have prevented the exploration of promising search tree
branches. All optimization runs were limited to different groups of machines of moderate
size. The management’s objective to consider machine groups as separate units is based on
the desired outcome to obtain groups of workers as well. Hence, a group of workers remains
stable for some time, it has a corresponding machine group and replacing or transferring
workers to different groups should be exceptional. Our machine groups were established
manually, however in a way to avoid unnecessary long distances (hundreds of meters) for
workers when moving from one machine to another. Considering the workers’ qualifications
for their group and their machine assignment was less important. However, group forma-
tion and flexible job assignments provide another area for potential savings (cf. Askin and
Standridge [2]). A welcomed side-effect of considering machine groups of moderate size is
the potential to generate an optimal solution for each of them within a reasonable time
frame. The combination of these solutions resulted to excellent outcomes for the factory’s
manpower planning.
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Figure 1: Gantt-chart for P5, P6 and P7
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Figure 2: Gantt-chart for P1, P2, P3 and P4



