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Abstract� This paper investigates support vector machine �SVM� with a discrete kernel� named electric
network kernel� de�ned on the vertex set of an undirected graph� Emphasis is laid on mathematical analysis
of its theoretical properties with the aid of electric network theory and the theory of discrete metrics� SVM
with this kernel admits physical interpretations in terms of resistive electric networks� in particular� the SVM
decision function corresponds to an electric potential� Preliminary computational results indicate reasonable
promise of the proposed kernel in comparison with the Hamming and di�usion kernels�
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� Introduction

Support vector machine �SVM� has come to be very popular in machine learning and data
mining communities� SVM is a binary classi�er using an optimal hyperplane learned from
given training data� Through kernel functions� which are a kind of similarity functions
de�ned on the data space� the data can be implicitly embedded into a high �possibly in�nite�
dimensional Hilbert space� With this kernel trick� SVM achieves a nonlinear classi�cation
with low computational cost�

Input data from real world problems� such as text data� DNA sequences and hyperlinks
in World Wide Web� is often endowed with discrete structures� Theory and application of
�kernels on discrete structures� are pioneered by D� Haussler ��	
� C� Watkins ���
 and R�
I� Kondor and J� La�erty ��

� Haussler and Watkins independently introduced the concept
of convolution kernels� Kondor and La�erty utilized spectral graph theory to introduce
di�usion kernels� which are discrete kernels de�ned on vertices of graphs�

In this paper we propose a novel class of discrete kernels on vertices of an undirected
graph� Our approach is closely related to that of Kondor and La�erty� but is based on
electric network theory rather than on spectral graph theory� Accordingly we will name the
proposed kernels electric network kernels� SVM using an electric network kernel admits nat�
ural physical interpretations� The vertices with positive label and negative label correspond�
respectively� to terminals with �� electric potential and �� electric potential� The result�
ing decision function corresponds to an electric potential� and the separating hyperplane to
points with potential equal to zero�
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Emphasis is laid on mathematical analysis of the electric network kernel with the aid of
electric network theory and the theory of discrete metrics� An interesting link to discrete
metrics is revealed by considering the special case where the underlying graph is a tree� Then
the electric network kernel is equivalent� in a nontrivial sense� to a tree metric� which is a
fundamental concept in phylogeny ���
� Combination of this observation with the Gomory�
Hu cut tree known in network �ow theory �see� e�g�� ��
� naturally leads to a discrete kernel
based on the minimum cuts in an undirected graph� Another interesting special case is where
the underlying graph is a hypercube� By exploiting symmetry of a hypercube� we provide
an explicit formula for the electric network kernel� which makes it possible to apply the
electric network kernel to large�scale practical problems� In our preliminary computational
experiment the electric network kernel shows fairly good performance for some data sets� as
compared with the Hamming and di�usion kernels�

This paper is organized as follows� In Section �� we review SVM and its formulation as
optimization problems� In Section 
� we propose our kernel and investigate its properties�
Physical interpretations to SVM with our kernel are also explained� In Section �� we consider
the case of a tree and indicate links to a tree metric� In Section �� we deal with the case of
a hypercube� and show some computational results for some real world problems�

� Support Vector Machines

In this section� we review SVM and its formulation as optimization problems� see ���
� ���

for details� Let X be an input data space� e�g� Rn� f	� �gn� text data and DNA sequence�
etc� A symmetric function K � X � X � R is said to be a kernel on X if it satis�es the
Mercer condition�

For any �nite subset Y of X

matrix �K�x� y� j x� y � Y � is positive semide�nite� �����

For a kernel K� it is well known that there exists some Hilbert space H with inner product
h�� �i and a map � � X � H such that

K�x� y� � h��x�� ��y�i �x� y � X ��

Given a labeled training set �x�� ���� �x�� ���� � � � � �xm� �m� � X � f��g� SVM classi�er
is obtained by solving the optimization problem

min
��Rm

�

�

X
��i�j�m

�i�j�i�jK�xi� xj��
X

��i�m

�i

s�t�
X

��i�m

�i�i � 	� 	 � �i � C �i � �� � � � �m��

where C is a penalty parameter that is a positive real number or ��� If C � ��� it is
called the hard margin SVM formulation� If C � ��� it is called the ��norm soft margin
SVM formulation�

For our purpose� it is convenient to consider the equivalent problem

�SVM
 � min
u�Rm

�

�

X
��i�j�m

uiujK�xi� xj��
X

��i�m

�iui

s�t�
X

��i�m

ui � 	� �����

	 � �iui � C �i � �� � � � �m�� ���
�
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where ui � �i�i for i � �� � � � �m�
Let u� � Rm be an optimal solution of the problem �SVM
 and b� � R be the Lagrange

multiplier of constraint ����� at u�� where the Lagrange function of �SVM
 is supposed to be
de�ned as

L�u� �� �� b� �
�

�

X
��i�j�m

uiujK�xi� xj��
X

��i�m

�iui

�
X

��i�m

�i�iui �
X

��i�m

�i��iui � C� � b
X

��i�m

ui�

where u � Rm� �� � � Rm
��� and b � R� Then the decision function f � X � R is given as

f�x� �

mX
i��

u�iK�xi� x� � b� �x � X �� �����

That is� we classify a given data x according to the sign of f�x�� A data xi with �iu
�
i � 	

is called a support vector� In the case of the ��norm soft margin SVM� a support vector xi
is called a normal support vector if 	 � �iu

�
i � C and a bounded support vector if �iu

�
i � C�

� Proposed Kernel and Its Properties

Let �V�E� r� be a resistive electric network with vertex set V � edge set E� and Ohmic resistors
on edges with the resistances represented by r � E � R��� We assume that the graph �V�E�
is connected� Let D � V � V � R be a function on V de�ned as

D�x� y� � resistance between x and y �x� y � V �� �
���

Clearly� D is a nonnegative symmetric function with zero diagonals� i�e�� D is a distance
function on V � Fix some vertex x� � V as a root� and de�ne a symmetric function
K � V � V � R on V as

K�x� y� � fD�x� x�� �D�y� x���D�x� y�g	� �x� y � V �� �
���

Seeing that K�x�� y� � 	 for all y � V � we de�ne a symmetric matrix �K by

�K � �K�x� y� j x� y � V n fx�g�� �
�
�

Remark ���� Given a distance function D� the function K de�ned by �
��� is called the
Gromov product�

Let L be the node admittance matrix de�ned as

L�x� y� �

��
�
P
f�r�e���� j x is an endpoint of e � Eg if x � y�

��r�xy���� if xy � E�
	 otherwise�

�x� y � V �� �
���

If all resistances are equal to �� then L coincides with the Laplacian matrix of graph �V�E��
Let �L be a symmetric matrix de�ned as

�L � �L�x� y� j x� y � V n fx�g��
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Note that �L satis�es

�L�x� y� � 	 �x �� y�� �
���X
z�V nfx�g

�L�x� z� 	 	 �x � V n fx�g�� �
���

A matrix is called anM�matrix if it can be represented as sI�B with a nonnegative matrix B
and a real number s not smaller than the spectral radius of B� It is known ��
 that symmetric
matrices satisfying the o��diagonal nonpositivity �
��� and the diagonal dominance �
��� are
exactly the same as diagonally dominant symmetric M�matrices� Hence �L is a diagonally
dominant symmetric M�matrix� Since the graph G is connected and �L is a submatrix of
L obtained by the deletion of the column and row corresponding x�� �L is nonsingular and
positive de�nite� A matrix whose inverse is an M�matrix is called an inverse M�matrix� The
following relationship between K and L is well known in electric network theory� see ��
 for
example�

Proposition ���� We have �K�� � �L and
�

LK
 � 
 �
 � RV �
P

x�V 
�x� � 	��
KLp � p �p � RV � p�x�� � 	��

�
���

In particular �K is an inverse M�matrix�

Proof� A proof is provided for completeness� For x� y � V � the resistance between x and y
is given by the electric potential di�erence between x and y when unit electric current �ows
from x to y� By Ohm�s law� the electric potential p � V � R is given by the solution of
linear equation

Lp � �x � �y� �
���

where �x is the unit vector de�ned as �x�z� � � if z � x and 	 otherwise� With an additional
condition p�x�� � 	� then the solution of �
��� is uniquely determined� Hence the resistance
D�x� y� is given as

D�x� y� � p�x�� p�y�

�

��
�

�L���x� x� � �L���y� y�� ��L���x� y� if x� y � V n fx�g�
�L���x� x� if x � V n fx�g� y � x��
�L���y� y� if y � V n fx�g� x � x��

From this� we obtain

K�x� y� � fD�x� x�� �D�y� x���D�x� y�g	� � �L���x� y�

for x� y � V n fx�g� Equations in �
��� follow from the facts that each column sum of L
equals zero� K��� x�� � K�x�� �� � 	 and that �K�� � �L�

Hence� K in �
��� is positive semide�nte and satis�es the Mercer condition� We shall
call such K an electric network kernel�

Remark ���� Chung and Yau ��
 considered discrete Green�s function on a graph �V�E� r��
which is a function G � V � V � R satisfying

GLp � p �p � RV � p�x� � ��x� �x � 
V ���
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where � � 
V � R with 
V 
 V represents a prespeci�ed boundary condition� Equa�
tion �
��� implies that our electric network kernel K of �V�E� r� with root x� coincides with
this discrete Green�s function with 
V � fx�g and ��x�� � 	�

We consider the SVM on electric network �V�E� r� with the kernel K of �
���� Let
f�xi� �i�gi������ �m 
 V �f��g be a training data set� where we assume that xi �i � �� � � � �m�
are all distinct� Just as the SVM with a di�usion kernel� we assume that fx�� � � � � xmg is a
subset of the vertex set V � accordingly we put V � fx�� � � � � xng with n 	 m�

Lemma ���� The optimization problem �SVM
 is determined independently of the choice of
a root x� � V �

Proof� The objective function of �SVM
 is in fact independent of x�� since its quadratic term
can be rewritten as

P
i�juiujK�xi� xj� �

P
i�juiuj�D�xi� x�� �D�xj � x���D�xi� xj��	�

�
P

juj
P

iuiD�xi� x��� ��	��
P

i�juiujD�xi� xj�

� ���	��
P

i�juiujD�xi� xj��

where the last equality follows from the constraint ������

Next we give physical interpretations to the problem �SVM
 with the aid of nonlinear
network theory �see ���� Chapter IV
�� Suppose that we are given an electric network �V�E� r�
and labeled training data set f�xi� �i�gi������ �m 
 V �f��g� where x�� � � � � xm are all distinct�
We connect voltage sources to �V�E� r� as follows�

For each xi with � � i � m� connect to the earth a voltage source whose electric
potential is �i and the current �owing into xi is restricted to �	� C
 if �i � � and
��C� 	
 if �i � ���

By using voltage sources� current sources and diodes� this network can be realized as in
Figure ��

Let A � �A�x� e� j x � V� e � E� be the incidence matrix of �V�E� with some �xed
orientation of edges and let R � diag�r�e� j e � E� be the diagonal matrix whose diagonals
are the resistances of edges�

The electric current in this network is given as an optimal solution of the problem�

�FLOW
 � min
�����

�

�
��R� �

mX
i��

�i
i

s�t� A� �

�


	

�
�

X
��i�m


i � 	� 	 � �i
i � C �i � �� � � � �m��

where � represents the currents in edges and 
i represents the current �owing into xi for
i � �� � � � �m� The �rst and second terms of the objective function of �FLOW
 represents
current potential of edges E and of the voltage sources respectively� The electric potential
of this network is given as an optimal solution of the problem�

�POT
 � min
p�Rn

�

�
p�AR��A�p� C

mX
i��

maxf	� �� �ipig�
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Figure �� Physical interpretation

where pi represents the potential at vertex xi for i � �� � � � � n� The �rst and second terms
of the objective function of �POT
 represent voltage potentials of edges E and of the voltage
sources respectively� In fact� �FLOW
 and �POT
 are a dual pair� The optimality condition
is given as follows� Feasible ��� 
� and p are optimal solutions of �FLOW
 and �POT
 if and
only if they satisfy

�xixj � E � pi � pj � ��xixj�R�xixj� �Ohm�s law�� �
���

�i � f�� � � � �mg �

��
�

	 � �i
i � C � �ipi � ��
�i
i � 	 � �ipi 	 ��
�i
i � C � �ipi � ��

�
��	�

Proposition ���� The electric current ���� 
�� in this network is uniquely determined� If
there exists i � f�� � � � �mg with 	 � �i


�
i � C� then the electric potential is also uniquely

determined�

Proof� The �rst assertion follows from the uniqueness theorem ���� Theorem ����
� If such

�i exists� from complementarity condition �
��	�� any optimal solution p� of �POT
 must
satisfy p�i � �i� Consequently� the potentials of other vertices are also uniquely determined
by Ohm�s law �
����

The following theorem indicates the relationship between SVM problem and this electric
network�

Theorem ���� Let u� be the optimal solution of �SVM
� Then u�i coincides with the electric
current �owing into xi for i � �� � � � �m� Moreover� the decision function f of ����� for
�SVM
 is an electric potential�

Proof� The problem �FLOW
 is equivalent to

�FLOW�
 � min
�

W �
� �

mX
i��

�i
i

s�t�
X

��i�m


i � 	� 	 � �i
i � C �i � �� � � � �m��
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where W � Rm � R is de�ned as

W �
� � min
�

�
�

�
��R�

���� A� �
�



	

��
�

By the Lagrange multiplier method� the minimizer �� satis�es

R�� �A��� � 	� A�� �

�


	

�
� 	�

where �� is the optimal Lagrange multiplier with ���x�� � 	� From this� we have

W �
� �
�

�
���L��� L�� �

�


	

�
�

where L � AR��A� is the node admittance matrix� We de�ne K by �
���� From the second
equation above and �
���� we obtain

K

�


	

�
� KL�� � ���

Hence we have the desired formula

W �
� �
�

�
���L�� �

�

�
�
�	��KLK

�


	

�
�

�

�

X
��i�j�m


i
jK�xi� xj��

where the third equality follows from �
���� This implies that the problem �FLOW�
 coincides
with �SVM
� Hence we have u� � 
�� where 
� denotes the uniquely determined optimal
solution of �FLOW�
�

Next we show the latter half of the claim� Let f � V � R be the decision function given
by ����� with u� � 
�� i�e��

f � K

�

�

	

�
� b���

where � is the n�dimensional vector with all elements �� By well�known optimality criterion
for the SVM problem ���
� 
� and f satisfy the condition �
��	� with p � f � Let �� be
de�ned as �� � R��A�f � By this construction� �� and f satisfy Ohm�s law �
��� with
p � f � Furthermore� feasibility of �� is shown as

A�� � AR��A�f � L

�
K

�

�

	

�
� b��

�
�

�

�

	

�
�

where the last equality follows from �
��� and L� � 	� This implies that ���� 
�� and f are
the optimal solutions of �FLOW
 and �POT
� respectively�

From Proposition 
�� and Theorem 
��� we see that the electric potential coincides with
the decision function of �SVM
� provided that the optimal solution of �SVM
 has a normal
support vector� Furthermore� the Lagrange multiplier b� corresponds to the electric poten�
tial of the root vertex x�� if the potential is normalized in such a way that the earth has
zero electric potential� Hence� in the SVM with our electric network kernel� the following
correspondence holds�
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SVM electric network
positive label data �� voltage sources
negative label data �� voltage sources

optimal solution of �SVM
 electric current from voltage sources
decision function electric potential

Next we consider the case of the hard�margin SVM� The following proposition indicates
that solving �SVM
 with C � �� reduces to solving linear equations�

Proposition ���� For the electric network kernel K� an optimal solution u� of the equality
constrained optimization problem

�SVM�
 � min
u�Rm

�

�

X
��i�j�m

uiujK�xi� xj��
X

��i�m

�iui

s�t�
X

��i�m

ui � 	

is also optimal to �SVM
 with C � ���

Proof� Suppose that �i � �� for � � i � k and �i � �� for k � � � i � m for � � k � m�
By a variant of Lemma 
��� we may take xm as the root� Then problem �SVM�
 is equivalent
to

min
u�Rm��

�

�

X
��i�j�m��

uiujK�xi� xj��
X

��i�k

�ui�

where we substitute um � �
P

��i�m�� ui in �SVM
�
� LetK � �K�xi� xj� j � � i� j � m����

Hence the optimal solution u� � Rm is given by

u�i � �
X

��j�k

�K
��
�ij �� � i � m� ���

u�m � ��
X

��j�k

X
��h�m��

�K
��
�hi�

Since K is an inverse M �matrix by Proposition 
��� we have

u�i 	 	 �� � i � k�� u�i � 	 �k � � � i � m��

Hence u� satis�es the inequality constraint of �SVM
 and is optimal�

From Proposition 
��� the hard�margin SVM problem can be completely reduced to the
problem of linear resistive network without nonlinear devices� e�g�� diodes� In particular� we
see the following fundamental properties�


 decision function� or equivalently� electric potential f is �xed to be f�xi� � �i for each
data xi�


 for an edge xy� f�x� � f�y� if and only if electric current �ows from x to y �Ohm�s
law��


 there is no electric current �owing into �going from� �� ���� voltage sources�
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The following corollaries follow from above arguments of linear resistive network� where we
assume the hard�margin SVM�

Corollary ���� Let u� � Rm be the optimal solution of �SVM
� Then� for i � f�� � � � �mg�
xi is a support vector� i�e�� �iu

�
i � 	 if and only if there exists a path from xi to some xj

with �i �� �j such that it contains no other labeled training vertex 	data
�

Suppose that there exists some training data x such that the deletion of x from �V�E�
makes two or more connected components� i�e�� x is an articulation point of �V�E�� Let
U�� � � � � Uk be the vertex sets of the connected components after the deletion of x� Let
�U� � fxg� E��� � � � � �Uk � fxg� Ek� be subgraphs of �V�E�� Restricting training data set to
each subgraph� we obtain SVM problems �SVM�
� � � � � �SVMk
� From the electric network
view point� this network can be regarded as a parallel connection of the component sub�
graphs� Hence the problem can naturally be decomposed� Translating this observation into
a statement for the SVM problem� we see the following�

Corollary ��	� Under the above assumption� the optimal solution of �SVM
 can be rep�
resented as the sum of optimal solutions of �SVM�
� � � � � �SVMk
� Consequently� for each
i � f�� � � � � kg� the restriction to Ui �fxg of the decision function of the hard�margin �SVM

coincides with the decision function of �SVMi
�

Remark ���
� SVM with an electric network kernel falls in the scope of discrete convex
analysis ���
� which is a theory of convex functions with additional combinatorial structures�
Speci�cally� the objective function of �SVM
 with an electric network kernel is an M�convex
function in continuous variables� and the optimization problem �SVM
 is an M�convex func�
tion minimization problem�

Remark ����� Smola and Kondor ��	
 consider various kernels constructed from the Lapla�
cian matrix L of an undirected graph �V�E�� In particular� they introduced the kernel

K � �I � �L����

where � is a positive parameter� In our view� this kernel corresponds to the electric network
kernel of a modi�ed graph �V �fx�g� E�fyx� j y � V g� with a newly introduced root vertex
x��

The computation of elements of D or K through numerical inversion of �L is highly
expensive because the size of �L is usually very large� In Sections � and �� we consider
two classes of graphs �V�E�� trees and hypercubes� that admit e�cient computation of the
elements of K�

� SVM on Trees

��� Relationship to Tree Metrics

In this section� we consider the case where �V�E� is a tree� By regarding the resistance r as
the edge length� we then have

D�x� y� � path length between x and y� �����

Hence D is a tree metric� Recall ���
 that a distance is called a tree metric if it can be
expressed as the path length between vertices of some weighted tree� We take any x� � V
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Figure �� D and K on a tree

as the root� Then K is given by

K�x� y� �

path length between x� and the youngest common ancestor of x and y�

where �youngest� means �most distant from x��� Hence K can be recognized as the simi	
larity function naturally derived from a dendrogram �see Figure ���

As is well known� a tree metric can be characterized by the four�point condition�

Theorem ��� ������������	� Let X be a �nite set and D � X � X � R be a distance

function on X � Then D is a tree metric if and only if D satis�es the four�point condition�

�x� y� z� w � X �

D�x� y� 
D�z� w� � maxfD�x� z� 
D�y� w�� D�x�w� 
D�y� z�g� �����

Corresponding to this� the following equivalent theorem is also well known� see 
��� for
example�

Theorem ���� Let X be a �nite set and K � X � X � R be a symmetric function on X �
Then K is the Gromov product of some tree metric if and only if it satis�es the ultra�metric

condition�

�x� y� z � X �

K�x� x� � K�x� y� � minfK�x� z��K�x� y�g � �� �����

Hence� in any �nite set X � if we give a symmetric functionK � X�X � R satisfying ������
then X is implicitly embedded into some weighted tree� In particular� K is an electric
network kernel� Hence the arguments in the previous section are applicable to SVM on X
with this kernel K� Two speci�c applications of this idea are expounded below�

��� Min
Cut Kernel for Undirected Graphs

Let G � �U� F� c� be an undirected graph with vertex set U � edge set F and edge capacity
c � F � R��� Let � � �U � R be the cut function of G de�ned as

��X� �
X

fc�e� j e � xy � F� x � X� y � U nXg �X � U�� �����

We de�ne the min�cut kernel K � U � U � R for G as

K�x� y� �

�
��fxg� if x � y

minf��X� j X � U� x � X� y � U nXg otherwise�
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Proposition ���� The min�cut kernel K satis�es the ultra�metric condition ������

Proof� Note that � satis�es ��X� � ��U n X� � � for X � V � From this� nonnegativity
of K is observed� Clearly we have K�x� x� � ��fxg� � K�x� y� for y � U n fxg� We
show K�x� y� � minfK�x� z��K�y� z�g for x� y� z � U � Let X� � U be a minimizer of
minf��X� j X � U� x � X� y � U nXg� Then we have K�x� y� � ��X��� If z � X�� we have
��X�� � K�y� z�� If z �� X�� we have ��X�� � K�x� z��

Hence� the vertices of graph G are implicitly embedded into some weighted tree by the
min	cut kernel� The max	�ow min	cut theorem implies that

K�x� y� � maximum �ow value between x and y �x �� y��

Hence� the value of K can be e�ciently computed through maximum �ow algorithms or the
Gomory	Hu cut tree algorithm 
���

Remark ���� The fact that the maximum �ow value between two terminal node pair sat	
is�es the ultra	metric condition is already known in ����s 
��� 
����

��� Relationship to MPR Problem in Phylogeny

Here� we discuss the relationship between our SVM on trees and Most�Parsimonious Re�

construction �MPR� problem in phylogeny� First we brie�y summarize the MPR problem�
see 
��� 
��� for details� Let C be a set called the character states� and d � C � C � R be a
distance function on C� The MPR problem in phylogeny is mathematically formulated as
follows�

Given a tree T � �V�E� �phylogenetic tree�� a subset X � V � and a function
� � X � C called a character on X � Find a full character � � V � C that is a
minimizer of the optimization problem


MPR� � min
��V�C

X
fd���x�� ��y�� j xy � E� x� y � V g

s�t� ��x� � ��x� �x � X��

The following proposition indicates the relationship between our SVM on trees and the MPR
problem�

Proposition ���� Consider the hard�margin SVM on tree T � �V�E� with unit resistance

on each edge and training data set �x�� ���� � � � � �xm� �m� � V � f��g� Then the resulting

decision function f coincides with the solution of 
MPR� problem with tree T � �V�E��
character state C � R� character � � fx�� � � � � xmg � R de�ned as ��xi� � �i� and distance

function d�u� v� � ju	 vj� for u� v � R�

Proof� By Theorem ��� and Proposition ���� the hard	margin SVM problem is equivalent to
the problem 
FLOW� without inequality constraints� Hence its dual problem is given by

min
p�V�R

�

�

X
f�p�x�	 p�y��� j xy � E� x� y � V g

s�t� p�xi� � �i �i � �� � � � �m��

This problem coincides with 
MPR� in the above�

For various C and d� it is shown that MPR problems can be e�ciently solved based on the
dynamic programming 
��� 
���� Hence our hard	margin SVM on trees can be also e�ciently
solved by these algorithms�
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� SVM on Hypercubes

��� Explicit Formula for the Resistance

In this section� we consider the case where �V�E� is an N 	dimensional hypercube� We regard
�V�E� as an electric network where all resistances of edges are equal to �� Hence the node
admittance matrix of �V�E� coincides with the Laplacian matrix�

The vertices are naturally regarded as �	� vectors� i�e�� V � f�� �gN � Let dH � V �V � R
be the Hamming distance de�ned as

dH�x� y� � �fi � f�� � � � � Ng j xi �� yig �x� y � f�� �gN��

or equivalently� dH�x� y� is the minimum path length between x and y on �V�E�� It should
be clear that xi denotes the ith element of x� By symmetry of the hypercube� the resistance
D between two vertex pair is given as a function in the Hamming distance of the pair as
follows� The proof is presented in Subsection ����

Theorem ���� The resistance D � V � V � R of an N�dimensional hypercube �V�E� is
given by

D�x� y� �
�

�N��

dH�x�y�X
s����������

N�dH�x�y�X
t��

�

��s
 t�

�
dH�x� y�

s

��
N 	 dH�x� y�

t

�
� �����

The theorem implies� in particular� that each element of kernel K can be computed with
O�N�� arithmetic operations� This makes it possible to apply the electric network kernel to
large	scale practical problems on hypercubes�

Remark ���� The derivation of the explicit formula above relies essentially on the fact
that the number of distinct eigenvalues of L is bounded by O�N�� See Lemma ��� in Subsec	
tion ���� Similarly� the electric network kernel for N tensor product of k	complete graph also
admits an explicit formula� and hence can be e�ciently computed because the Laplacian
matrix for this graph has only O�N� distinct eigenvalues 
����

��� Experimental Results

Here� we describe preliminary experiments with our electric network kernels on hypercubes�
In order to estimate the performance� we compare the electric network kernel with the
Hamming kernel and the di�usion kernel 
��� using benchmark data having binary attributes�
By the Hamming kernel we mean the kernel de�ned as

K�x� y� � N 	 dH�x� y� �x� y � f�� �gN��

The di�usion kernel and the electric network kernel are implemented to LIBSVM package 
���
which is one of the common SVM package programs� For benchmark data sets� we use
Hepatitis� Votes� and LED��� taken from UCI Machine Learning Repository 
��� �Table
����� In Hepatitis data set� we use �� binary attributes of all �� attributes� LED��� data
set is made through the data generating tool in 
��� by adding ��� noise�

Table ��� shows the experimental results with Hamming kernel �HK�� di�usion kernel
�DK�� and electric network kernel �ENK� for these data sets� where Acc means the ratio of
correct answers averaged over �� random �	fold cross validations and SVs is the number of
support vectors for whole data set� Results are reported for the setting of the soft margin
parameter C and the di�usion coe�cient � achieving the best cross validated error rate�
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Table ���� Data sets

Data set Size Positive Negative Attribute
Hepatitis ��� �� ��� ��
Votes ��� ��� ��� ��
LED��� ���� ��� ��� �

Table ���� Experimental results

HK DK ENK
Data set SVs Acc �C� SVs Acc �C� �� SVs Acc �C�
Hepatitis �� ������ ���� �� ������ ����� ���� ��� ������ �����
Votes �� ������ ����� �� ������ ����� ���� ��� ������ �����
LED��� ��� ������ ����� ��� ������ ����� ���� ��� ������ ����

HK � Hamming kernel� DK � di�usion kernel� ENK � electric network kernel�
SVs � number of support vectors� Acc � accuracy in percentile�

For Hepatitis and Votes data sets� three kernels show almost equivalent performance�
For Votes data set� however� our ENK shows somewhat poor performance than others� In
Hepatitis and Votes� ENK has larger SVs than other kernels� This phenomenon can be
explained by Corollary ��� as follows� Since these two data sets are well separated than
LED���� the soft margin SVM with ENK is close to the hard margin SVM� Hence it is
expected from Corollary ��� that these SVM with ENK have many SVs�

The above results indicate that our electric network kernel works well as an SVM kernel�
It is fair to say� however� that more extensive experiments against various kinds of data sets
are required before its performance can be con�rmed with more precision and con�dence�
Comprehensive computational study is left as a future research topic�

��� Proof of Theorem ���

First� we derive eigenvalues and eigenvectors of the Laplacian matrixLN of anN 	dimensional
hypercube� We regard functions de�ned on f�� �gN as �N 	dimensional vectors indexed by
f�� �gN arranged in lexicographic order� Hence LN is an �N � �N matrix like�

L� �

�
� 	�
	� �

�
� L� �

�
BB�

� 	� 	� �
	� � � 	�
	� � � 	�
� 	� 	� �

�
CCA �

Lemma ���� The eigenvalues of LN are given by

�k �k � �� �� � � � � N� �����

with the multiplicity of �k being
�
N
k

�
� The eigenvectors for eigenvalue �k are given by

pS � �S� 
 �S� 
 � � � 
 �SN �S � f�� �� � � � � Ng� �S � k�� �����
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where �Si is a ��dimensional vector de�ned as

�Si �

�		

		�

�

�
	�

�
if i � S��


�

�

�
otherwise�

�i � f�� � � � � Ng� �����

and symbol 
 means Kronecker product�

Proof� LN has the following recursive relation�

L� �

�
� 	�
	� �

�
�

LN	� �

�
LN 
 I 	I
	I LN 
 I

�
� �����

From this� the characteristic polynomial fN ��� of LN enjoys the following recursive relation�

f���� � ��� 	 ���

fN	����

� det�LN	� 	 �I�

� det

��
I �
	I I

��
I �
� LN 	 �I

��
LN 
 �I 	 �I 	I

� I

��
I �
I I

�


� det�LN 	 �I� det�LN 	 ��	 ��I�

� fN���fN ��	 ���

Hence� the characteristic polynomial fN ��� of LN is given by

fN��� �
NY
k��

��	 �k��
N

k�� �����

Hence� we have ������ Next we consider eigenvectors� If p is an eigenvector of eigenvalue �
of LN � then� from ������ we have

LN	�

�
p
p

�
� �

�
p
p

�
� LN	�

�
p
	p

�
� ��
 ��

�
p
	p

�
� �����

The eigenvectors of L� are given as

�

�

�

�
for � � ��

�

�
	�

�
for � � �� �����

From ����� and ������ we obtain ������

Remark ���� The graph of a hypercube can be expressed as a tensor product of single edges
��	dimensional hypercubes�� Hence� Lemma ��� can be derived from the general formula for
the spectra of the tensor product of graphs 
�� Theorems ���� and ���� and p�����

The expression ����� implies the following�
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Lemma ���� For d � f�� � � � � Ng� � � i� � � � � � is � d and d � j� � � � � � jt � N � we

have

p
fi����� �is�j����� �jtg
�d

� �	��s� �����

where the left�hand side above denotes the �dth element of the vector pS with S � fi�� � � � � is�
j�� � � � � jtg�

Let P be a �N � �N matrix whose column vectors are eigenvectors pS � i�e��

P � �pS j S � f�� �� � � � � Ng� �S � k� � � k � N��

Then LN is diagonalized as

LN � P

�
BBB�

��
��

� � �

��N

�
CCCAP�	�N �

where � � �� � �� � � � � � ��N are the eigenvalues of LN � Let �LN and �P be the ��N 	 ���
��N 	 �� submatrices of LN and P � respectively� with the �rst columns and the �rst rows
deleted� This means that � � f�� �gN is taken as the root vertex x�� Then we have

�K � ��LN ��� � �N� �P ���

�
B�

�	��
� � �

�	��N

�
CA � �P����� ������

Lemma ��
� �P�� is given as

�P�� � � �P� 	 ����	�N � ������

where � is the ��N 	 ���dimensional vector with all elements ��

Proof� P can be expressed as

P �

�
� ��

� �P

�
�

Since PP� � �NI � we have

�� 
 �� �P� � �� ��� 
 �P �P� � �NI� ������

Substituting the �rst equation to the second in ������� we obtain

	��� �P� 
 �P �P� � �NI�

This implies �P�� � � �P� 	 ����	�N �

It follows from ������ and ������ that

�K � � �P 	 ����

�
B�

�	��
� � �

�	��N

�
CA � �P 	 �����	�N � ������
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Finally we derive the resistance D� For x� y � f�� �gN with d � dH�x� y�� from symmetry
of the hypercube� we have

D�x� y� � D��� �d� � �K��d� �d��

where �d is a short	hand notation for ��� � � � � �� �z �
d

� �� � � � � �� �z �
N�d

�� From ������ and ������ we have

�K��d� �d� �
�

�N

�NX
i��

�

�i
�Pi�d 	 ���

�
�

�N

NX
k��

�

�k

X
��i��i������ik�N

�p
fi��i����� �ikg
�d

	 ���

�
�

�N

NX
k��

X
��s� ��t
s	t�k

�

��s
 t�

X
��i������is�d
d�j������jt�N

��	��s 	 ���

�
�

�N��

dX
s����������

N�dX
t��

�

��s
 t�

�
d

s

��
N 	 d

t

�
�

Thus we have proven Theorem ����
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