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Abstract� The vehicle scheduling problem consists of a set of n jobs which are located at di�erent vertices
in a given graph� Each job is characterized by a release time� a handling time and a due date �or a deadline��
There are m �� � m � n� identical vehicles on the graph to process the jobs� The problem asks to �nd
a routing schedule of the m vehicles that minimizes a given objective function� Graphs are restricted to
paths or trees in some applications� and thus the problem on these graphs has been studied extensively� In
this paper� we give a brief review of approximation algorithms to the problem on paths or trees obtained
by the previous work� As a closely related topic� we also discuss the subtree cover problem where a given
edge�weighted tree with n weighted vertices is partitioned into a number of subtrees so as to minimize a
given objective� In this paper� we propose an O�n� logn� time ��approximation algorithm to the problem of
minimizing the number of subtrees� where the weight of each subtree must not exceed a speci�ed capacity�
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� Introduction

The vehicle scheduling problem �VSP for short� consists of a set of n jobs �such as items to
be picked up or facilities to be inspected� which are located at di�erent vertices in a given
graph� Each job is characterized by a release time� a handling time and a due date �or
a deadline�� For a job� its time window means the time interval between its release time
and deadline� The handling times are given as vertex�weights of the graph� There are m
�� � m � n� identical vehicles on the graph to process the jobs� When a vehicle traverses
an edge� it takes a travel time associated with the edge� The travel times are given as edge�
weights of the graph� A job at each vertex must be processed by exactly one vehicle� a vehicle
can pass through a vertex without processing the job at the vertex any number of times�
In this paper� we assume that no interruption of processing is allowed� The problem asks
to �nd a routing schedule of the m vehicles that minimizes a given objective function such
as the maximum tour time of vehicles� the makespan �i�e�� the maximum completion time
of jobs�� the maximum lateness from due dates� and so on� The VSP is an important topic
encountered in a variety of industrial and service sector applications �e�g�� see Desrosiers�
Dumas� Solomon and Soumis �	
��

Graphs are restricted to paths or trees in some applications such as the delivery schedul�
ing by ships on a shoreline ��

 and by robots with elevator boarding function in a building�
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Thus� the problem on these graphs has been studied extensively� In this paper� we give a
brief review of approximation algorithms to the problem on paths or trees obtained by the
previous work� By noting that the approximability of the bin�packing problem has been
well studied �e�g�� see Ausiello et al� ��
�� which can be regarded as a special case of the VSP
on trees where the graph is a star� investigation of the VSP on trees is an important issue
to categorize approximation classes of related NP�hard problems� In this paper� when given
graphs are restricted to trees �resp�� paths�� the VSP is denoted by VSP�TREE �resp�� VSP�
PATH�� The VSP with m � � is particularly called the single�vehicle scheduling problem�
The VSP�TREE �resp�� VSP�PATH� with m � � is referred to as the ��VSP�TREE �resp��
��VSP�PATH��

Approximation algorithms to the routing problems �with no time window constraint� on
trees such as the p�traveling salesmen problem �p�TSP� and the capacitated vehicle routing
problem �CVRP� have also been studied �e�g�� see Asano� Katoh and Kawashima ��
� Aver�
bakh and Berman �
� �� �
� Labb�e� Laporte and Mercure ��	
� Nagamochi and Okada ���
��
In this paper� we do not give a comprehensive review of such related problems� but we dis�
cuss the subtree cover problem �SCP for short� as a fundamental problem for scheduling or
routing vehicles on trees� where the SCP asks to partition a given edge�weighted tree with n
weighted vertices into a number of subtrees so as to minimize a given objective function� For
a given integer p �� ��� the minmax SCP asks to �nd a partition that consists of p subtrees
and minimizes the maximum weight of the p subtrees� where the weight of each subtree is
the sum of edge�weights and vertex�weights in the subtree� On the other hand� the capaci�

tated SCP asks to �nd a partition that minimizes the number of subtrees� where the weight
of each subtree must not exceed a speci�ed capacity d �� ��� We denote by MM�SCP and
CAPA�SCP the minmax and capacitated subtree cover problems� respectively� Recently�
Nagamochi and Okada ���
 showed that the MM�SCP is �� � ���p � ����approximable in
O�p�n� time� In this paper� we consider the CAPA�SCP and propose an O�n� logn� time
��approximation algorithm to the problem� exploiting a few properties of the MM�SCP pro�
vided in ���
� A relation between the VSP�TREE and MM�SCP was showed by Nagamochi
and Okada ���
� who observed that there exists a constant factor approximation algorithm
to the VSP�TREE of minimizing the makespan� based on a ��� ���p� ����approximation
algorithm to the MM�SCP�

The remainder of this paper is organized as follows� In Section �� we formulate the ��VSP�
TREE� VSP�TREE and CAPA�SCP to be discussed here� We review some approximation
algorithms to the ��VSP�TREE in Section �� and to the VSP�TREE in Section 
� In
Section �� we discuss the SCP� After reviewing the recent results of the MM�SCP� we propose
an O�n� logn� time ��approximation algorithm to the CAPA�SCP� Finally� in Section �� we
give some concluding remarks�

� Preliminaries

Let T � �V�E� be a tree� where V and E are the vertex set and edge set of T � respectively�
Let n �j V j� A vertex with degree � is called a leaf in a tree T � but the root with degree � in
a rooted tree is not called a leaf� The set of leaves in a tree T is denoted by L� Let b �j L j�
A connected subgraph T � of T is called a subtree of T � and we denote this by T � � T � The
vertex set and edge set of T � are denoted by V �T �� and E�T ��� respectively�

A tree may be called a path if it consists of exactly two vertices with degree �� called
end vertices� and n � � interior vertices with degree �� A connected subgraph of a path G
is called a subpath of G� In this paper� a path is referred to as an end�rooted path if it is
rooted at an end of the path� On the other hand� a path is called an interior�rooted path if
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it is rooted at an interior vertex�
For a subset X � V of vertices� let T hXi denote the minimal subtree of T that contains

X �where the leaves of T hXi will be vertices in X�� In this paper� we say that T hXi is
induced from T by X �

Let �T�w� denote a tree T � �V�E� such that each edge e � E is weighted by a non�
negative real w�e�� The tree may be denoted by �T�w� v�� if a root v� � V is speci�ed� The
sum of edge�weights in a subtree T � � T is denoted by w�T ���

Let �S� h� be a speci�ed subset S of V such that each vertex v � S has a non�negative
weight h�v�� where we may denote h�v� � � for a vertex v � V nS� The sum of vertex�weights
in a subset S� � S is denoted by h�S���

In the VSP� an edge�weight w�u� v��� w�v� u�� of edge fu� vg � E is interpreted as the
travel time of a vehicle between two adjacent vertices u and v� We extend the notation of
travel time to non�adjacent vertices� For two vertices u and v� the sum of weights in a path
between u and v in T is denoted by w�u� v�� The vertex set V also represents the job set�
Thus� �V� h� denotes a set of n jobs such that each job v � V has a handling time h�v��
i�e�� job v requires a speci�c amount of time h�v� to process and eventually complete it� No
interruption of processing is allowed� The set �V� h� may be denoted by �V� r� h� if each job
v has a release time r�v�� i�e�� it becomes available for processing at time r�v�� For a tree
�T � �V�E�� w� and a job set �V� r� h�� we de�ne the sum of travel times by

W � �w�T � � �
X
e�E

w�e��

the sum of handling times by

H � h�V � �
X
v�V

h�v��

and the maximum of release times by

rmax � maxfr�v� j v � V g�

Besides� for a rooted tree �T�w� v��� we de�ne by

�w � maxfw�v�� v� j v � V g

the travel time from the root v� to the farthest vertex in T �
In the SCP� a collection S of disjoint subsets S�� S�� � � � � Sk of S � V is called a partition

of S if their union is S� where some Si may be empty� A collection S of S is called a
p�partition of S if j S j� p�

Now we are ready to describe the ��VSP�TREE� VSP�TREE and CAPA�SCP� As men�
tioned in Section �� the ��VSP�TREE and VSP�TREE are possessed of a large number of
variants for time constraints and objective functions� Hereafter� unless otherwise stated� the
��VSP�TREE and VSP�TREE represent the following problems�

��VSP�TREE �Tour time ��VSP�TREE�

Input� An instance I � �T � �V�E�� w� v�� V� r� h� which consists of a rooted tree
�T�w� v�� and a job set �V� r� h��

Feasible solution� A schedule � of a single vehicle initially situated at the root v�� i�e��
a processing ordering of n jobs by the vehicle�
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Goal� Minimize the tour time of the vehicle Ctour��� �i�e�� the time to return to the
root v� after processing all jobs��

Comments� In the makespan ��VSP�TREE� the initial location of the vehicle is also
given by the root v�� but the vehicle does not have to return to the initial location�

VSP�TREE �Makespan VSP�TREE�

Input� An instance I � �T � �V�E�� w� V� r� h�m� which consists of a tree �T�w�� a job
set �V� r� h�� and m identical vehicles�

Feasible solution� A schedule � of the m vehicles� i�e�� a set � of m processing orderings
of jobs where each job belongs to exactly one among the m orderings�

Goal� Minimize the makespan Cmax��� �i�e�� the maximum completion time of all
jobs��

Comments� Initial locations of the m vehicles are not given� and the vehicles do not
have to return to their initial locations� In the maximum tour time VSP�TREE� initial
locations of the vehicles are also chosen so as to minimize the maximum tour time�
but each vehicle must return to the initial location�

CAPA�SCP

Input� An instance I � �T � �V�E�� w� V� h� d� which consists of an edge�weighted tree
�T�w�� a vertex�weighted set �V� h� and a positive real d�

Feasible solution� A partition S � fS�� S�� � � � � Skg of V such that

costI�S� �� maxfw�T hSii� � h�Si� j Si � Sg � d�

Goal� Minimize the number k �j S j of subtrees�

Comments� For any instance I � without loss of generality� we assume that maxfh�v� j
v � V g � d �otherwise� there exists no feasible solution to the instance��

Table � summarizes the known results for the approximability of the ��VSP�TREE and
VSP�TREE�

� Scheduling a Single Vehicle

In this section� we review approximation algorithms to the ��VSP�TREE� The results can
be applied to the ��VSP�PATH in the same context since a path is a special case of trees�
However� a dedicated algorithm to the ��VSP�PATH may have a better approximation ratio
than that to the ��VSP�TREE� Thus� in this section� we also discuss such a dedicated
algorithm to the ��VSP�PATH�
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Table �� Approximation Ratios for the ��VSP�TREE and VSP�TREE

Objective Tour time Makespan
PATH TREE PATH TREE

�

�
��
 � ���
 � ���� �

 � ���


��VSP�
PTAS ��
 PTAS� ��


Objective Maximum tour time Makespan
PATH TREE PATH TREE�

��
�

m� �

�
���


�
��

�

m� �

�
���
 � ���


�
��




m� �

�
���


VSP�
PTASy ���
 PTAS��y ���


PTAS� Polynomial Time Approximation Scheme�
� for a constant number b of leaves in a given tree�

y for a constant number m of vehicles�

��� On Trees

Nagamochi� Mochizuki and Ibaraki ���
 proved the strong NP�hardness of the ��VSP�TREE
even if all handling times are zero�

First� we consider the following depth��rst routing constraint to the ��VSP�TREE� Once
the single vehicle reaches a vertex v from its parent in a given tree T � it cannot return to the
parent unless it has completed all jobs in the subtrees rooted at v� Under such a constraint�
each edge fu� vg � E is traversed exactly twice �that is� one from u to v and another from
v to u�� We refer to a schedule under the depth��rst routing constraint as a depth��rst

schedule�

The depth��rst schedules possess the following property� The tour time of a schedule
consists of travel times on edges� handling times on vertices and idle times due to release
time constraints� The sum of handling times is constant in a schedule� Notice that the sum
of travel times is also constant in a depth��rst schedule� Thus� minimizing the tour time is
equivalent to minimizing the sum of idle times under the depth��rst routing constraint�

Karuno� Nagamochi and Ibaraki ���
 observed that an optimal depth��rst schedule �i�e��
a depth��rst schedule with the minimum tour time among all depth��rst schedules� can be
obtained in O�n log n� time� The outline of the algorithm is as follows� Assume that the
vehicle reaches vertex v from its parent at time t and there exist subtrees rooted at v� For
each subtree rooted at v� compute the total idle time incurred by the vehicle which starts
from v at time t� visits all jobs in the subtree for processing �of course� in the depth��rst
manner� and returns to v� The algorithm makes the vehicle traverse the subtrees one by
one in a non�decreasing order of the total idle times� Ascending T from leaves to v�� the
algorithm performs such a computation recursively�

Karuno� Nagamochi and Ibaraki ���
 also showed in the same paper that the optimal
depth��rst schedule is a ��approximate solution to the ��VSP�TREE� and that this ratio
is asymptotically tight� An immediate lower bound on the optimal tour time C�

tour can be
obtained by C�

tour � maxfrmax�W � Hg� It is not di�cult to see that the tour time of
any depth��rst schedule �DF satis�es Ctour��

DF � � rmax �W �H � since the vehicle can



��� Y� KARUNO AND H� NAGAMOCHI

traverse the given tree for processing with no idle time after time rmax� This implies the
approximation ratio of ��

It is signi�cant to notice that the minimum travel time is guaranteed if and only if the
vehicle adopts a depth��rst schedule� Since the minimization of total travel time is important
also in practice �for example� to reduce the power battery consumption of the vehicle�� the
depth��rst schedules are often required� In the ��VSP�TREE� Nagamochi� Mochizuki and
Ibaraki ���
 showed that once an optimal depth��rst schedule with respect to a speci�ed
initial vertex has been solved� the minimum tour times for all other initial vertices can be
simultaneously computed in O�n� time� Karuno� Nagamochi and Ibaraki ���
 considered a
di�erent variant of ��VSP�TREE where a job has its own due date� but all jobs are available
at time �� The objective is to minimize the maximum lateness from the due dates� They
showed that an optimal depth��rst schedule to the maximum lateness ��VSP�TREE can be
obtained in O�n log n� time�

In the ��VSP�TREE of minimizing the makespan� the vehicle does not have to return
to the root v� �or� no cost is incurred to return from the last vertex to the root�� For the
makespan ��VSP�TREE� an immediate lower bound on the optimal value Cmax is given by
C�
max � maxfrmax�W �H � �wg� where �w denotes the travel time between the root v� and

the farthest vertex vfar in T � Since a depth��rst schedule such that its last job is the vfar
can be obtained in O�n� time� the makespan ��VSP�TREE is also ��approximable�

Recently� Augustine and Seiden ��
 showed that the makespan ��VSP�TREE with a
constant number b of leaves admits a polynomial time approximation scheme �i�e�� a family
of algorithms fA�g such that for any � � �� A� delivers a schedule with the makespan
at most �� � �� times the optimal�� Let � � ������ ����� � � � � ��n�� be a permutation on
f�� �� � � � � ng� where ��i� denotes the ith job processed by the vehicle� and let c��i� be the
completion time of the ith job in �� For notational convenience� we de�ne ���� � v� and
c���� � �� and let ����j� be the position of job j in �� A schedule � eagerly processes
job j if for all i such that job j is located on the unique path from ��i � �� to ��i�� either
����j� � i or r�j� � c��i � �� � w���i � ��� j� holds� If a � eagerly processes all jobs� the
� is called eager� Augustine and Seiden ��
 proved that there exists an optimal schedule
among eager schedules to the makespan ��VSP�TREE� and based on this� they showed that
an optimal schedule can be obtained in polynomial time if the number of leaves in T and the
number of distinct release times are constant� The polynomial time approximation scheme
is derived from these facts� and the time complexity is bounded by a linear in n �but by an
exponential in �����

��� On Paths

The ��VSP�PATH is described as follows�

��VSP�PATH �Tour time ��VSP�PATH�

Input� An instance I � �G � �V�E�� w� v�� V� r� h� which consists of a path �G�w� v��
and a job set �V� r� h��

Feasible solution� A schedule � of a single vehicle initially situated at v�� i�e�� a pro�
cessing ordering of n jobs by the vehicle�

Goal� Minimize the tour time of the vehicle Ctour��� �i�e�� the time to return to v�
after processing all jobs��
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The NP�hardness of the ��VSP�PATH was proved by Tsitsiklis ���
�
Since a path is a special case of trees where the degree of each vertex is at most two�

an optimal depth��rst schedule to the ��VSP�PATH can be obtained in O�n�� and it is a
��approximate solution ���
�

Psaraftis� Solomon� Magnanti and Kim ��

 showed that the makespan ��VSP�PATH can
be solved in O�n�� time if all handling times are zero� Gaur� Gupta and Krishnamurti ��

applied the O�n�� time algorithm to the ��VSP�PATH� Let �� be the schedule obtained by
the O�n�� time algorithm� They showed that the performance of �� to the ��VSP�PATH is
guaranteed as follows�

Ctour���� �

�
� �

H

W �H

�
C�
tour� ���

Thus� we can easily see that the �� is also a ��approximate solution to the ��VSP�PATH�
Karuno� Nagamochi and Ibaraki ��

 proved that the ��VSP�PATH is ����approximable

in O�n� time if a given path is end�rooted� For a real t with � � t � rmax� let H�t� �resp��
H ��t�� be the sum of handling times of all jobs v � V with r�v� � t �resp�� r�v� � t�� They
provided the following lower bound on C�

tour�

C�
tour � t�H�t� ���

for any t with � � t � rmax� They also showed that there always exists a t� such that
H ��t�� � t� � H�t��� From these�

C�
tour � �t� � �H ��t�� ���

is obtained� In addition� the following lower bounds are known�

C�
tour � W �H� and �
�

C�
tour � r�v� � h�v� � w�v� v�� for any job v � V� ���

Assume that in a given path G � �V�E�� the v� is the left end of G and vn�� the right
end� The approximation algorithm� called two�phase algorithm� makes the vehicle traverse
a given path as follows� In the forward phase� the vehicle travels from the left end v� to
the right end vn��� processing all jobs whose release times are at most t�� In the backward
phase� the vehicle returns back from vn�� to v�� processing all remaining jobs�

The approximation ratio is derived as follows� Let �� be the schedule obtained by the
two�phase algorithm� If the vehicle does not wait at any vertex in the backward phase� then
Ctour��

�� � t��W �H � This is because the vehicle can process all jobs whose release times
are at most t� with no waiting if it waits at the v� until time t�� By eqs� ��� and �
�� we
have

Ctour��
�� � t� �W �H � t� � C�

tour �
�

�
C�
tour �

On the other hand� if the vehicle waits at some vertex vk in the backward phase� then for such
a vk that it is the nearest one to the v�� we have Ctour��

�� � r�vk��h�vk��w�vk � v���Hk�
where Hk denotes the sum of handling times of all jobs that are processed after vk in ���
Note that Hk � H ��t�� holds� Again by eq� ��� and by eq� ���� we obtain

Ctour��
�� � r�vk� � h�vk� � w�vk � v�� �Hk � C�

tour �H ��t�� �
�

�
C�
tour�
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Therefore� the approximation ratio of the two�phase algorithm is ����
Gaur� Gupta and Krishnamurti ��
 modi�ed the two�phase algorithm to the case of

interior�rooted paths� In the modi�ed two�phase algorithm� the vehicle �rst goes from the
root v� to the closer end to the v�� Once the vehicle reaches the closer end� the vehicle follows
the two�phase algorithm� Finally� the vehicle returns back from the closer end to the v�� Let
�� be the schedule by the modi�ed two�phase algorithm� Gaur� Gupta and Krishnamurti ��

proved that the modi�ed two�phase algorithm has the following performance guarantee to
the ��VSP�PATH�

Ctour���� �

�
�

�
�

�

�
�

W

W �H

�
C�
tour � ���

Gaur� Gupta and Krishnamurti ��
 showed that the approximation ratio ��� to the ��VSP�
PATH can be derived from eqs� ��� and ��� if one computes two schedules �� and �� and
then chooses the better� This is because

� �
H

W �H
�

�

�
if H � �W� and

�

�
�

�

�
�

W

W �H
�

�

�
if H � �W�

The polynomial time approximation scheme to the ��VSP�TREE with a constant number
of leaves proposed by Augustine and Seiden ��
 can be applied to the makespan ��VSP�PATH�

� Scheduling Multiple Vehicles

The �rst constant factor approximation algorithm to the VSP�PATH was proposed by
Karuno and Nagamochi ���
� Afterward� for a constant number m of vehicles� they de�
veloped a polynomial time approximation scheme to the VSP�PATH and extended it to the
VSP�TREE with a constant number b of leaves in T ���
� In this section� we also start with
the following VSP�PATH�

VSP�PATH �Makespan VSP�PATH�

Input� An instance I � �G � �V�E�� w� V� r� h�m� which consists of a path �G�w�� a
job set �V� r� h�� and m identical vehicles�

Feasible solution� A schedule � of the m vehicles� i�e�� a set � of m processing orderings
of jobs where each job belongs to exactly one among the m orderings�

Goal� Minimize the makespan Cmax��� �i�e�� the maximum completion time of all
jobs��

It should be noted that if all edge�weights in a given path �i�e�� travel times of the vehi�
cles� are zero� then the VSP�PATH is identical to the parallel machine scheduling problem�
which asks to minimize the makespan under the release time constraint� According to the
traditional notation for machine scheduling problems studied by Graham� Lawler� Lenstra
and Rinnooy Kan ���
� this machine scheduling problem is denoted by P�rj�Cmax�

When m � �� problem P�rj�Cmax becomes the single�machine scheduling problem de�
noted by ��rj�Cmax� It can be solved in O�n logn� time where jobs are scheduled in a
non�decreasing order of release times� However� in the makespan ��VSP�PATH� a slight
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change in an order of processing jobs may a�ect the makespan more dramatically due to the
travel times� In fact� Tsitsiklis ���
 proved the NP�hardness of the makespan ��VSP�PATH�
which indicates that introducing travel times distinguishes the computational complexity of
the makespan ��VSP�PATH from that of ��rj�Cmax�

When m � �� problem P�rj�Cmax is NP�hard in the strong sense since it contains the
��PARTITION as a special case� and the problem for any �xed m � � is even NP�hard
since it contains the PARTITION �e�g�� see Garey and Johnson ��
�� Hall and Shmoys ���

observed that there exist a ��approximation algorithm and a polynomial time approximation
scheme for problem P�rj�Cmax �but the running times are not available in their paper��
The VSP�PATH is NP�hard in the strong sense for m arbitrary� since it can be viewed as a
generalization of P�rj�Cmax� For a similar reason� the VSP�PATH is NP�hard even for any
�xed m � �� However� the VSP�PATH or the VSP�TREE has a more intractable situation�
In an optimal schedule for an instance of the VSP�PATH with m � �� some edges may not
be traversed by any vehicle� Such an edge is called a gap� This makes di�cult for us to
derive a lower bound on the total travel time�

For a schedule to the VSP�PATH� we refer to a subpath of a given path which is traversed
by a certain vehicle as its zone� A feasible schedule for m� vehicles �m� � m� is called a zone

schedule if no two zones intersect and thus there are m�� � gaps� Moreover� a zone schedule
is called a ��way zone schedule if any vehicle traverses its zone in one direction �i�e�� from
left to right or from right to left�� On the other hand� a schedule is called gapless if each
edge is traversed at least once by some vehicle�

The �rst constant factor approximation algorithm to the VSP�PATH with m � � has
been obtained by Karuno and Nagamochi ���
� They �rst observed that there exists a ��way
zone schedule such that it is a ��approximate solution to the problem of �nding an optimal
gapless schedule �i�e�� the one with the minimum of the makespan among all schedules with
no gaps�� Such a ��way zone schedule can be found in O�n� time� For an optimal gapless
schedule� we can obtain an immediate lower bound �W�� �H��m on its makespan� Notice
that a general schedule consists of several gapless schedules for subpaths on a given path�
As stated above� for such a subpath� there exists a ��way zone schedule such that it is a
��approximate solution� Therefore� we need to take into account all possible con�gurations
of gaps on the given path� Karuno and Nagamochi ���
 proved that an optimal ��way zone
schedule can be found in O�mn�� time by a dynamic programming procedure� which implies
that there exists a ��way zone schedule that is a ��approximate solution to the general
case� By designing an algorithm for approximating an optimal ��way zone schedule� Karuno
and Nagamochi also presented a nearly linear time �� � ���approximation algorithm to the
VSP�PATH for any �xed � � � ���
�

When a �eet of vehicles follows a zone schedule� no two vehicles interfere each other on a
given path� As such non�interference among the vehicles is important to control them safely�
the zone schedules are often required in practice� Augustine and Seiden ��
 extended their
polynomial time approximation scheme for the makespan ��VSP�TREE with a constant
number of leaves to a polynomial time approximation scheme for the VSP�PATH of �nding
an optimal zone schedule�

Karuno and Nagamochi ���
 developed a polynomial time approximation scheme to the
VSP�PATH with a constant number m of vehicles� The approximation scheme is based on
the approximation of the problem by rounding given release times� and on the fact that any
schedule consists of several gapless schedules for subpaths on a given path� Rounding given
release times leads to a problem instance with a constant number of distinct release times�
The approximation scheme is a two�fold dynamic programming� One is for computing an
optimal schedule to the problem with rounded release times� and the other for �nding the
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best schedule to the original problem by combining several gapless schedules over all choices
of gaps on the path�

The algorithm can be extended to the VSP�TREE so that a polynomial time approxi�
mation scheme is obtained if m and b in a given tree are constant ���
� The polynomial time
approximation scheme by Augustine and Seiden ��
 can also be extended to the VSP�TREE
of �nding an optimal zone schedule if b is constant� but it may not be an approximation to
the VSP�TREE of �nding the optimal attained by general schedules�

Nagamochi and Okada ���
 observed that there exists a ��� 
��m� ����approximation
algorithm to the VSP�TREE� which is based on a constant factor approximation algorithm
to the MM�SCP� We give a detail of the relation between the VSP�TREE and MM�SCP in
the next section�

� Subtree Cover Problems

In this section� we propose a ��approximation algorithm to the capacitated subtree cover
problem CAPA�SCP� This algorithm exploits a few properties of the minmax subtree cover
problem MM�SCP obtained in the previous work by Nagamochi and Okada ���� ��
� In
addition� there is a certain relation between the MM�SCP and VSP�TREE ���
� So we
review the results of the MM�SCP before considering the CAPA�SCP�

��� Previous Results

In this subsection� we describe the MM�SCP more generally�

MM�SCP

Input� An instance I � �T � �V�E�� w� S� h� p� which consists of an edge�weighted tree
�T�w�� a vertex�weighted subset �S� h� of V and an integer p � ��� n
�

Feasible solution� A p�partition S � fS�� S�� � � � � Spg of S�

Goal� Minimize the cost costI�S� of a partition S in I � where

costI�S� �� maxfw�T hSii� � h�Si� j Si � Sg�

For an instance I � �T�w� S� h� p� of the MM�SCP� we denote the optimal value by opt�I��
and we say that a partition S of S induces edge�disjoint �resp�� vertex�disjoint� subtrees if
for any two Si� Sj � S� subtrees T hSii and T hSji are edge�disjoint �resp�� vertex�disjoint��

It is a simple observation that� for an instance I � �T�w� S� h� p� of the MM�SCP� opt�I� �
maxf�w�T � � h�S���p�maxu�S h�u�g holds provided that each edge is contained in some
subtree T hSii for an optimal solution S� � fS�� S�� � � � � Spg� However� the inequality does
not hold in general� So� for a tree �T�w�� a subset �S� h� of V � and an integer p �j S j�
Nagamochi and Okada ���
 introduced a valued subtree collection of �T�w� S� h� p� as a set
T of vertex�disjoint subtrees T�� T�� � � � � Tk � T such that S � V �T � holds and a positive
integer p�Ti� with

P
Ti�T

p�Ti� � p is associated with each Ti� They de�ned

��T � � max

�
w�Ti� � h�V �Ti��

p�Ti�
j Ti � T

�
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and

���T�w� S� h� p�

� minf��T � j all valued subtree collections T of �T�w� S� h� p�g�

The following results have been shown by Nagamochi and Okada ���
�

Lemma � ���
 For an instance I � �T�w� S� h� p� of the MM�SCP� there exists a p�partition
S of S with

costI�S� � max

��
��

�

p� �

�
�
w�T �

p
� max

u�S
h�u�

�
�	�

that induces edge�disjoint subtrees� Such an S can be obtained in O�n� time�

Lemma � ���
 For an instance I � �T�w� S� h� p� of the MM�SCP� ���T�w� S� h� p� is a

lower bound on opt�I��

Lemma � ���
 For an instance I � �T�w� S� h� p� of the MM�SCP� there exists a p�partition
S of S with

costI�S� � max

��
��

�

p� �

�
���T�w� S� h� p�� max

u�S
h�u�

�
���

that induces edge�disjoint subtrees� Such an S can be obtained in O��p� ���n� time�

Afterward� Nagamochi and Okada ���
 improved the time complexity in Lemma � when
S � V in the MM�SCP�

Lemma � ���
 For an instance I � �T�w� V� h� p� of the MM�SCP� there exists a p�partition
S of V with

costI�S� �

�
��

�

p� �

�
opt�I� ���

that induces edge�disjoint subtrees� Such an S can be obtained in O�p�n� time�

Nagamochi and Kawada ���
 extended the underlying graphs from trees to cacti� and
presented an O�p�n� time �
�
��p�����approximation algorithm to the MM�SCP on cacti�

When a rooted tree �T�w� v�� is given and each subtree is required to contain the root
v�� the MM�SCP is called the minmax rooted�subtree cover problem �MM�RSCP for short��
Similarly� the MM�RSCP is described as follows�

MM�RSCP

Input� An instance I � �T � �V�E�� w� v�� S� h� p� which consists of a rooted edge�
weighted tree �T�w� v��� a vertex�weighted subset �S� h� of V and an integer p � ��� n
�

Feasible solution� A p�partition S � fS�� S�� � � � � Spg of S�

Goal� Minimize the cost costI�S� of a partition S in I � where

costI�S� �� maxfw�T hSi � fv�gi� � h�Si� j Si � Sg�
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Table �� Approximation Ratios for the MM�SCP and MM�RSCP

Underlying graphs trees cacti general

MM�SCP

�
��

�

p� �

�y
���


�

�




p� �

�y
���
 �

MM�RSCP �� � �� ���


�
��

�

p� �

�y
���


�
��

�

p� �

�y
���


y S � V is assumed�

Nagamochi and Okada ���
 proposed an O�n log log�� �
�
�� time �� � ���approximation

algorithm to the MM�RSCP� Nagamochi ���
 considered the MM�RSCP with S � V on
general graphs� and presented a ������p�����approximation algorithm� Table � summarizes
these approximation ratios for the MM�SCP and MM�RSCP�

Nagamochi and Okada ���
 observed that by ignoring release times r the VSP�TREE
can be regarded as the MM�SCP� From this observation� we obtain the following relation
between the MM�SCP and VSP�TREE�

Theorem � Assume that there exists an O�f�n�� time ��approximation algorithm to the

MM�SCP� Then a �� � ����approximate solution to the VSP�TREE can be obtained in

O�f�n�� time� If each vehicle is required to return to the initial location �i�e�� the maxi�

mum tour time VSP�TREE�� a �� � ���approximate solution can be obtained in O�f�n��
time�

Proof� For an instance I � �T�w� V� r� h�m� of the VSP�TREE� let I � � �T�w� V� h�m� be
the instance of the MM�SCP converted from I � By assumption� we can �nd in O�f�n��
time an m�partition S � fS�� S�� � � � � Smg of V such that costI��S� � � � opt�I ��� For
each Si � S� the ith vehicle can process all jobs in Si along the subtree T hSii until time
rmax��w�T hSii��h�Si� � rmax��costI��S� at latest� Since maxfrmax� opt�I

��g is a lower
bound on C�

max� the schedule along these subtrees is a �� � ����approximate solution�

Next� we consider the maximum tour time VSP�TREE� Then each edge must be traversed
even number of times� let I �� � �T� �w� V� h�m� be the instance of the MM�SCP converted
from I by doubling all the edge�weights in T � By assumption� we can �nd an m�partition
S � fS�� S�� � � � � Smg of V to I �� with costI���S� � ��opt�I ���� For each Si � S� the ith vehicle
can process all jobs in Si along the subtree T hSii until time rmax � �w�T hSii� � h�Si� �
rmax � costI���S� at latest� This gives a �� � ���approximate solution� �

From this and Lemma 
� we obtain the following result�

Corollary � A ��� 
��m�����approximate solution to the VSP�TREE can be obtained in

O�m�n� time� If each vehicle is required to return to the initial location� then a ��� ���m�
����approximate solution can be obtained in O�m�n� time�
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��� A New Algorithm

In this subsection� we present an approximation algorithm to the CAPA�SCP�

Algorithm APPROX

Input� An instance I � �T�w� V� h� d� of the CAPA�SCP� where maxfh�v� j v � V g � d is
assumed�

Output� A �p�partition �S � fS�
� � S

�
� � S

�
� � � � � � S

�
q � S

�
q � S

�
qg of V such that costI� �S� � d�

STEP �� If w�T � � h�V � � �d� then q �� �� S��� �� fS�g �� fV g and go to STEP ��
Otherwise go to STEP ��

STEP �� Find a p � ��� n
 such that

costI�p��S�p�� � �d 	 costI�p���
�S�p���� ����

holds for a p�partition S�p� of V to I�p� and a �p � ���partition S�p��� of V to I�p���

obtained by the O�p�n� time algorithm in Lemma 
� where I�p� � �T�w� V� h� p� and
I�p��� � �T�w� V� h� p � �� are instances of the MM�SCP constructed from I � Let q
denote such a p�

STEP �� Based on the q�partition S�q� � fS�� S�� � � � � Sqg of V obtained in STEP � or
STEP �� generate q instances of the MM�SCP� Ii � �T hSii� w� Si� h� ��� i � �� �� � � � � q�
For each instance Ii� �nd a ��partition Si � fS�

i � S
�
i � S

�
i g of Si by the O�n� time

algorithm in Lemma ��

STEP 
� Output the number of subtrees �p �� �q and the �p�partition �S � fS�
� � S

�
� � S

�
� � � � � � S

�
q �

S�
q � S

�
qg of V �

We should remark that

costI�n�
�S�n�� � maxfh�v� j v � V g � d

holds by assumption on I � and

�d 	 w�T � � h�V � � costI����S����

holds in STEP � of APPROX� Hence there exists such a q �� �� that satis�es eq� ���� in
STEP ��

For algorithm APPROX� the following lemmas hold�

Lemma � For an instance I � �T�w� V� h� d� of the CAPA�SCP� let p� be the minimum

number of subtrees� and q the number of subtrees obtained by STEP � or STEP � in AP�
PROX� Then the q is a lower bound on p�� i�e�� it holds that

q � p��

Proof� If q � �� then the lemma obviously holds� For q � �� by eq� ����� it holds that
costI�q���

�S�q���� � �d� where S�q��� is a �q � ���partition of V obtained by the algorithm in
Lemma 
� By the same lemma and the above inequality� we have

opt�I�q���� �
costI�q���

�S�q����

�
�� d��
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By the optimality of p�� p� � � is the largest integer such that opt�I�p����� � d� Thus� we
obtain q � � � p� � �� which completes the proof� �

Lemma � For an instance I � �T�w� V� h� d� of the CAPA�SCP with maxfh�v� j v � V g �
d and w�T � � h�V � � �d� there exists a ��partition S of V with

costI�S� � d

that induces edge�disjoint subtrees� Such a partition can be obtained in O�n� time�

Proof� In Lemma �� consider the case of p � 	� Thus� there exists a 	�partition S of V such
that

costI�S� �

�
��

�

	 � �

�
�
w�T �

	
�

	

�
�
�d

	
� d�

The time complexity also follows Lemma �� �

From Lemmas 
 and �� we obtain an approximation ratio of APPROX as follows�

Theorem � For an instance I � �T�w� V� h� d� of the CAPA�SCP� let p� be the minimum

number of subtrees� Then there exists a partition S � fS�� S�� � � � � S�pg with

�p � 	 � p��

that induces edge�disjoint subtrees� Such a partition can be obtained in O��p���n log p�� time�

Proof� The approximation ratio of 	 can be derived immediately from Lemma 
 and
Lemma ��

The time complexity is evaluated as follows� STEP � clearly requires O�n� time� In
STEP �� we obtain a desired q as follows� First 
nd the smallest � � �� such that for p� � ��

�� � �� �� � � ��� costI�p��
�S�p��� � �d holds� By assumption of ��� a desired q satis
es that

��
�

�� � q � ��
�

� �p��

By calling the O�p�n� time algorithm in Lemma � for each p� � �� �� � �� �� � � � � ���� the

�� can be found in O�
P��

������
���n�� � O����

�

��n� � O��p���n� time� Then a binary search
is used to 
nd q from the interval ���

�

��� ��
�

�� It contains O�p�� integers� So the binary
search requires O�log p���O��p���n� � O��p���n log p�� time to 
nd the q from the interval�
Thus� STEP � requires O��p���n log p�� time� In STEP 	� we call the O�n� time algorithm
in Lemma � O�q� �� O�p��� times� Thus� STEP 	 requires O�p�n� time� It is obvious that
STEP � also requires O�p�n� time� Therefore� we conclude that the time complexity of
APPROX is O��p���n log p�� time� �

� Concluding Remarks

In this paper� we gave a brief review of approximation algorithms to the ��VSP�TREE and
VSP�TREE obtained by the previous work� As a related topic� we also discussed the SCP�
After reviewing the recent results of the MM�SCP� we proposed an O��p���n log p�� time 	�
approximation algorithm to the CAPA�SCP� where p� denotes the optimum of the number
of subtrees� As provided in this paper� there exists a relation between the VSP�TREE and
MM�SCP with respect to the approximability of these problems� Therefore� it becomes more
important to study approximation algorithms to the SCP as well as these to the VSP� It is
left for the future research to develop algorithms that achieve a better performance or work
for more general underlying graphs�
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