o0 Py, ”

@ Yokohama Publishers
5

A
0w

Sinee 199

SCHEDULING VEHICLES ON TREES

Y OSHIYUKI KARUNO AND HIROSHI NAGAMOCHI

Dedicated to Professor T. Ibaraki on the Occasion of His 65th Birthday.

Abstract: The vehicle scheduling problem consists of a set of n jobs which are located at different vertices
in a given graph. Each job is characterized by a release time, a handling time and a due date (or a deadline).
There are m (1 < m < n) identical vehicles on the graph to process the jobs. The problem asks to find
a routing schedule of the m vehicles that minimizes a given objective function. Graphs are restricted to
paths or trees in some applications, and thus the problem on these graphs has been studied extensively. In
this paper, we give a brief review of approximation algorithms to the problem on paths or trees obtained
by the previous work. As a closely related topic, we also discuss the subtree cover problem where a given
edge-weighted tree with n weighted vertices is partitioned into a number of subtrees so as to minimize a
given objective. In this paper, we propose an O(n®logn) time 3-approximation algorithm to the problem of
minimizing the number of subtrees, where the weight of each subtree must not exceed a specified capacity.

Key words: combinatorial optimization, approximation algorithm, vehicle scheduling problem, subtree
cover problem

Mathematics Subject Classification: 90B10, 90C27, 90C59

Introduction

The vehicle scheduling problem (VSP for short) consists of a set of n jobs (such as items to
be picked up or facilities to be inspected) which are located at different vertices in a given
graph. Each job is characterized by a release time, a handling time and a due date (or
a deadline). For a job, its time window means the time interval between its release time
and deadline. The handling times are given as vertex-weights of the graph. There are m
(1 < m < n) identical vehicles on the graph to process the jobs. When a vehicle traverses
an edge, it takes a travel time associated with the edge. The travel times are given as edge-
weights of the graph. A job at each vertex must be processed by exactly one vehicle; a vehicle
can pass through a vertex without processing the job at the vertex any number of times.
In this paper, we assume that no interruption of processing is allowed. The problem asks
to find a routing schedule of the m vehicles that minimizes a given objective function such
as the maximum tour time of vehicles, the makespan (i.e., the maximum completion time
of jobs), the maximum lateness from due dates, and so on. The VSP is an important topic
encountered in a variety of industrial and service sector applications (e.g., see Desrosiers,
Dumas, Solomon and Soumis [7]).

Graphs are restricted to paths or trees in some applications such as the delivery schedul-
ing by ships on a shoreline [24] and by robots with elevator boarding function in a building.

Copyright © 2005 Yokohama Publishers http://www.ybook.co.jp

528 Y. KARUNO AND H. NAGAMOCHI

Thus, the problem on these graphs has been studied extensively. In this paper, we give a
brief review of approximation algorithms to the problem on paths or trees obtained by the
previous work. By noting that the approximability of the bin-packing problem has been
well studied (e.g., see Ausiello et al. [3]), which can be regarded as a special case of the VSP
on trees where the graph is a star, investigation of the VSP on trees is an important issue
to categorize approximation classes of related NP-hard problems. In this paper, when given
graphs are restricted to trees (resp., paths), the VSP is denoted by VSP-TREE (resp., VSP-
PATH). The VSP with m = 1 is particularly called the single-vehicle scheduling problem.
The VSP-TREE (resp., VSP-PATH) with m = 1 is referred to as the 1-VSP-TREE (resp.,
1-VSP-PATH).

Approximation algorithms to the routing problems (with no time window constraint) on
trees such as the p-traveling salesmen problem (p-TSP) and the capacitated vehicle routing
problem (CVRP) have also been studied (e.g., see Asano, Katoh and Kawashima [1], Aver-
bakh and Berman [4, 5, 6], Labbé, Laporte and Mercure [17], Nagamochi and Okada [21]).
In this paper, we do not give a comprehensive review of such related problems, but we dis-
cuss the subtree cover problem (SCP for short) as a fundamental problem for scheduling or
routing vehicles on trees, where the SCP asks to partition a given edge-weighted tree with n
weighted vertices into a number of subtrees so as to minimize a given objective function. For
a given integer p (> 2), the minmaz SCP asks to find a partition that consists of p subtrees
and minimizes the maximum weight of the p subtrees, where the weight of each subtree is
the sum of edge-weights and vertex-weights in the subtree. On the other hand, the capaci-
tated SCP asks to find a partition that minimizes the number of subtrees, where the weight
of each subtree must not exceed a specified capacity d (> 0). We denote by MM-SCP and
CAPA-SCP the minmax and capacitated subtree cover problems, respectively. Recently,
Nagamochi and Okada [20] showed that the MM-SCP is (2 — 2/(p + 1))-approximable in
O(p*n) time. In this paper, we consider the CAPA-SCP and propose an O(n?logn) time
3-approximation algorithm to the problem, exploiting a few properties of the MM-SCP pro-
vided in [20]. A relation between the VSP-TREE and MM-SCP was showed by Nagamochi
and Okada [21], who observed that there exists a constant factor approximation algorithm
to the VSP-TREE of minimizing the makespan, based on a (2 — 2/(p + 1))-approximation
algorithm to the MM-SCP.

The remainder of this paper is organized as follows. In Section 2, we formulate the 1-VSP-
TREE, VSP-TREE and CAPA-SCP to be discussed here. We review some approximation
algorithms to the 1-VSP-TREE in Section 3, and to the VSP-TREE in Section 4. In
Section 5, we discuss the SCP. After reviewing the recent results of the MM-SCP, we propose
an O(n?logn) time 3-approximation algorithm to the CAPA-SCP. Finally, in Section 6, we
give some concluding remarks.

Preliminaries

Let T = (V, E) be a tree, where V' and E are the vertex set and edge set of T', respectively.
Let n =| V' |. A vertex with degree 1 is called a leafin a tree T', but the root with degree 1 in
a rooted tree is not called a leaf. The set of leaves in a tree T' is denoted by L. Let b=| L |.
A connected subgraph T’ of T is called a subtree of T', and we denote this by 7" C T. The
vertex set and edge set of 7' are denoted by V(T") and E(T"), respectively.

A tree may be called a path if it consists of exactly two vertices with degree 1, called
end vertices, and n — 2 interior vertices with degree 2. A connected subgraph of a path G
is called a subpath of G. In this paper, a path is referred to as an end-rooted path if it is
rooted at an end of the path. On the other hand, a path is called an interior-rooted path if

SCHEDULING VEHICLES ON TREES 529

it is rooted at an interior vertex.

For a subset X C V of vertices, let T(X) denote the minimal subtree of T that contains
X (where the leaves of T(X) will be vertices in X). In this paper, we say that T(X) is
induced from T by X.

Let (T,w) denote a tree T = (V, E) such that each edge e € E is weighted by a non-
negative real w(e). The tree may be denoted by (T, w, vp) if a root vg € V is specified. The
sum of edge-weights in a subtree 7' C T is denoted by w(T").

Let (S,h) be a specified subset S of V such that each vertex v € S has a non-negative
weight h(v), where we may denote h(v) = 0 for a vertex v € V'\S. The sum of vertex-weights
in a subset S’ C S is denoted by h(S’).

In the VSP, an edge-weight w(u,v)(= w(v,u)) of edge {u,v} € E is interpreted as the
travel time of a vehicle between two adjacent vertices u and v. We extend the notation of
travel time to non-adjacent vertices. For two vertices u and v, the sum of weights in a path
between u and v in T is denoted by w(u,v). The vertex set V also represents the job set.
Thus, (V,h) denotes a set of n jobs such that each job v € V has a handling time h(v),
i.e., job v requires a specific amount of time h(v) to process and eventually complete it. No
interruption of processing is allowed. The set (V, h) may be denoted by (V,r, h) if each job
v has a release time r(v), i.e., it becomes available for processing at time r(v). For a tree
(T =(V,E),w) and a job set (V,r,h), we define the sum of travel times by

W =2w(T) =2 we),

ecFE

the sum of handling times by
H=hV)=)_ h),
veV

and the maximum of release times by

Pmae = max{r(v) |v eV}
Besides, for a rooted tree (T, w,vg), we define by

w = max{w(vg,v) |v € V}

the travel time from the root vy to the farthest vertex in T'.

In the SCP, a collection S of disjoint subsets Sy, .S2,...,S, of S C V is called a partition
of S if their union is S, where some S; may be empty. A collection S of S is called a
p-partition of S if | S |= p.

Now we are ready to describe the 1-VSP-TREE, VSP-TREE and CAPA-SCP. As men-
tioned in Section 1, the 1-VSP-TREE and VSP-TREE are possessed of a large number of
variants for time constraints and objective functions. Hereafter, unless otherwise stated, the
1-VSP-TREE and VSP-TREE represent the following problems.

1-VSP-TREE (Tour time 1-VSP-TREE)

Input: An instance I = (T = (V,E),w,vo,V,r, h) which consists of a rooted tree
(T, w,vy) and a job set (V,r,h).

Feasible solution: A schedule 7 of a single vehicle initially situated at the root vg, i.e.,
a processing ordering of n jobs by the vehicle.

530

Y. KARUNO AND H. NAGAMOCHI

Goal: Minimize the tour time of the vehicle Cipyr(7) (i-€., the time to return to the
root vy after processing all jobs).

Comments: In the makespan 1-VSP-TREE, the initial location of the vehicle is also
given by the root vy, but the vehicle does not have to return to the initial location.

VSP-TREE (Makespan VSP-TREE)

Input: An instance I = (T' = (V, E),w,V,r, h, m) which consists of a tree (T, w), a job
set (V,r, h), and m identical vehicles.

Feasible solution: A schedule 7 of the m vehicles, i.e., a set m of m processing orderings
of jobs where each job belongs to exactly one among the m orderings.

Goal: Minimize the makespan C,,q.(7) (i-e., the maximum completion time of all
jobs).

Comments: Initial locations of the m vehicles are not given, and the vehicles do not
have to return to their initial locations. In the maximum tour time VSP-TREE, initial
locations of the vehicles are also chosen so as to minimize the maximum tour time,
but each vehicle must return to the initial location.

CAPA-SCP

Input: Aninstance I = (T = (V, E),w,V, h,d) which consists of an edge-weighted tree
(T, w), a vertex-weighted set (V, h) and a positive real d.

Feasible solution: A partition S = {S1,S2,...,Sk} of V such that

costr(S) := max{w(T(S;)) + h(S;) | Si € S} < d.

Goal: Minimize the number k =| S | of subtrees.

Comments: For any instance I, without loss of generality, we assume that max{h(v) |
v € V} < d (otherwise, there exists no feasible solution to the instance).

Table 1 summarizes the known results for the approximability of the 1-VSP-TREE and

VSP-TREE.

Scheduling a Single Vehicle

In this section, we review approximation algorithms to the 1-VSP-TREE. The results can
be applied to the 1-VSP-PATH in the same context since a path is a special case of trees.
However, a dedicated algorithm to the 1-VSP-PATH may have a better approximation ratio
than that to the 1-VSP-TREE. Thus, in this section, we also discuss such a dedicated
algorithm to the 1-VSP-PATH.

SCHEDULING VEHICLES ON TREES 531

Table 1: Approximation Ratios for the 1-VSP-TREE and VSP-TREE

Objective Tour time Makespan
PATH TREE PATH TREE
5
-9 2 [13 2 [13, 24 2 [13
vep. 5 o 13 13, 24 13
PTAS [2] PTAS* [2]
Objective Maximum tour time Makespan
PATH TREE PATH TREE

VSP- (3 - miﬂ> [21] (3 - ﬁ) 1] 2[15] (5 - %ﬂ) [21]
PTAS! [16] ~ PTAS*' [16]

PTAS: Polynomial Time Approximation Scheme.
* for a constant number b of leaves in a given tree.
1 for a constant number m of vehicles.

On Trees

Nagamochi, Mochizuki and Ibaraki [18] proved the strong NP-hardness of the 1-VSP-TREE
even if all handling times are zero.

First, we consider the following depth-first routing constraint to the 1-VSP-TREE. Once
the single vehicle reaches a vertex v from its parent in a given tree 7', it cannot return to the
parent unless it has completed all jobs in the subtrees rooted at v. Under such a constraint,
each edge {u,v} € E is traversed exactly twice (that is, one from u to v and another from
v to u). We refer to a schedule under the depth-first routing constraint as a depth-first
schedule.

The depth-first schedules possess the following property. The tour time of a schedule
consists of travel times on edges, handling times on vertices and idle times due to release
time constraints. The sum of handling times is constant in a schedule. Notice that the sum
of travel times is also constant in a depth-first schedule. Thus, minimizing the tour time is
equivalent to minimizing the sum of idle times under the depth-first routing constraint.

Karuno, Nagamochi and Ibaraki [13] observed that an optimal depth-first schedule (i.e.,
a depth-first schedule with the minimum tour time among all depth-first schedules) can be
obtained in O(nlogn) time. The outline of the algorithm is as follows. Assume that the
vehicle reaches vertex v from its parent at time ¢ and there exist subtrees rooted at v. For
each subtree rooted at v, compute the total idle time incurred by the vehicle which starts
from v at time ¢, visits all jobs in the subtree for processing (of course, in the depth-first
manner) and returns to v. The algorithm makes the vehicle traverse the subtrees one by
one in a non-decreasing order of the total idle times. Ascending T from leaves to vy, the
algorithm performs such a computation recursively.

Karuno, Nagamochi and Ibaraki [13] also showed in the same paper that the optimal
depth-first schedule is a 2-approximate solution to the 1-VSP-TREE, and that this ratio
is asymptotically tight. An immediate lower bound on the optimal tour time C7,,,. can be
obtained by Cf.,,. > max{rmqe, W + H}. It is not difficult to see that the tour time of
any depth-first schedule #”F satisfies Ciour (7TDF) < Tmaz + W + H, since the vehicle can

532 Y. KARUNO AND H. NAGAMOCHI

traverse the given tree for processing with no idle time after time r,,,,. This implies the
approximation ratio of 2.

It is significant to notice that the minimum travel time is guaranteed if and only if the
vehicle adopts a depth-first schedule. Since the minimization of total travel time is important
also in practice (for example, to reduce the power battery consumption of the vehicle), the
depth-first schedules are often required. In the 1-VSP-TREE, Nagamochi, Mochizuki and
Ibaraki [19] showed that once an optimal depth-first schedule with respect to a specified
initial vertex has been solved, the minimum tour times for all other initial vertices can be
simultaneously computed in O(n) time. Karuno, Nagamochi and Ibaraki [12] considered a
different variant of 1-VSP-TREE where a job has its own due date, but all jobs are available
at time 0. The objective is to minimize the maximum lateness from the due dates. They
showed that an optimal depth-first schedule to the maximum lateness 1-VSP-TREE can be
obtained in O(nlogn) time.

In the 1-VSP-TREE of minimizing the makespan, the vehicle does not have to return
to the root vy (or, no cost is incurred to return from the last vertex to the root). For the
makespan 1-VSP-TREE, an immediate lower bound on the optimal value C,q, is given by
Chaw = max{rmae, W + H — W}, where w denotes the travel time between the root vy and
the farthest vertex vs,, in T'. Since a depth-first schedule such that its last job is the vq,
can be obtained in O(n) time, the makespan 1-VSP-TREE is also 2-approximable.

Recently, Augustine and Seiden [2] showed that the makespan 1-VSP-TREE with a
constant number b of leaves admits a polynomial time approzimation scheme (i.e., a family
of algorithms {A.} such that for any ¢ > 0, A. delivers a schedule with the makespan
at most (1 4+ €) times the optimal). Let 7 = («(1),n(2),...,m(n)) be a permutation on
{1,2,...,n}, where (i) denotes the ith job processed by the vehicle, and let ¢, (i) be the
completion time of the ith job in 7. For notational convenience, we define 7(0) = vo and
c-(0) = 0, and let 7=!(j) be the position of job j in 7. A schedule 7 eagerly processes
job 7 if for all 7 such that job j is located on the unique path from 7 (7 — 1) to m (i), either
7 L(j) <iorr(j) > cr(i — 1)+ w(m(i — 1),5) holds. If a 7 eagerly processes all jobs, the
7 is called eager. Augustine and Seiden [2] proved that there exists an optimal schedule
among eager schedules to the makespan 1-VSP-TREE, and based on this, they showed that
an optimal schedule can be obtained in polynomial time if the number of leaves in 7" and the
number of distinct release times are constant. The polynomial time approximation scheme
is derived from these facts, and the time complexity is bounded by a linear in n (but by an
exponential in 1/¢).

On Paths

The 1-VSP-PATH is described as follows.

1-VSP-PATH (Tour time 1-VSP-PATH)

Input: An instance I = (G = (V, E),w, v, V,r, h) which consists of a path (G,w,vp)
and a job set (V,r, h).

Feasible solution: A schedule 7 of a single vehicle initially situated at v, i.e., a pro-
cessing ordering of n jobs by the vehicle.

Goal: Minimize the tour time of the vehicle Cipur () (i-€., the time to return to vg
after processing all jobs).

SCHEDULING VEHICLES ON TREES 533

The NP-hardness of the 1-VSP-PATH was proved by Tsitsiklis [25].

Since a path is a special case of trees where the degree of each vertex is at most two,
an optimal depth-first schedule to the 1-VSP-PATH can be obtained in O(n), and it is a
2-approximate solution [13].

Psaraftis, Solomon, Magnanti and Kim [24] showed that the makespan 1-VSP-PATH can
be solved in O(n?) time if all handling times are zero. Gaur, Gupta and Krishnamurti [9]
applied the O(n?) time algorithm to the 1-VSP-PATH. Let 7; be the schedule obtained by
the O(n?) time algorithm. They showed that the performance of 71 to the 1-VSP-PATH is
guaranteed as follows.

H *
Otour(ﬂ'l) S <]- + m) Ctour‘ (1)

Thus, we can easily see that the m; is also a 2-approximate solution to the 1-VSP-PATH.
Karuno, Nagamochi and Ibaraki [14] proved that the 1-VSP-PATH is 3/2-approximable

in O(n) time if a given path is end-rooted. For a real ¢t with 0 <t < e, let H(t) (resp.,

H'(t)) be the sum of handling times of all jobs v € V with r(v) > ¢ (vesp., r(v) > t). They

provided the following lower bound on C7, ...

Clour 2t + H(2) (2)
for any t with 0 < t < T.4.- They also showed that there always exists a t* such that
H'(t*) < t* < H(t*). From these,

C*

tour

> 2t" > 2H'(t") (3)

is obtained. In addition, the following lower bounds are known.

Ciour > W+ H, and 4)
Chwr > 1)+ h()+w(v,v) for any job ve V. (5)

Assume that in a given path G = (V, E), the vy is the left end of G and v, the right
end. The approximation algorithm, called two-phase algorithm, makes the vehicle traverse
a given path as follows. In the forward phase, the vehicle travels from the left end vy to
the right end v,,—1, processing all jobs whose release times are at most ¢*. In the backward
phase, the vehicle returns back from v,,—; to vp, processing all remaining jobs.

The approximation ratio is derived as follows. Let ' be the schedule obtained by the
two-phase algorithm. If the vehicle does not wait at any vertex in the backward phase, then
Chrour(7') < t*+ W + H. This is because the vehicle can process all jobs whose release times
are at most t* with no waiting if it waits at the vy until time ¢*. By eqs. (3) and (4), we
have

Ctour (ﬂ-l) S t* + W + H S t* + Ct*our tour-

3
< =-Cf},
-2
On the other hand, if the vehicle waits at some vertex vy, in the backward phase, then for such
a v, that it is the nearest one to the vg, we have Ciour (') = r(vg) + h(vg) + w(vk, vo) + Hg,
where Hj denotes the sum of handling times of all jobs that are processed after vy in 7'.
Note that Hy < H'(t*) holds. Again by eq. (3) and by eq. (5), we obtain

3
+H() < 50

Crour (") = r(vg) + h(v) + w(vg,ve) + Hy < C

tour

534 Y. KARUNO AND H. NAGAMOCHI

Therefore, the approximation ratio of the two-phase algorithm is 3/2.

Gaur, Gupta and Krishnamurti [9] modified the two-phase algorithm to the case of
interior-rooted paths. In the modified two-phase algorithm, the vehicle first goes from the
root vy to the closer end to the vg. Once the vehicle reaches the closer end, the vehicle follows
the two-phase algorithm. Finally, the vehicle returns back from the closer end to the vg. Let
72 be the schedule by the modified two-phase algorithm. Gaur, Gupta and Krishnamurti [9]
proved that the modified two-phase algorithm has the following performance guarantee to
the 1-VSP-PATH. - -

Ciour(m2) < (5 t3- m) Crour- (6)
Gaur, Gupta and Krishnamurti [9] showed that the approximation ratio 5/3 to the 1-VSP-
PATH can be derived from eqs. (1) and (6) if one computes two schedules 7w and m and
then chooses the better. This is because

Sg if H<2W, and

|
"Wrm

3 1 W 5

ST <2 .

5Ty w3 TH>IW

The polynomial time approximation scheme to the 1-VSP-TREE with a constant number
of leaves proposed by Augustine and Seiden [2] can be applied to the makespan 1-VSP-PATH.

Scheduling Multiple Vehicles

The first constant factor approximation algorithm to the VSP-PATH was proposed by
Karuno and Nagamochi [15]. Afterward, for a constant number m of vehicles, they de-
veloped a polynomial time approximation scheme to the VSP-PATH and extended it to the
VSP-TREE with a constant number b of leaves in T' [16]. In this section, we also start with
the following VSP-PATH.

VSP-PATH (Makespan VSP-PATH)

Input: An instance I = (G = (V, E),w,V,r, h,m) which consists of a path (G,w), a
job set (V,r, h), and m identical vehicles.

Feasible solution: A schedule 7 of the m vehicles, i.e., a set m of m processing orderings
of jobs where each job belongs to exactly one among the m orderings.

Goal: Minimize the makespan C,,q.(7) (i-e., the maximum completion time of all
jobs).

It should be noted that if all edge-weights in a given path (i.e., travel times of the vehi-
cles) are zero, then the VSP-PATH is identical to the parallel machine scheduling problem,
which asks to minimize the makespan under the release time constraint. According to the
traditional notation for machine scheduling problems studied by Graham, Lawler, Lenstra
and Rinnooy Kan [10], this machine scheduling problem is denoted by P/r;/Cmae-

When m = 1, problem P/r;/Cpmq. becomes the single-machine scheduling problem de-
noted by 1/7;/Cimaee. It can be solved in O(nlogn) time where jobs are scheduled in a
non-decreasing order of release times. However, in the makespan 1-VSP-PATH, a slight

SCHEDULING VEHICLES ON TREES 535

change in an order of processing jobs may affect the makespan more dramatically due to the
travel times. In fact, Tsitsiklis [25] proved the NP-hardness of the makespan 1-VSP-PATH,
which indicates that introducing travel times distinguishes the computational complexity of
the makespan 1-VSP-PATH from that of 1/7;/Chiaz-

When m > 2, problem P/r;/C\nq. is NP-hard in the strong sense since it contains the
3-PARTITION as a special case, and the problem for any fixed m > 2 is even NP-hard
since it contains the PARTITION (e.g., see Garey and Johnson [8]). Hall and Shmoys [11]
observed that there exist a 2-approximation algorithm and a polynomial time approximation
scheme for problem P/7;/Cpq4. (but the running times are not available in their paper).
The VSP-PATH is NP-hard in the strong sense for m arbitrary, since it can be viewed as a
generalization of P/r;/Cynq.. For a similar reason, the VSP-PATH is NP-hard even for any
fixed m > 2. However, the VSP-PATH or the VSP-TREE has a more intractable situation.
In an optimal schedule for an instance of the VSP-PATH with m > 2, some edges may not
be traversed by any vehicle. Such an edge is called a gap. This makes difficult for us to
derive a lower bound on the total travel time.

For a schedule to the VSP-PATH, we refer to a subpath of a given path which is traversed
by a certain vehicle as its zone. A feasible schedule for /' vehicles (m’ < m) is called a zone
schedule if no two zones intersect and thus there are m’ — 1 gaps. Moreover, a zone schedule
is called a I-way zone schedule if any vehicle traverses its zone in one direction (i.e., from
left to right or from right to left). On the other hand, a schedule is called gapless if each
edge is traversed at least once by some vehicle.

The first constant factor approximation algorithm to the VSP-PATH with m > 2 has
been obtained by Karuno and Nagamochi [15]. They first observed that there exists a 1-way
zone schedule such that it is a 2-approximate solution to the problem of finding an optimal
gapless schedule (i.e., the one with the minimum of the makespan among all schedules with
no gaps). Such a 1-way zone schedule can be found in O(n) time. For an optimal gapless
schedule, we can obtain an immediate lower bound (W/2 4+ H)/m on its makespan. Notice
that a general schedule consists of several gapless schedules for subpaths on a given path.
As stated above, for such a subpath, there exists a 1-way zone schedule such that it is a
2-approximate solution. Therefore, we need to take into account all possible configurations
of gaps on the given path. Karuno and Nagamochi [15] proved that an optimal 1-way zone
schedule can be found in O(mn?) time by a dynamic programming procedure, which implies
that there exists a 1-way zone schedule that is a 2-approximate solution to the general
case. By designing an algorithm for approximating an optimal 1-way zone schedule, Karuno
and Nagamochi also presented a nearly linear time (2 + ¢)-approximation algorithm to the
VSP-PATH for any fixed € > 0 [15].

When a fleet of vehicles follows a zone schedule, no two vehicles interfere each other on a
given path. As such non-interference among the vehicles is important to control them safely,
the zone schedules are often required in practice. Augustine and Seiden [2] extended their
polynomial time approximation scheme for the makespan 1-VSP-TREE with a constant
number of leaves to a polynomial time approximation scheme for the VSP-PATH of finding
an optimal zone schedule.

Karuno and Nagamochi [16] developed a polynomial time approximation scheme to the
VSP-PATH with a constant number m of vehicles. The approximation scheme is based on
the approximation of the problem by rounding given release times, and on the fact that any
schedule consists of several gapless schedules for subpaths on a given path. Rounding given
release times leads to a problem instance with a constant number of distinct release times.
The approximation scheme is a two-fold dynamic programming. One is for computing an
optimal schedule to the problem with rounded release times, and the other for finding the

536 Y. KARUNO AND H. NAGAMOCHI

best schedule to the original problem by combining several gapless schedules over all choices
of gaps on the path.

The algorithm can be extended to the VSP-TREE so that a polynomial time approxi-
mation scheme is obtained if m and b in a given tree are constant [16]. The polynomial time
approximation scheme by Augustine and Seiden [2] can also be extended to the VSP-TREE
of finding an optimal zone schedule if b is constant, but it may not be an approximation to
the VSP-TREE of finding the optimal attained by general schedules.

Nagamochi and Okada [21] observed that there exists a (5 — 4/(m + 1))-approximation
algorithm to the VSP-TREE, which is based on a constant factor approximation algorithm
to the MM-SCP. We give a detail of the relation between the VSP-TREE and MM-SCP in
the next section.

Subtree Cover Problems

In this section, we propose a 3-approximation algorithm to the capacitated subtree cover
problem CAPA-SCP. This algorithm exploits a few properties of the minmax subtree cover
problem MM-SCP obtained in the previous work by Nagamochi and Okada [20, 21]. In
addition, there is a certain relation between the MM-SCP and VSP-TREE [21]. So we
review the results of the MM-SCP before considering the CAPA-SCP.

Previous Results

In this subsection, we describe the MM-SCP more generally.
MM-SCP

Input: An instance I = (T = (V, E),w, S, h, p) which consists of an edge-weighted tree
(T, w), a vertex-weighted subset (S,h) of V' and an integer p € [2,n].

Feasible solution: A p-partition S = {S1,S52,...,S5,} of S.
Goal: Minimize the cost cost;(S) of a partition S in I, where

cost(S) := max{w(T(S;)) + h(S;) | S; € S}.

For an instance I = (T, w, S, h, p) of the MM-SCP, we denote the optimal value by opt(I),
and we say that a partition S of S induces edge-disjoint (resp., vertex-disjoint) subtrees if
for any two S;, S; € S, subtrees T(S;) and T(S;) are edge-disjoint (resp., vertex-disjoint).

It is a simple observation that, for an instance I = (T, w, S, h, p) of the MM-SCP, opt(I) >
max{(w(T) + h(S))/p, max,cs h(u)} holds provided that each edge is contained in some
subtree T'(S;) for an optimal solution &* = {S1,Ss,...,S,}. However, the inequality does
not hold in general. So, for a tree (T, w), a subset (S,h) of V, and an integer p <| S |,
Nagamochi and Okada [21] introduced a valued subtree collection of (T,w, S, h,p) as a set
T of vertex-disjoint subtrees T1,Tb,...,Tx C T such that S C V(7T) holds and a positive
integer pi7,) with ETieT p[r;) = p is associated with each T;. They defined

T;) + h(V(Ty))
pry

A(T) = max{w(T € T}

SCHEDULING VEHICLES ON TREES 537

and

A* (T7 w7 57 h7p)
= min{A(7) | all valued subtree collections T of (T,w, S, h,p)}.

The following results have been shown by Nagamochi and Okada [21].

Lemma 1 [21] For an instance I = (T, w, S, h,p) of the MM-SCP, there exists a p-partition

S of S with
costr(S) < max { <2 - I%) L w(T)

. maxhu) | ™)

p u€sS
that induces edge-disjoint subtrees. Such an S can be obtained in O(n) time.

Lemma 2 [21] For an instance I = (T,w, S, h,p) of the MM-SCP, *(T,w, S, h,p) is a
lower bound on opt(I).

Lemma 3 [21] For an instance I = (T, w, S, h,p) of the MM-SCP, there exists a p-partition
S of S with

2

costr(S) < max { <2 - m) X*(T,w, S, h,p), max h(u)} (8)

that induces edge-disjoint subtrees. Such an S can be obtained in O((p — 1)!n) time.

Afterward, Nagamochi and Okada [20] improved the time complexity in Lemma 3 when
S =V in the MM-SCP.

Lemma 4 [20] For an instance I = (T, w,V, h,p) of the MM-SCP, there exists a p-partition
S of V' with

costr(S) < (2 _ L) opt(I))

p+1

that induces edge-disjoint subtrees. Such an S can be obtained in O(p?n) time.

Nagamochi and Kawada [22] extended the underlying graphs from trees to cacti, and
presented an O(p®n) time (4 —4/(p+ 1))-approximation algorithm to the MM-SCP on cacti.

When a rooted tree (T, w,vp) is given and each subtree is required to contain the root
vg, the MM-SCP is called the minmax rooted-subtree cover problem (MM-RSCP for short).
Similarly, the MM-RSCP is described as follows.

MM-RSCP

Input: An instance I = (T = (V, E),w, v, S, h,p) which consists of a rooted edge-
weighted tree (T, w,vp), a vertex-weighted subset (S, h) of V' and an integer p € [2,n].

Feasible solution: A p-partition S = {S1,S52,...,S5,} of S.
Goal: Minimize the cost cost;(S) of a partition S in I, where

costr(S) := max{w(T(S; U {vo})) + h(S;) | Si € S}.

538 Y. KARUNO AND H. NAGAMOCHI

Table 2: Approximation Ratios for the MM-SCP and MM-RSCP

Underlying graphs trees cacti general
2 \' 4 \'
MM-SCP 2 - — 20 4— —— 22 -
(p+ 1) 20 < p+ 1) 22
2 \' 2 \'
MM-RSCP 2 20 3— —— 23 3———] [23
eroml (3-25) @ (3--27)

TS =V is assumed.

Nagamochi and Okada [20] proposed an O(nloglog, ¢ 3) time (2 + £)-approximation
algorithm to the MM-RSCP. Nagamochi [23] considered the MM-RSCP with S = V on
general graphs, and presented a (3—2/(p+1))-approximation algorithm. Table 2 summarizes
these approximation ratios for the MM-SCP and MM-RSCP.

Nagamochi and Okada [21] observed that by ignoring release times r the VSP-TREE
can be regarded as the MM-SCP. From this observation, we obtain the following relation
between the MM-SCP and VSP-TREE.

Theorem 1 Assume that there exists an O(f(n)) time p-approximation algorithm to the
MM-SCP. Then a (1 + 2p)-approxzimate solution to the VSP-TREE can be obtained in
O(f(n)) time. If each vehicle is required to return to the initial location (i.e., the maxi-
mum tour time VSP-TREE), a (1 + p)-approzimate solution can be obtained in O(f(n))
time.

Proof. For an instance I = (T, w,V,r, h,m) of the VSP-TREE, let I' = (T, w,V, h,m) be
the instance of the MM-SCP converted from I. By assumption, we can find in O(f(n))
time an m-partition S = {S1,S2,...,Sn} of V such that cost;(S) < p - opt(I'). For
each S; € S, the ith vehicle can process all jobs in S; along the subtree T'(S;) until time
Tmaz + 20(T(S;)) + h(Si) < Fmaz + 2costy (S) at latest. Since max{rmyqz, opt(I')} is a lower
bound on C%, .., the schedule along these subtrees is a (1 4+ 2p)-approximate solution.
Next, we consider the maximum tour time VSP-TREE. Then each edge must be traversed
even number of times. let I" = (T, 2w, V, h,m) be the instance of the MM-SCP converted
from I by doubling all the edge-weights in T'. By assumption, we can find an m-partition
S ={51,52,...,Sm}of Vto I'" with cost+(S) < p-opt(I'"). For each S; € S, the ith vehicle
can process all jobs in S; along the subtree T'(S;) until time 7,40 + 2w(T(S;)) + h(S;) <
T'maz + costpi (S) at latest. This gives a (1 + p)-approximate solution. |

From this and Lemma 4, we obtain the following result.

Corollary 1 A (5—4/(m + 1))-approzimate solution to the VSP-TREE can be obtained in
O(m?n) time. If each vehicle is required to return to the initial location, then a (3 —2/(m +
1))-approzimate solution can be obtained in O(m?n) time.

SCHEDULING VEHICLES ON TREES 539

A New Algorithm

In this subsection, we present an approximation algorithm to the CAPA-SCP.

Algorithm APPROX

Input: An instance I = (T, w,V,h,d) of the CAPA-SCP, where max{h(v) | v € V} < dis
assumed.

Output: A j-partition S = {S},52,5},...,SL, 52,52} of V such that cost[(S) < d.

STEP 1. If w(T) + h(V) < 2d, then ¢ := 1, Syj := {S1} := {V} and go to STEP 3.
Otherwise go to STEP 2.

STEP 2. Find a p € [2,n] such that
costp,, (Spp) <2d < costy,_,, (Sip-11) (10)

holds for a p-partition Sy, of V' to I}, and a (p — 1)-partition Sp,_1j of V' to Ijp_1
obtained by the O(p?n) time algorithm in Lemma 4, where Iy = (T,w,V, h,p) and
Iip—1) = (T,w,V,h,p — 1) are instances of the MM-SCP constructed from I. Let ¢
denote such a p.

STEP 3. Based on the g-partition S;; = {S1,Ss,...,S,} of V obtained in STEP 1 or
STEP 2, generate ¢ instances of the MM-SCP, I; = (T(S;),w, S;,h,3),i=1,2,...,q.
For each instance [;, find a 3-partition S; = {S},S?,5%} of S; by the O(n) time
algorithm in Lemma 1.

STEP 4. Output the number of subtrees j := 3¢ and the p-partition S = {S}, 52,53, ..., Sy,
S2,5%} of V.

We should remark that
costy, (Smy) = max{h(v) |[v eV} <d
holds by assumption on I, and
2d <w(T) + h(V) = costr,,(Spuy)

holds in STEP 2 of APPROX. Hence there exists such a ¢ (> 2) that satisfies eq. (10) in
STEP 2.
For algorithm APPROX, the following lemmas hold.

Lemma 5 For an instance I = (T,w,V, h,d) of the CAPA-SCP, let p* be the minimum
number of subtrees, and q the number of subtrees obtained by STEP 1 or STEP 2 in AP-
PROX. Then the q is a lower bound on p*, i.e., it holds that

q<p"
Proof. 1f ¢ = 1, then the lemma obviously holds. For ¢ > 2, by eq. (10), it holds that

costr,_,(Sjg—1)) > 2d, where Sj, 1 is a (g — 1)-partition of V' obtained by the algorithm in
Lemma 4. By the same lemma and the above inequality, we have

costr,_,(Sg—1))

5 (> d).

opt(Ijg—1]) >

540 Y. KARUNO AND H. NAGAMOCHI
By the optimality of p*, p* — 1 is the largest integer such that opt(I},-_y)) > d. Thus, we

obtain ¢ — 1 < p* — 1, which completes the proof. O

Lemma 6 For an instance I = (T, w,V, h,d) of the CAPA-SCP with max{h(v) |ve V} <
d and w(T) + h(V) < 2d, there exists a 3-partition S of V' with

costr(S) <d
that induces edge-disjoint subtrees. Such a partition can be obtained in O(n) time.

Proof. In Lemma 1, consider the case of p = 3. Thus, there exists a 3-partition S of V' such

that 2 (T) 3 2d
w
t <[2—-—) — <= — =d.
cos’(s)—< 3+1> 3 ~2°3
The time complexity also follows Lemma 1. O

From Lemmas 5 and 6, we obtain an approximation ratio of APPROX as follows.

Theorem 2 For an instance I = (T, w,V, h,d) of the CAPA-SCP, let p* be the minimum
number of subtrees. Then there exists a partition S = {S1,S>,...,S;} with

ﬁ < 3- p*)
that induces edge-disjoint subtrees. Such a partition can be obtained in O((p*)?nlogp*) time.

Proof. The approximation ratio of 3 can be derived immediately from Lemma 5 and
Lemma 6.

The time complexity is evaluated as follows. STEP 1 clearly requires O(n) time. In
STEP 2, we obtain a desired ¢ as follows. First find the smallest ¢ = £* such that for p, = 2°
(£=1,2,...), costr, | (Sipe)) < 2d holds. By assumption of £*, a desired g satisfies that

201 < g <2t <2~

By calling the O(p?n) time algorithm in Lemma 4 for each p, = 2° (£ = 1,2,...,¢*), the
¢* can be found in O(Zﬁ;((ﬂ)zn)) = 0((2%)%n) = O((p*)?n) time. Then a binary search
is used to find ¢ from the interval (2¢ 1, 2¢7]. It contains O(p*) integers. So the binary
search requires O(log p*) x O((p*)*n) = O((p*)?nlogp*) time to find the ¢ from the interval.
Thus, STEP 2 requires O((p*)?nlogp*) time. In STEP 3, we call the O(n) time algorithm
in Lemma 1 O(q) (= O(p*)) times. Thus, STEP 3 requires O(p*n) time. It is obvious that
STEP 4 also requires O(p*n) time. Therefore, we conclude that the time complexity of
APPROX is O((p*)?nlogp*) time.]

@ Concluding Remarks

In this paper, we gave a brief review of approximation algorithms to the 1-VSP-TREE and
VSP-TREE obtained by the previous work. As a related topic, we also discussed the SCP.
After reviewing the recent results of the MM-SCP, we proposed an O((p*)?nlogp*) time 3-
approximation algorithm to the CAPA-SCP, where p* denotes the optimum of the number
of subtrees. As provided in this paper, there exists a relation between the VSP-TREE and
MM-SCP with respect to the approximability of these problems. Therefore, it becomes more
important to study approximation algorithms to the SCP as well as these to the VSP. It is
left for the future research to develop algorithms that achieve a better performance or work
for more general underlying graphs.

SCHEDULING VEHICLES ON TREES 541

Acknowledgment

The authors would like to express their gratitude to Emeritus Professor Toshihide Ibaraki
of Kyoto University for his guidance and encouragement. The authors also wish to thank
two anonymous referees for their helpful comments.

This research was partially supported by a Scientific Grant in Aid from the Ministry of

Education, Culture, Sports, Science and Technology of Japan.

References

[1]

2]

[10]

[11]

[12]

T. Asano, N. Katoh and K. Kawashima, A new approximation algorithm for the ca-
pacitated vehicle routing problem on a tree, J. Comb. Optim. 5 (2001) 213-231.

J.E. Augustine and S.S. Seiden, Linear time approximation schemes for vehicle schedul-
ing, in Lecture Notes in Comput. Sci. 2368: Algorithm Theory — SWAT 2002, M. Pent-
tonen and E. Meineche Schmidt (eds.), Springer, Berlin, 2002, pp. 30-39.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M. Pro-
tasi, Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties, Springer, Berlin, 1999.

I. Averbakh and O. Berman, Sales-delivery man problems on treelike networks, Net-
works 25 (1995) 45-58.

I. Averbakh and O. Berman, A heuristic with worst-case analysis for minmax routing
of two traveling salesmen on a tree, Discrete Appl. Math. 68 (1996) 17-32.

I. Averbakh and O. Berman, (p — 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective, Discrete Appl. Math. 75 (1997)
201-216.

J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, Time constrained routing and
scheduling, in Handbooks in Operations Research and Management Science Volume 8:
Network Routing, M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser (eds.),
North-Holland, Amsterdam, 1995, pp. 35-139.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, 1979.

D.R. Gaur, A. Gupta and R. Krishnamurti, A 5/3-approximation algorithm for schedul-
ing vehicles on a path with release and handling times, Inform. Process. Lett. 86 (2003)
87-91.

R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete
Math. 5 (1979) 287-326.

L.A. Hall and D.B. Shmoys, Approximation schemes for constrained scheduling prob-
lems, Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 134-139.

Y. Karuno, H. Nagamochi and T. Ibaraki, Vehicle scheduling on a tree to minimize
maximum lateness, J. Oper. Res. Soc. Japan 39 (1996) 345-355.

542

[13]

[14]

[17]

[18]

[19]

[23]

[24]

[25]

Y. KARUNO AND H. NAGAMOCHI

Y. Karuno, H. Nagamochi and T. Ibaraki, Vehicle scheduling on a tree with release and
handling times, Ann. Oper. Res. 69 (1997) 193-207.

Y. Karuno and H. Nagamochi and T. Ibaraki, Better approximation ratios for the
single-vehicle scheduling problems on line-shaped networks, Networks 39 (2002) 203—
209.

Y. Karuno and H. Nagamochi, 2-Approximation algorithms for the multi-vehicle
scheduling problem on a path with release and handling times, Discrete Appl. Math.
129 (2003) 433-447.

Y. Karuno and H. Nagamochi, An approximability result of the multi-vehicle scheduling
problem on a path with release and handling times, Theoret. Comput. Sci. 312 (2004)
267-280.

M. Labbé, G. Laporte and H. Mercure, Capacitated vehicle routing on trees, Oper. Res.
39 (1991) 616-622.

H. Nagamochi, K. Mochizuki and T. Ibaraki, Complexity of the single vehicle scheduling
problem on graphs, Inform. Syst. Oper. Res. 35 (1997) 256-276.

H. Nagamochi, K. Mochizuki and T. Ibaraki, Solving the single-vehicle scheduling prob-
lems for all home locations under depth-first routing on a tree, Inst. Electron. Inform.
Comm. Eng. Trans. Fundamentals E84-A (2001) 1135-1143.

H. Nagamochi and K. Okada, Polynomial time 2-approximation algorithms for the
minmax subtree cover problem, in Lecture Notes in Comput. Sci. 2906: Algorithms
and Computation — ISAAC 2003, T. Ibaraki, N. Katoh and H. Ono (eds.), Springer,
Berlin, 2003, pp. 138-147.

H. Nagamochi and K. Okada, A faster 2-approximation algorithm for the minmax p-
traveling salesmen problem on a tree, Discrete Appl. Math. 140 (2004) 103-114.

H. Nagamochi and T. Kawada, Approximating the minmax subtree cover problem in a
cactus, in Lecture Notes in Comput. Sci. 3341: Algorithms and Computation — ISAAC
2004, R. Fleischer and G. Trippen (eds.), Springer, Berlin, 2004, pp. 705-716.

H. Nagamochi, Approximating the minmax rooted-subtree cover problem, Inst. Elec-
tron. Inform. Comm. Eng. Trans. Fundamentals E88-A (2005) 1335-1338.

H. Psaraftis, M. Solomon, T. Magnanti and T. Kim, Routing and scheduling on a
shoreline with release times, Management Sci. 36 (1990) 212-223.

J.N. Tsitsiklis, Special cases of traveling salesman and repairman problems with time
windows, Networks 22 (1992) 263-282.

Manuscript received 31 August 200/
revised 26 January 2005
accepted for publication 28 January 2005

SCHEDULING VEHICLES ON TREES 543

YOSHIYUKI KARUNO

Department of Mechanical and System Engineering, Faculty of Engineering and Design,
Kyoto Institute of Technology, Sakyo, Kyoto-city, Kyoto 606-8585, Japan

E-mail address: karuno@kit.ac.jp

HirosHI NAGAMOCHI

Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Sakyo, Kyoto-city, Kyoto 606-8501, Japan

E-mail address: nag@amp.i.kyoto-u.ac.jp

