o0 Py, ”

@ Yokohama Publishers
5

A
0w

Sinee 199

IMPROVING ON BRANCH-AND-CUT ALGORITHMS FOR
GENERALIZED MINIMUM SPANNING TREES

CORINNE FEREMANS, ANDREA LoDI, PAOLO TOTH AND ANDREA TRAMONTANI

Dedicato a Toshihide Ibaraki con ammirazione
per l'uomo e il suo eccezionale contributo scientifico.

Abstract: Several variants of Generalized Minimum Spanning Tree Problems (GMSTPs) have been intro-
duced in the literature in different papers by a number of authors. Roughly speaking, all these variants are
generalizations of the classical Minimum Spanning Tree on an undirected graph G = (V, E) in which the
node set V' is partitioned into a given set of clusters, and the minimum tree has to “span” those clusters
instead of simple nodes.

In particular, in this paper we are concerned with two specific variants, the most classical one in which
Ezactly one node in each cluster has to be visited (E-GMSTP), and the less studied problem in which at
Least one node in each cluster has to be reached (L-GMSTP).

This paper presents several effective techniques to improve on the branch-and-cut approaches for E-
GMSTP and L-GMSTP proposed by Feremans, Labbé and Laporte [8] and by Feremans [6], respectively.
In particular, we improved on the performances through: i) new effective heuristic algorithms, 4i) updated
branching strategies, and #ii) the use of general-purpose Chvdtal-Gomory cuts.

Finally, a generalization of both problems requiring some clusters to be visited exactly once and the
remaining clusters at least once is presented.
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Introduction

Several variants of Generalized Minimum Spanning Tree Problems (GMSTPs) have been
introduced in the literature in different papers by a number of authors. Roughly speaking, all
these variants are generalizations of the classical Minimum Spanning Tree Problem (MSTP,
see, e.g., [12]) on an undirected graph G = (V, E) in which the node set V' is partitioned
into a given set of clusters*, and the minimum tree has to “span” those clusters instead of
simple nodes.

In particular, in this paper we are concerned with two specific variants, the most classical
one in which Ezactly one node in each cluster has to be visited (E-GMSTP), and the less
studied problem in which at Least one node in each cluster has to be reached (L-GMSTP).

More precisely, V' is partitioned into | K| clusters Vi, k € K. Each edge e = {i,j} € E
has a cost ¢, € IRT. The E-GMSTP is the problem of finding a minimum cost tree including
exactly one node from each node set of the partition (see Figure 1 for a feasible solution of

Copyright © 2005 Yokohama Publishers  http://www.ybook.co.jp
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Figure 1: Feasible solutions for E-GMSTP. Figure 2: Feasible solutions for L-GMSTP.

E-GMSTP). This problem was introduced by Myung, Lee and Tcha [13] who have shown it is
strongly A'P-hard by a reduction from the node-cover problem. Mathematical formulations
and exact methods have been discussed by Myung, Lee and Tcha [13], Faigle, Kern, Pop
and Still [5], Pop [14] and Feremans, Labbé and Laporte [7, 8]. The algorithm proposed
in [8] is considered as the most effective approach for the optimal solution of E-GMSTP. A
polynomial approximation algorithm has been proposed by Pop, Kern and Still [15].

In the L-GMSTP, instead, at least one node from each cluster of the partition must
be included in the minimum cost tree (see Figure 2 for a feasible solution of L-GMSTP).
This problem was introduced by Ihler, Reich and Widmayer [10] as a particular case of
the Generalized Steiner Tree Problem under the name “Class Tree Problem”. Thler, Reich,
Widmayer [10] have shown that the decision version of the L-GMSTP is N"P-complete even
if G is a tree, and that there is no constant worst-case ratio polynomial-time algorithm
unless P = NP, even if G is a tree on V with edge lengths 1 and 0. Heuristic algorithms
have been proposed by Thler, Reich, Widmayer [10] and by Dror, Haouari and Chaouachi
[3]. The only exact algorithm for this problem has been proposed by Feremans [6].

The L-GMSTP reduces at a first glance to the E-GMSTP when the triangle inequalities
hold, but this is not true as shown by the example in Figure 3. Indeed, if the graph depicted

Figure 3: A graph for which E-GMSTP and L-GMSTP differ.

*A variant in which the clusters may overlap is considered in [4].
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in Figure 3 is completed through shortest paths, it satisfies the triangle inequalities and the
value of the optimal solution of L-GMSTP is 12.5 (using both nodes 5 and 6), while the
optimal value of the E-GMSTP solution is 12.8 (only using node 5).

Applications modeled by E-GMSTP are encountered in telecommunications, where metro-
politan and regional networks must be interconnected by a tree containing a gateway from
each network. For this internetworking, a node has to be chosen in each local network as a
hub and the hub nodes must be connected via transmission links such as optical fiber (see
Myung, Lee and Tcha [13] for details).

The L-GMSTP has been used to solve an important real life network design problem
arising in desert environments and consisting in designing a minimal length irrigation net-
work which connects at least one node from each parcel to a water source (see Dror, Haouari
and Chaouachi [3] for details).

This paper presents several effective techniques to improve on the branch-and-cut ap-
proaches for E-GMSTP and L-GMSTP proposed by Feremans, Labbé and Laporte [8] and by
Feremans [6] respectively. In particular, we improved on the performances through: i) new
effective heuristic algorithms, i) updated branching strategies, and %) the use of general-
purpose Chvatal-Gomory cuts (with and without the strengthening procedures proposed by
Letchford and Lodi [11]).

Finally, a generalization of both problems requiring some clusters to be visited exactly
once and the remaining clusters at least once is presented. Such a generalization is denoted
as E/L-GMSTP and naturally appears when the considered network is somehow “mixed”,
i.e., involving clusters which may require a different behavior (fixed-charge costs).

The paper is organized as follows. In Section 2 two basic Integer Linear Programming
(ILP) formulation for E-GMSTP proposed in [13] and the one discussed in [7] and tested
in [8] are recalled. In Section 3 an ILP formulation for L-GMSTP is proposed and its
relationship with the one for E-GMSTP is discussed, while Section 4 discusses the proposed
generalized problem. Section 5 recalls the branch-and-cut method proposed in [8, 6] and
presents several techniques to improve on this method. Computational experiments are
reported in Section 6 showing the effectiveness of the presented techniques and preliminary
results for the proposed generalized problem. Some conclusions are drawn in Section 7.

ILP Formulations for E-GMSTP

Myung, Lee and Tcha [13] have provided two basic formulations for the E-GMSTP using
two sets of binary variables, namely z.,Ve € E and y;,Vi € V. In the first formulation,
called ucut, connectivity is ensured by cutset constraints of the form x(8(S)) > y; +y; — 1
(i € SCV,j¢&S), whereas in the second, called usub, cycles are prevented through
subpacking constraints of the form xz(E(S)) <y(S\{i}) (e SCV,2<|S|<|V]|=1). As
it is customary, for any S C V, §(S) (resp. E(S)) denotes the set of edges having exactly
one endpoint (resp. both endpoints) in S, and x(5(S)) (resp. z(E(S))) denotes the sum of
the z-values on the subset §(S) (resp. E(S)).

The undirected cutset formulation uses the fact that a feasible Generalized Spanning
Tree (E-GST) is a connected subgraph of G containing one node per cluster and |K| —1
edges:

Undirected cutset formulation (ucut)
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min Z Cele (1)

ecFE

subject to

y(Vi) =1 ke K, (2)
z(E) = |[K| -1, (3)
93(5(5))2%-#3/]—1 ZESCV,]gS, (4)
z. € {0,1} ecE, (5)
y; €{0,1} eV (6)
Constraints (2) guarantee that each cluster is visited exactly once, while constraint (3)

forces the tree structure. As already mentioned, constraints (4) assure connectivity. Finally,
constraints (5) and (6) are the integrality requirements.

An E-GST can also be defined as an acyclic subgraph of G containing one node per
cluster and |K| — 1 edges:
Undirected subpacking formulation (usub)

min E CeTe

eCE
subject to
y(Vi) =1 ke K,
z(E) = |[K| -1,
2(B(S)) <y(S\{i}) ieScV2<|s|<|V]-1, (7)

z. €{0,1} e€E,
yi€{0,1} eV

The model is equivalent to the previous one with the only difference of the connectivity
constraints (4) replaced by constraints (7).

Myung, Lee and Tcha [13] have also proved that Pysus C Pucut, i-€., that the subpack-
ing formulation dominates the cutset one in terms of continuous relaxation. The example
depicted in Figure 4, provided by Magnanti and Wolsey [12] in the context of the Minimum
Spanning Tree Problem, can also be used to show (with |K| = 5,V;, = {k} Vk € K) that this
inclusion is strict. Indeed (2), (3) and (4) are satisfied while (7) is violated for S = {3,4, 5}.

Several other formulations for E-GMSTP were proposed and discussed by Feremans,
Labbé and Laporte [7]. Among these formulations the tightest and most compact one
(in terms of linear programming relaxation and number of variables, respectively) is the
undirected cluster subpacking formulation:

Undirected cluster subpacking formulation (ucsub)

min E CeTe

ecFE
subject to

y(Vi)=1 keK,
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Figure 4: Example showing that Pysup C Pucut-

z(E) = |K| -1,

z(E(S) <y(S)—1  ScV,2<|S|<|V[=1,u(S) #0, (8)

z. € {0,1} e€ L,

y; € {0,1} teV.
This formulation is a strengthening of usub in which constraints (7) are replaced by the
cluster subpacking constraints (8), where for any S C V we define u(S) = |{k: V}, C S}, i.e,,
the number of clusters included in S (see [7] for details and the proof that Pycsub C Pusub)-
The undirected cluster subpacking formulation is the one used by Feremans, Labbé and

Laporte [8] as a base for a branch-and-cut approach which is elaborated in Section 5.1 and
tested in Section 6.1.

ILP Formulation for L-GMSTP

The L-GMSTP can be formulated as an integer linear program as follows.

min Y c.x,

e€E
S.t.
y(Ve) > 1 ke K, (9)
z(E) =y(V) -1, (10)
z(0(5)) 2yi+y;—1 i€SCV,jES,
z. € {0,1} ecE,
yi € {0,1} i eV,

where constraints (9) and (10) replace constraints (2) and (3), respectively.
Notice that constraints

2(E(S) <y(S)—-1  ScV,2<[S|<V]-1, w(S) #0,

i.e., constraints (8), valid for the E-GMSTP remain valid for the L-GMSTP. However, they
do not dominate all the constraints (4) unlike for the E-GMSTP polytope. Indeed, consider
the following example (see Figure 5) where all the constraints (8) are satisfied but at least one
of the constraints (4) is violated. Let V' = {1,2,...,6},V} = {1,2,3},V, = {4,5}, V3 = {6}
and the graph is complete. If y; = 1, Vi € V 212 = 14 = X4 = X35 = T56 = 1,2, = 0
otherwise, then the constraint (4) for S = {1,2,4},i =1, j = 3 is violated.
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Figure 5: Constraints (4) are not all implied by constraints (8) for L-GMSTP.

The above linear formulation for the L-GMSTP is not strong with respect to its linear
relaxation. We can justify this claim in exploiting the same argument as the one used in
Magnanti and Wolsey [12] for the Minimum Spanning Tree problem. Indeed, if each cluster
is reduced to a single node, the L-GMSTP boils down to the classical MSTP. However,
this formulation is particularly effective in a branch-and-cut context since the so-called cut-
constraints (4) are easy to separate using max-flow algorithms. Such a formulation is the
one used by Feremans [6] as a base for a branch-and-cut approach and such an approach is
elaborated in Section 5.2 and tested in Section 6.2.

From L-GMSTP to E-GMSTP

One way to solve the L-GMSTP consists of seeing it as a variant of the E-GMSTP. For this
purpose, the following transformed graph has to be defined.
Let G = (V,E), with V' partitioned into clusters Vi, V5,...,V|k|, be the graph of the

L-GMSTP instance. The transformed graph G = (V, E) is defined as follows:
o Vis equal to V', and the partition into clusters remains the same,

e for each pair of nodes ¢,j € v belonging to different clusters and such that there exists
a path between ¢ and j in G, there is an edge {i,j} € FE with cost equal to the value
of the shortest path from ¢ to j in the original graph G.

The transformed graph G is | K |-partite complete if G is connected on V.

Proposition 1 The optimal solution of the E-GMSTP solved on G can be transformed into
a feasible solution of L-GMSTP on G. It gives then an upper bound on the value of the
optimal solution of L-GMSTP.

Proof. An edge in an E-GMSTP solution in G corresponds to a path in G. Removing
the repeated edges and the cycles (in deleting the edge with highest cost in each cycle, one
cycle at a time), we obtain a feasible solution to L-GMSTP with value less or equal to the

corresponding solution in G. O

It is not difficult to see that repeated edges and cycles can occur from the transformation.

It does not always exist an optimal solution of E-GMSTP on G such that in removing
repeated edges and cycles, we get an optimal solution for L-GMSTP on G. It means that
solving the E-GMSTP on G can only provide an upper bound to the L-GMSTP on G. To see
this, it suffices to consider again the graph in Figure 3. The optimal solution of L-GMSTP
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on G is 12.5, while the optimal value of the E-GMSTP solution on Gis12.8 and corresponds
to a feasible solution of L-GMSTP in G of value 12.8.

In [6], such a transformation of G into G with edges in G corresponding to the shortest
paths with the maximum number of edges has been tested as a heuristic. This is done, in
order to get a solution in G that is transformed into a solution in G with as many as possible
repeated edges and cycles. To obtain shortest paths with maximum number of edges, the
following scaling is performed on G. The cost ¢, is replaced by 100¢, — 1. Three heuristics
based on the solution of E-GMSTP have been tested in [6]: ) the transformation using the
shortest paths, 2) the transformation using the shortest paths with maximum number of
edges, and 8) L-GMSTP solved directly as E-GMSTP. (Such a third case clearly provides
an upper bound for L-GMSTP since a feasible solution of E-GMSTP is also feasible for
L-GMSTP.)

A generalization: the E/L-GMSTP

The E/L-GMSTP can be formulated as an integer linear program as follows.

min Y c.x,

cEE
s.t.
y(Vi) =1 k€ Kg, (11)
y(Vi) > 1 ke Ky, (12)
(E)=y(V) -1,
2(6(5) 2yi+y;—1 i€SCV,jES,
z. € {0,1} e€E,
yi € {0,1} 1€V,

where K = Kp U K, is partitioned in two sets Kg and K, such that the clusters in Kg
(resp. K1) must be visited exactly (resp. at least) once.

This problem is clearly a generalization of both E-GMSTP and L-GMSTP since both
sets Kg and K, can reduce to the empty set. Obviously, in case Ky, is the empty set the
model can be tightened to become the undirected cluster subpacking formulation described
in Section 2.

Improving on GMSTP

In this section we concentrate on several techniques to improve on the branch-and-cut frame-
work for Generalized Minimum Spanning Tree problems developed by Feremans, Labbé and
Laporte [8] and Feremans [6]. This framework has been modified in the current paper to
obtain better results through new branching rules, primal-heuristic algorithms and the use
of general-purpose Chvatal-Gomory cuts.

First of all we briefly recall the branch-and-cut method of [8, 6]:

1. Initialization: Insert the linear program:

{min > c.z, : (2),(3),2,4: 20, Vi€V, Vee E}
eck
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for E-GMSTP or
{min > c.x. : (9),(10), zc,y: € [0,1], Vi€V, Ve e E}
ecE
for L-GMSTP, respectively, in a problem list £. Initialize the incumbent solution z to
infinity.

Termination: If £ is empty, STOP. Otherwise, extract one subproblem from £ ac-
cording to a best-first rule.

LP solution: Solve the subproblem using an LP-solver and let z* be its optimal
solution and z* its value. If z* > %, go to STEP 2. Otherwisef, if the solution is
integer and feasible update the incumbent solution Z and go to STEP 2.

Separation I: Separate the special cases of (8) and (7):
x(0(i)) >y; i€V (13)
and
z(BE({i} : Vi) <y, i€eV\(WUW), Vke K (14)
for E-GMSTP (where E({i} : Vi) denotes the set of edges having exactly one endpoint

in 7 and the other in Vi, and W = {i € V : i € Vj,|Vi| = 1} is the set of nodes
belonging to a cluster which is a singleton) or

. <y; and 7. <y; Ve={i,j}€FE (15)

for L-GMSTP, respectively?.
If violated inequalities are found, add them to the current subproblem and go to STEP
3.

Separation II: Separate constraints (8).
If violated inequalities are found, add them to the current subproblem and go to STEP
3.

Separation III: Separate

odd-cycle inequalities and odd-hole inequalities®

for E-GMSTP or
cutset constraints (4)
for L-GMSTP, respectively¥.
If violated inequalities are found, add them to the current subproblem and go to STEP
3.

Branching: Create two new subproblems by branching on a constraint (2) for E-
GMSTP, or on the edge whose value is closest to 0.5 and with maximum cost for
L-GMSTP, respectively.

Add the subproblems to the list £ and go to STEP 2.

fBoth local improvement and rounding procedures are applied in the E-GMSTP context (see [8] for
details).

fConstraints (13)-(14) are special cases of (8), while constraints (15) are special cases of (7). For the
proof of validity and separation details of (13)-(14) and (15) see [8] and [6], respectively.

§See [8] for proof of validity and separation details.

TNote that the constraints for E-GMSTP and L-GMSTP in STEP 6 play a rather different role. Indeed,
constraints (4) are necessary for the correctness of the branch-and-cut in the L-GMSTP context, while
odd-cycle and odd-hole inequalities are redundant constraints for E-GMSTP.
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Improving on E-GMSTP

The branch-and-cut method outlined in the previous section has been modified as follows.

First, we modified the separation procedure: preliminary tests have shown that odd-
cycle inequalities and odd-hole inequalities separation routines are rather time-consuming,
and these constraints are seldom generated. Instead of these constraints we used the general-
purpose Chvétal-Gomory cuts, with and without the two strengthening procedures proposed
by Letchford and Lodi [11]. The use of Chvétal-Gomory cuts has been recently re-discovered
by several authors (see, e.g., Balas, Ceria, Cornuéjols and Natraj [2]) , and a number of ways
of using them have been proposed. In our computational experiments we found very useful
to separate a single round of Chvatal-Gomory cuts at the root node of our branch-and-cut
tree when no other cuts have been identified and before resorting to branching. After the
addition of such a first round, we restart from STEP 3 of the algorithm above.

Second, we modified the branching strategy by branching on nodes, i.e., on the y; variable
closest to 0.5. As it is customary, two subproblems are created having y; = 0 and y; = 1,
respectively.

Computational results comparing the algorithm in [8] with the modified one are reported
in Section 6.1.

Improving on L-GMSTP

In addition to the two modifications already described in the previous section for E-GMSTP,
and also used for L-GMSTP (i.e., the use of general-purpose Chvital-Gomory cuts and an
effective branching strategy) in the context of L-GMSTP we performed two new modifica-
tions.

In the original version of the branch-and-cut method presented in [6], no heuristic algo-
rithm was used in STEP 3. We propose a greedy heuristic based on the classical algorithm
of Prim for MSTP. This heuristic is divided in two phases: the first is a rounding procedure
which starts from a fractional solution while the second one is a simple local improvement.
More precisely:

Phase 1): a maximum-priority spanning tree is computed using Prim’s algorithm (a
priority proportional to z} is associated with each edge e and, among edges of the same
priority, the inter-cluster edges are considered first). This phase stops when a feasible
solution T' = (V', E") for L-GMSTP is reached.

Phase 2): the solution is improved by removing all the redundant nodes of degree 1 (a
node i is redundant if |(V'\ {¢}) N Vi| > 1, k:i € V}). The corresponding adjacent edges
are removed from T one at a time according to nonincreasing edge cost while the remaining
edges still form a feasible solution.

Moreover, a more prudent separation policy has been implemented for constraints (4).
Indeed, we decided to apply the separation routine based on max-flow computation in case
the solution is integer (to detect if it is infeasible), while in case of a fractional solution such
that constraints (8), their special cases (13) and constraints (15) are not violated we resort
to branching, i.e., we execute STEP 7.

Computational results comparing the algorithm in [6] with the modified one are reported
in Section 6.2.

@ Computational Results

In this section we concentrate on the computation of provably optimal solutions for E-
GMSTP, L-GMSTP and E/L-GMSTP. This is done by using the same branch-and-cut
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framework presented in the previous section, which is specified so as to take into account
the main differences among the three problems.

All the codes have been implemented in C'++ by using the branch-and-cut framework
ABACUS [1] version 2.4 (alpha release) and ILOG-Cplex 9.0 as LP solver. All tests were
run on a Pentium M 1.6 Ghz notebook with 512 MByte of main memory.

E-GMSTP Results

Computational results comparing the algorithm in [8] with the modified one on both random-
generated Euclidean instances from [8] and the set of instances proposed by Dror, Haouari,
and Chaouachi [3] (and denoted in the following as “DHC” instances) are presented in Tables
1-2 and Table 3-4, respectively.

We compare four algorithms, namely, the original algorithm presented in [8], and three
versions (v. 0,1,2) of the modified algorithm depending on the type of Chvatal-Gomory cuts
used, i.e., classical ones (v.0), strengthened of type 1 (v.1), and strengthened of type 2 (v.2)
(see, Letchford and Lodi [11] for details).

Table 1 is organized as follows. Each line refers to a set of five random Euclidean instances
generated as in [8]. First, |V, |K| and |E| indicate the number of nodes, clusters and edges,
respectively, of the corresponding five instances. Then, we report the number of instances
solved to optimality within the time limit of 3,600 CPU seconds (Succ), the average number
of nodes of the branch-and-cut tree (Nodes), the average gap of the lower bound computed
at the root node with respect to either the optimal solution value or the best know one
(LB%), the average separation time expressed in seconds (sepT) and, finally, the average
overall time expressed in seconds!! (TT). The last row of Table 1 reports for each algorithm
the total number of solved instances and the average value over all the instances of the other
entries.

Table 2 reports the disaggregated results for the three sets of randomly-generated in-
stances for which not all the instances were solved to optimality (hard instances).

Tables 1 and 2 show that the modified version v.0 obtains the best results for what
concerns the number of solved instances and the computing time. As for the lower bound at
the root node, the use of the Chvatal-Gomory cuts generally leads to better values, mainly
if the strengthening procedures proposed in [11] are applied.

Table 3 has the same structure as Table 1, but the first column indicates the identifier of
the single instance (ID) and no column indicating the number of successes is present because
the all set of 20 instances is solved to optimality by the four algorithms. In addition, the
fifth column indicates the optimal value for the instance (Opt).

Table 4 reports the incremental effects of our modifications on the most significative
“DHC” instances. First of all we introduced general-purpose Chvétal-Gomory cuts (only
version v.0 is reported) instead of odd-cycle inequalities and odd-hole inequalities, then we
changed the branching strategy. The table has the same structure as Table 3, but in addition
we report the number of solved linear problems (Lp). Table 4 shows that each modification
leads to a reduction of the corresponding average computing times.

Finally, we tested our branch-and-cut algorithm v.0 with respect to that proposed in [8]
on generalized Traveling Salesman instances generated according to Fischetti, Salazar and
Toth [9]. As also reported in [8], the branch-and-cut algorithms solve all the problems with
up to 226 nodes at the root node by using only constraints (8) (i.e., without additional cuts)
but instance ts225. Thus, the two algorithms perform in the same way. On ts225, we

lAn instance which is not solved to optimality in the time limit has a computing time of 3,600 CPU
seconds for computation of the average time.
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Table 3: E-GMSTP: “DHC” Instances Comparison.

Branch-and-cut [8] Branch-and-cut, v.0 Branch-and-cut, v.1 Branch-and-cut, v.2
ID||V| |K| |E| Opt|{Nodes LB% sepT TT|Nodes LB% sepT TT|Nodes LB% sepT TT|Nodes LB% sepT TT
11 25 4 50 23 1 100.00 0.00 0.20 1 100.00 0.00 0.14 1 100.00 0.00 0.15 1 100.00 0.00 0.11
2| 256 8 100 45 1 100.00  0.00 0.07 1 100.00 0.00 0.07 1 100.00  0.00 0.07 1 100.00  0.00 0.06
3| 26 10 150 37 1 100.00  0.00 0.07 1 100.00  0.00 0.07 1 100.00  0.00 0.08 1 100.00  0.00 0.08
41 50 5 150 18 1 100.00 0.00 0.10 1 100.00 0.00 0.07 1 100.00 0.00 0.07 1 100.00 0.00 0.08
5| 50 10 300 27 1 100.00  0.00 0.09 1 100.00 0.00 0.09 1 100.00  0.00 0.08 1 100.00  0.00 0.09
6| 75 8 200 55 1 100.00  0.00 0.11 1 100.00  0.00 0.11 1 100.00  0.00 0.11 1 100.00  0.00 0.11
71 75 10 300 67 1 100.00 0.01 0.17 1 100.00 0.00 0.17 1 100.00 0.00 0.18 1 100.00 0.00 0.17
8| 75 15 400 58 1 100.00 0.01 0.13 1 100.00 0.00 0.15 1 100.00  0.00 0.12 1 100.00  0.00 0.13
9/100 7 300 37 1 100.00  0.00 0.10 1 100.00  0.00 0.11 1 100.00  0.00 0.10 1 100.00  0.00 0.10
10{100 10 500 49 1 100.00 0.00 0.20 1 100.00 0.02 0.20 1 100.00 0.00 0.19 1 100.00 0.00 0.20
11{150 8 300 65 1 100.00 0.02 0.33 1 100.00 0.02 0.34 1 100.00 0.03 0.33 1 100.00  0.00 0.34
12150 12 500 79 1 100.00 0.31 3.26 1 100.00 0.55 3.27 1 100.00 0.34 3.48 1 100.00 0.51 3.74
13{200 10 500 65 9 9538 046 7.67 9 96.92 040 6.37 5 96.92 0.40 5.23 5 9692 0.34 4.52
141200 20 1000 53 1 100.00 0.04 0.47 1 100.00 0.01 0.46 1 100.00 0.04 0.45 1 100.00 0.04 0.46
15250 10 500 60 1 100.00 0.01 0.43 1 100.00 0.03 0.39 1 100.00 0.02 0.45 1 100.00 0.01 0.42
16250 25 1000 123 1 100.00 0.39 2.91 1 100.00 0.27 2.87 1 100.00 0.36 2.92 1 100.00 0.31 2.94
171300 20 1000 95 1 100.00 0.10 1.42 1 100.00 0.13 1.43 1 100.00 0.10 1.43 1 100.00  0.05 1.43
18({300 30 2000 85 1 100.00 0.25 3.07 1 100.00 0.24 3.10 1 100.00 0.29 3.08 1 100.00 0.26 3.12
19({300 40 3000 88 5100.00 3.50 12.12 7 9886 1.20 8.60 7 98.86 1.29 8.72 3 100.00 1.08 7.55
201500 50 5000 109 85 95.41 343.88 1813.08 51 95.41 138.21 1180.59 35 95.41 143.96 1160.76 51 95.41 234.33 2265.11
5.80 99.54 17.45 92.30| 4.20 99.56 7.05 60.43| 3.20 99.56 7.34 59.40( 3.80 99.62 11.85 114.54
Table 4: E-GMSTP: “DHC” Instances Detailed Results.
Branch-and-cut [8] Chvétal-Gomory cuts, v.0 Branch-and-cut, v.0

ID | Nodes Lp LB% TT | Nodes Lp LB% TT | Nodes Lp LB% TT

13 9 430 95.38 7.67 7 358  96.92 6.34 9 357  96.92 6.37

19 5 337 100.00 12.12 5 187 98.86 5.19 7 306 98.86 8.60

20 85 6047 95.41 1813.08 117 5684 95.41 1594.15 51 3764 95.41 1180.59

33.00 2271.33 96.93 610.96 43.00 2076.33 97.06 535.23 22.33 1475.67 97.06 398.52




BRANCH-AND-CUT FOR GENERALIZED MINIMUM SPANNING TREES 503

obtained a speedup of 1.12 (computed as the ratio of the computing times of the original
algorithm and of the modified one), a slightly reduced number of branching nodes (15 instead
of 23) and a better lower bound at the root node due to the use of Chvatal-Gomory cuts (2
units improvement on a absolute gap of 22 units).

L-GMSTP Results

Computational results comparing the algorithm in [6] with the modified one on the “DHC”
instances are presented in Table 5-6.

Table 5 has the same structure as Table 3 but the first algorithm is now the branch-and-
cut approach presented in [6]. Moreover, we report as column six the number of selected
edges in the optimal solution (|E'|).

The table shows that the first eighteen instances require very short computing time. As
for instances 19 and 20 the modified version v.0 obtains the best computing times, while
the best lower bound values are obtained by the strengthening procedures proposed in [11].

Table 6 reports the incremental effects of our modifications on the most significative
“DHC” instances. First of all we implemented a more prudent separation for constraints
(4) (i.e., constraints (4) are separated only in case the solution is integer), then we changed
the branching strategy, introduced the heuristic and finally we introduced general-purpose
Chvatal-Gomory cuts (only version v.0 is reported). The table has the same structure as
Table 5, but in addition we report the number of solved linear problems (Lp) and the time
spent for the heuristic expressed in seconds (HeurT).

Table 6 shows that separating constraints (4) only in case the solution is integer leads,
in some instances, to worse values of the LB%. Anyway, such a negative effect is completely
removed by the use of Chvatal-Gomory cuts, which perform better if constraints (4) are not
separated in case the solution is fractional. Table 6 also shows that each modification leads
to a reduction of the corresponding average computing times.

Before ending this section it has to be noted that Duin, Volgenant and Vof8 [4] report
computational results on the exact solution of L-GMSTP computed through a transforma-
tion to the Steiner Tree Problem (STP). In particular, a code for the STP is used to compute
optimal solutions of the L-GMSTP and then assert the quality of heuristic algorithms for
L-GMSTP proposed by the same authors. Incidentally, the computing times on the “DHC”
instances are rather short suggesting that this transformation is a competitive way of solving
L-GMSTP.

E/L-GMSTP Results

Preliminary results on the introduced generalization of E-GMSTP and L-GMSTP are pre-
sented in this section by naturally adapting the branch-and-cut framework described in the
previous section and using a subset of the “DHC” instances for which the optimal solutions
computed in the previous sections for E-GMSTP and L-GMSTP were different. These re-
sults are reported in Table 7. The table presents the results for the version of the algorithm,
among the three versions considered in the previous sections, which has on average the best
results, i.e., v.0. The structure of the table is once again as the one of the previous ones,
but for the number of clusters for which we specify |Kg| (resp. |Kr]), i.e., the number of
clusters for which exactly (resp. at least) one node has to be reached.

The table shows these instances as well can be effectively solved through the proposed
branch-and-cut algorithm.
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Table 5: L-GMSTP: “DHC” Instances Comparison.

Branch-and-cut [6]

Branch-and-cut, v.0

Branch-and-cut, v.1

Branch-and-cut, v.2

ID||V] |K| |E| Opt |E'||Nodes LB% sepT  TT|Nodes LB% sepT TT|Nodes LB% sepT  TT|Nodes LB% sepT  TT
1125 4 50 23 3 1 100.00 0.00 0.07 1 100.00 0.00 0.03 1 100.00 0.00 0.07 1 100.00 0.00 0.07
2025 8 100 41 9 1 100.00 0.00 0.08 1 100.00 0.00 0.04 1 100.00 0.00 0.13 1 100.00 0.00 0.08
31 25 10 150 36 10 3 100.00 0.00 0.09 3 100.00 0.00 0.04 3 100.00 0.00 0.10 3 100.00 0.00 0.11
4/ 50 5 150 18 4 1100.00 0.01 0.12 1 100.00 0.00 0.06 1 100.00 0.00 0.10 1 100.00 0.00 0.09
5| 50 10 300 27 9 1 100.00 0.00 0.10 1 100.00 0.00 0.06 1 100.00 0.01 0.09 1 100.00 0.00 0.10
6] 75 8 200 55 7 1 100.00 0.00 0.15 1 100.00 0.00 0.11 1 100.00 0.01 0.14 1 100.00 0.00 0.14
7] 75 10 300 67 9 19 9552 0.13 0.76 19 95.52 0.06 0.63 13 9552 0.05 0.63 19 9552 0.08 0.76
8 75 15 400 53 16 39 9434 019 0.92 15 94.34 0.04 0.37 15 9434 0.03 0.40 11 94.34 0.02 0.37
9/100 7 300 37 6 1 100.00 0.00 0.15 1 100.00 0.00 0.12 1 100.00 0.01 0.16 1 100.00 0.01 0.16

10{100 10 500 48 10 11 9792 0.07 0.72 3 100.00 0.09 0.54 3 100.00 0.03 0.47 3 100.00 0.09 0.63

111150 8 300 50 8 5 92.00 0.01 0.33 3 98.00 0.02 0.37 1 100.00 0.03 0.30 1 100.00 0.04 0.29

121150 12 500 68 14 5 9853 0.13 097 3 9853 0.17 1.03 1 100.00 0.17 0.89 1 100.00 0.21 0.99

131200 10 500 44 12 23 86.36 0.14 1.53 7 9091 0.08 0.81 7 93.18 0.07 0.94 5 93.18 0.06 0.97

141200 20 1000 50 20 1 100.00 0.00 0.38 1 100.00 0.00 0.38 1 100.00 0.03 041 1 100.00 0.01 0.45

15250 10 500 60 9 3 96.67 0.00 0.72 3 98.33 0.03 0.67 3 98.33 0.04 0.70 1 100.00 0.01 0.60

16{250 25 1000 117 26 3 100.00 0.66 4.02 1 100.00 0.25 2.21 1 100.00 0.20 2.20 1 100.00 0.28 2.90

17{300 20 1000 88 23 27 9545 097 495 27 9545 044 5.18 23 9545 045 4.21 19 9545 0.65 4.51

18|300 30 2000 85 29 7 9765 095 4.87 3 97.65 0.63 4.15 11 97.65 0.55 5.81 17 9765 0.72 6.85

19300 40 3000 88 39 67 98.86 11.48 30.08 23 98.86 1.19 8.62 11 98.86 1.39 8.78 19 98.86 1.35 8.44

20(500 50 5000 105 54 71 97.14 313.09 480.36 27 97.14 14.69 94.17 95 98.10 13.95 125.37 51 98.10 16.31 135.58

14.50 97.52 16.39 26.57| 7.20 98.24 0.88 5.98| 7.70 98.57 0.8 7.60| 7.90 98.66 0.99 8.20
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Table 7: E/L-GMSTP: Modified “DHC” Instances.

Branch-and-cut v.0
ID||V] |Kg| |KL| |E| Opt |E'|{Nodes LB% sepT TT
2| 25 1 7 100 45 7 1 100.00 0.01 0.08
31 25 1 9 150 37 9 1 100.00 0.00 0.04
8| 75 1 14 400 58 14 7 98.28 0.03 0.27
10100 1 9 500 49 9 1 100.00 0.01 0.29
11150 1 7 300 61 8 15 78.69 0.05 0.96
12150 1 11 500 75 12 13 94.67 0.34 2.62
13200 1 9 500 46 12 19 86.96 0.09 1.39
141200 1 19 1000 53 19 1 100.00 0.00 0.54
16250 1 24 1000 119 26 7 98.32 0.71 4.60
17| 300 1 19 1000 91 20 31 9231 0.72 7.13
201|500 3 47 5000 108 53 475 94.44 52.04 1085.49

Conclusion

We have considered three N'P-hard generalizations of the classical MSTP which often arise
in practical applications, e.g., in the telecommunication and agricultural settings.

The relationships among these problems, and in particular with respect to their ILP
formulations, have been discussed and branch-and-cut approaches have been extensively
tested. More precisely, we improved on existing branch-and-cut algorithms from the litera-
ture [8, 6] by using new effective primal heuristics, more powerful branching strategies, and
general-purpose Chvétal-Gomory cuts.

These modifications have been proved to be effective through computational results and
the branch-and-cut approaches seem to be a flexible and powerful tool to handle such prob-
lems.
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