o0 Py, ”

@ Yokohama Publishers
5

A
0w

Singe 199

HEURISTIC APPROACHES TO THE CAPACITATED SQUARE
COVERING PROBLEM

ENDRE BOROS, TOSHIHIDE IBARAKI, HIROYA ICHIKAWA,
Koi1 NONOBE, TAKEAKI UNO AND MUTSUNORI YAGIURA

Dedicated to Professor Toshihide Ibaraki on the Occasion of His 65th Birthday.

Abstract: We consider the capacitated square covering problem (CSCP), which is described as follows.
Given a set of points, each having a demand, in the two-dimensional Euclidean plane, we find the minimum
number of squares with the same size and capacity to cover all the points under the capacity constraint. As
CSCP is NP-hard, we focus on heuristic algorithms in this paper. We first test a set covering approach, in
which a CSCP is solved as a set covering problem. Since its performance is not always satisfactory, though
it works quite well for a certain type of instances, we then propose a more robust metaheuristic approach.
In this approach, starting with a feasible solution using a rather large number of squares, we remove squares
one by one. After each removal of a square, the resulting infeasible solution is repaired by a local search
method so that it becomes feasible. To increase the performance, we incorporate the idea of tabu search
and scatter search as well as an adaptive control mechanism of penalty weights. Computational results on
randomly generated instances with up to 1600 points indicate the effectiveness of our approaches.

Key words: capacitated square covering problem, geometric covering problem, set covering, metaheuristics,
approzimation algorithm

Mathematics Subject Classification: 90C59, 52C15

Introduction

Given a set of points in the two-dimensional Euclidean plane, the square covering problem
asks to find the minimum number of squares of the given size that cover all the points,
where each square is placed in the plane with its sides parallel to axes. The problem has
applications in such fields as VLSI design, location of emergency facilities, image processing
and others, and theoretical results have been achieved in literature. In [4] and [12], the
problem of asking to cover points in the plane by a given number of squares or disks of
prescribed size is proved to be NP-hard. In [7], a polynomial time approximation scheme
(PTAS), which uses a unified technique called the shifting strategy, is presented. A similar
technique was independently proposed in [3], and has often been used to develop PTASs for
covering and packing problems in the plane and geometric location problems [8].

In this paper, we consider the capacitated square covering problem (CSCP), in which each
point has its demand and squares have a common capacity, and focus on developing heuristic
algorithms, mainly from a practical viewpoint. We first test a set covering approach, which
is based on the transformation of CSCP into the set covering problem (SCP) by enumerating

Copyright © 2005 Yokohama Publishers http://www.ybook.co.jp

466 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

all sets of points that can be covered by a square, as will be described in Section 3. This
approach solves the resulting SCP instance by an existing SCP algorithm.

Since the set covering approach becomes inapplicable when the number of sets to enu-
merate explodes, we propose, as a more robust one, a metaheuristic approach in Section 4.
This is a two-phase heuristic algorithm; we construct a feasible solution in the first phase
(construction phase), and reduce the number of squares step by step in the second phase
(improvement phase). For the first phase, we present a constructive method and show that
it has an approximation ratio of four. (By using a PTAS developed for the (uncapacitated)
square covering problem, we can improve the approximation ratio to 3+ ¢ for any ¢ > 0.) In
the improvement phase, we first remove one square from the best feasible solution obtained
so far. Since the removal makes the solution infeasible in general, we repair it by local
search, without changing the number of squares. In our local search, the quality of solutions
are measured by the weighted sum of penalties, where the penalty represents how much
constraints are violated. If the locally optimal solution obtained is still infeasible, we return
to the best feasible solution, remove another square instead, and apply a local search again;
this process may be considered as a multi-start local search (MLS). If a feasible solution is
found by the MLS, we repeat the removal of one more square and its repair by MLS to find
a better feasible solution.

In Section 5, we try to improve our metaheuristic approach. For this end, we extend the
local search to tabu search [5] and use it in the framework of scatter search [6]. Furthermore,
we introduce an adaptive control mechanism of the penalty weights. To compare effectiveness
of our approaches, we solve randomly generated instances with up to 1600 points. The
experimental results are reported in Section 6.

Problem Definition

Let P ={1,2,...,n} stand for a given set of points (z;,y;) (¢ € P) in the two-dimensional
Euclidean plane, each having a demand d; > 0. The squares to cover these points have the
same side length [> 0 and capacity ¢ > 0. The capacitated square covering problem (CSCP)
seeks to find the minimum number of squares that cover all the points under the capacity
constraint that the total demand of the points covered by a square does not exceed ¢, where
each square must be placed in the plane with its sides parallel to z- or y-axis. Throughout
this paper, we consider the z-axis as a horizontal line from left to right, and the y-axis as a
vertical line from bottom to top. To ensure feasibility of the problem, we assume d; < ¢ for
all s € P.

CSCP can be formulated as a problem of finding a collection S = {S1,Ss,...,S|s} of
disjoint subsets of P such that its union is P (i.e., S is a partition of P) and each S € S
(S C P) satisfies the following inequalities (stating that the points in S can be covered by
a single square and satisfy the capacity constraints):

max{|xi1 - xi2|) |yi1 - y22|} < l: VilviQ € S; (1)
> di<e (2)
€S

The objective is to minimize the number of subsets in . In this formulation, each square
is identified with a subset S € S, and square S is said to cover point i if i € S holds. To
cover point 7 by a square S, the point ¢ must be contained in the region of square S; in
this situation, we say that S geometrically covers point i without referring to constraint

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 467

(2). In other words, the set of points covered by a square S are chosen from those points
geometrically covered by S so that the capacity constraint (2) is satisfied.

Although the position of square S is not explicitly given in the formulation, it can be
determined from constraint (1) by putting its bottom-left corner at (z™",y™"), where
™" = min{z; |i € S} and y™® = min{y; |i € S}.

A subset S C P is called valid if it satisfies constraints (1) and (2). We call a partition
S =1{51,852,...,8)s)} of P a solution, and call it feasible if all S € S are valid.

Set Covering Approach
For a given CSCP instance, let F denote the collection of all valid subsets S C P. By

introducing a 0-1 variable z(S) for each S € F such that z(S) represents whether S is
contained in the solution S or not, we can formulate CSCP as follows:

minimize Z z(S)

SeF

subject to Z z(S) =1, i € P,
S: €S
z(S) € {0,1}, SeF.

Since, for any S € F, any of its subset S’ C S is also valid, we can replace the equality
constraints by inequalities

> oxS)=1, ieP

S: ieS

without changing the optimal value. For the same reason, F may be defined as the collection
of all valid subsets maximal with respect to set-inclusion. The resulting problem is in the
form of the set covering problem (SCP), and we can solve it by using an existing SCP
algorithm. We call this the set covering approach.

In order to enumerate all maximal valid subsets efficiently in F, we can use a polynomial
delay algorithm given in Appendix A. Given an undirected graph (V, E) and a weight w(7)
for each 7 € V as well as a constant «, this algorithm enumerates all maximal cliques K
in (V, E) such that the total weight of the vertices in K does not exceed a. For a given
CSCP instance, we define graph (V, E) by letting V= P and E = {(i1,i2) € P x P |
max{|z;, — 4|, |Yi, — Vi, |} <1} Then, asubset S C V forms a clique in (V, E) if and only if
it satisfies the geometric constraint (1). Therefore, by setting w(i) =d; (i € V) and a = ¢,
we can use this algorithm for our purpose.

For the uncapacitated case (i.e., the capacity c is infinite), the enumeration can be
achieved more easily. Let S € F be a maximal valid subset, and let iy, = argmin{z; |i € S}
and ip = argmin{y; | € S}. Then, S is equal to a set of points i € P such that (z;,y;) €
[y, @i, + 1] X [Yig,Yip +1]. This implies that we can enumerate all maximal valid subsets
by considering, as such i;, and ig, all pair of (possibly the same) points i; and iy in P
such that 2;, < x;, < ;, +1 and y;, < i, < i, +1. Let F be the collection of subsets
enumerated in this way. Although F may contain subsets that are not maximal, their
validity is guaranteed. Furthermore, the size of F is at most v|P|, where v is the largest size
of S € F. Since in many cases, v is much smaller than |P|, we can practically use F in the
set covering approach. This simple enumeration method runs in O(|P|log|P| + > ¢ 7 [S])
time, if we use appropriate data structures such as heap and balanced binary search tree.
Since the output size is Q(} g 7151), only O(|P|log|P]|) time is additional.

468 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

As will be reported in Section 6, the performance of the set covering approach crucially
depends on the number of subsets in F. If points are densely located in the plane (which
means that many points can be geometrically covered simultaneously by a square) and the
capacity constraint is not very tight, the set covering approach becomes practically infeasible
due to a huge number of maximal valid subsets. To overcome this difficulty, we next propose
a metaheuristic approach.

Metaheuristic Approach: Basic Ideas

Our metaheuristic approach consists of two phases; we first construct a feasible solution
(construction phase), and decrease the number of squares one by one (improvement phase).
Its framework is described below.

CSCP algorithm

Step 0 (Construction).
Construct an initial feasible solution S(®. Set k := 1.

Step k (Improvement).
Apply a metaheuristic algorithm to find a feasible solution S®*) with |S*~1| — 1
squares. If we fail to find such a solution, then output the current best solution S*—1)
and terminate; otherwise let k := k + 1, and return to Step k.

In this section, after explaining a method to construct an initial feasible solution and an-
alyzing its approximation ratio, we will describe basic components of our metaheuristic
algorithms. Other ingredients to improve the performance will be presented in the next
section.

Construction Phase
Algorithm

Our construction algorithm starts with no square, and iteratively puts a new square S; in
the plane until all points are covered. After putting a new square S;, we insert as many
points as possible into S; under constraints (1) and (2), and then adjust its position in the
hope that it covers some more points.

The algorithm is summarized below. During the computation, set U stores the points
not covered by any square yet.

CONSTRUCTION
Input: An instance of CSCP.
Output: A feasible solution S(®.

Step 1 (Initialization)
Initialize a collection of subsets S(© by S := @ and U := P. Set j := 0.

Step 2 (Determination of target points)
If U = 0, then output S(® and terminate; S is a feasible solution. Otherwise, let
i1, be the leftmost point in U. (If there is more than one such point, take the bottom
one.) Let A be the set of all uncovered points ¢ (€ U) such that ¢ is within the closed
rectangle [x;, ,x;, +1] X [y;, —1,y;, +1] defined by iy, (see Figure 1 (1)(7), where white
points denote uncovered points).

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 469

The points in A are called target points. In the following, Steps 3-5 will be repeated
until every target point is covered by some square.

Step 3 (Covering by a new square)

Let ip be the uncovered target point with the smallest y-coordinate. (If there is
more than one such point, take the leftmost one.) Let j := j + 1 and introduce a
new square S; (which corresponds to adding an empty set S; to S©), and place
it in the plane so that its bottom-left corner is at (z;,,v:,) (Figure 1 (2)(3)(5)(8)).
Consider those uncovered points i (€ U) now geometrically covered by square Sj;
ie., (zi,yi) € [Ti,, iy, + 1] X [Yig,Vip +1], and add into S; as many such points as
possible under the capacity constraint (2) in non-decreasing order of y;, breaking ties
by preferring smaller x; (black points in Figure 1 (2)(3)(5), where gray points denote
those which have already been covered). Delete all points in S; from set U.

Step 4 (Covering some more points)

Let 2™ := min{z; |i € S;} and y™® := max{y; |i € S;}. If 2™ = x;, holds, go to
Step 5 (Figure 1 (2)). Otherwise, change the position of square S; so that its top-left
corner is at (z™",y™**) (Figure 1 (3)—(4), (5)—(6)). (This operation slides square
S; to the rightmost position, and then to the bottommost position, while keeping all
points ¢ € S; geometrically covered by S;.) Consider those points ¢ € U which got
geometrically covered by S; as a result of the operation, and add as many such points
as possible to S; in the non-decreasing order of z;. Delete from set U all points added
to Sj.

Step 5 (Repetition of the process)
If ANU = (), return to Step 2; otherwise return to Step 3.

Figure 1 illustrates the process of CONSTRUCTION. In this example, the capacity ¢ of
a square is four, and the demand d; of each point ¢ is one or two as shown in the figure.
White points represent those which have not been covered yet, while gray ones have already
been covered, and black ones are being covered by the current square drawn with thick
lines. At first, we apply Steps 1 and 2, and we get (1), where points inside the two adjacent
squares with broken lines are target points A. (2) shows the result after applying Step 3.
One square is introduced and it covers three points, while one point with a demand of two
is left uncovered even though it is geometrically covered, because of the capacity constraint.
Since we cannot slide the square in Step 4, we go to Step 5 and return to Step 3. (3)
illustrates the result after one more square is introduced in the next iteration of Step 3, and
(4) shows the result of Step 4. Since there still remains an uncovered target point, we return
to Step 3, and we get (5), where (6) shows the result of Step 4. Since all target points are
now covered, we return to Step 2, and determine the next target points as illustrated by two
broken squares in (7). In (8), all points in P are covered, and CONSTRUCTION terminates.
In this example, four squares in (2), (4), (6) and (8) constitute the output solution.

Approximation Ratio

We analyze algorithm CONSTRUCTION and show that it has an approximation ratio of
four. We first give two lower bounds on the optimal value m*. One is trivially derived from
the capacity constraints:

ZieP d;

=

m* >

470 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

a a a A
02 02 02 02
ol ol ol ol ol ol ol ol
. Ql ”7”301 A S ol ol ol NS S S ol
ZL: 02 1 17, 02 1 171, _ =2 1 11, 02 1
: o]_ o .]_ o B @1 o @1 o
o2 o2 o2 o
7777777777777 02 Y - S 02 oot 2 oot 2
(1) — (2) — (3) — (4)

1 1 1 1
AT N
2 A 2 A L 42 iB,2
1 | I 1 1 7777777 1 1 Il 1 1
1) ol 11) 011 P 12 77777 ol] 12 77777 ol
: : : potrf (22
ol "‘1§ 777777777 ol (?1\ ol o! ol ol
1L : . 11, :
2 2 R 2 2
i1
(8) — (7) — (6) — (5)

Figure 1: An illustrative example of CONSTRUCTION

The other is based on the geometric property. Let Pr, be the set of all points chosen as ¢y, in
some iteration of Step 2. For convenience, we consider the process of CONSTRUCTION as
a series of | Pr| rounds, each starting when iy, is selected and target points A are determined
in Step 2.

We claim that no two different points 4; and iy in Pp, can be covered simultaneously by
a square. Without loss of generality, assume that i; is selected as iz in an earlier round
than é5. Then z;, < z;, holds. Furthermore, 2 is a target point in the round of iy, implying
Ty — x4y > 1 or |y, — Yiy| > 15 hence the claim is true. Therefore, at least |Pr| squares are
necessary to cover all points in P;, C P, and we have

m* > |Py.

We note that squares S; are introduced only in Step 3. We classify those squares S; into
two groups. If some target point i that is geometrically covered by S; remains uncovered
after the Step 3, then S; is called saturated (because the point 4 is excluded due to the
capacity constraint); otherwise called unsaturated.

Let Saat C S(© be the collection of saturated squares. For a square S; € Sqat, consider
the time when Step 3 is completed after S; is introduced. Let i; be the target point with
the smallest y-coordinate among those that are left uncovered even though geometrically
covered by S; (if there is more than one such point, take the leftmost one). Obviously, the

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 471

residual capacity ¢ — > d; of square Sj is less than d;,, and thus

i€S;

Nofe=Ddi) < > di.

S; ESsat i€S; S;j ESeat

Since i; will be selected as ip at the next iteration of Step 3, and covered by the next square
Sjt+1, we have i; # ij for any two distinct saturated squares S; and S; (j # j'). Therefore,

we obtain
|Ssat|6< Z di]- + Z Z d; < QZdi,

S;E€Seat S ESeat €S, iep

and

- od;
|Seat| < 2226713 < 2m*. (3)

(The idea of this analysis is essentially the same as that of the Next-Fit bin packing
algorithm[9].)

Next, we analyze the number of unsaturated squares. Once Step 3 ends with an unsat-
urated square S;, no target point located below the upper side of S; is left uncovered, and
hence, at the subsequent iterations in the same round, new squares will be placed in the
plane completely above S;. Since all target points for the current round can be geometrically
covered by two squares, the number of unsaturated squares is at most two per round, and
thus at most 2|Pyr,| squares in total;

181 = [Seatl < 21| < 200", 4)
Putting the results (3) and (4) together, we obtain the following theorem.

Theorem 1 CONSTRUCTION has an approximation ratio of four. For the uncapacitated
case, all the squares are unsaturated, and the approximation ratio becomes two. []

We note here that Step 4 has no effect to the analysis of approximation ratio, but is
practically useful in reducing the number of squares.

As mentioned in Introduction, it is known that the uncapacitated square covering prob-
lem has a PTAS. By modifying CONSTRUCTION to utilize a (1 + €)-approximation algo-
rithm for the uncapacitated version, we can achieve (3 + €) approximation ratio for CSCP.
For a given CSCP instance, ignoring the capacity constraints, we first obtain a (1 + €)-
approximation solution S = {5’1,52, .. .,S’fn} to the resultant uncapacitated problem in-
stance. Then, we apply CONSTRUCTION while setting target points A to S, at the x-th
iteration of Step 2. (The algorithm then terminates in /m rounds.) By the same argument
above, the number of saturated squares is shown to be at most 2m*, where m* is the op-
timal value. As for unsaturated squares, their number is at most m, which is the number
of rounds, because whenever Step 3 ends with an unsaturated square, no uncovered target
point is left and the current round is completed. Since m < (1 + €)m* holds by assumption,
the total number of squares is bounded by 2m* + m < (3 + €)m*.

Although this modification improves the approximation ratio, it makes CONSTRUC-
TION slower. Therefore, we adopt the original one in our implementation.

472 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

Improvement Phase

The objective of step k in the improvement phase is to find a feasible solution with [S(*=1)|—1
squares, where S*~1) is the best solution obtained so far. To achieve this, we employ
metaheuristic algorithms, whose core part is local search. Local search is a method that
iteratively replaces the current solution S by another one S’ that can be obtained from S by
a slight modification. Such a solution &’ is called a neighbor of S, and the set of neighbors is
called the neighborhood. Local search terminates when the current solution is locally optimal
(i.e., no better solution exists in its neighborhood).

In this subsection, we describe a multi-start local search algorithm (MLS), which re-
peatedly executes local search from different initial solutions. In the rest of this section, we
explain the components of our local search and how to generate initial solutions.

Search Space and Penalty Function

Suppose that the current best solution uses m + 1 squares. MLS operates on the set of all
(feasible and infeasible) solutions & = {51, Ss, ..., Sm} with m squares, which implies that
the constraints (1) and (2) are not necessarily satisfied during the search. For convenience,
we sometimes represent a solution & by a mapping os : P — {1,2,...,m} such that
os(i) =j < i€ S;, and we denote os simply by ¢, when S is clear from context.

To evaluate solutions, we introduce penalty function p(S) to be minimized, which takes
value 0 if S is feasible, and a positive value otherwise. More precisely, for each square S; € S,
we define penalty functions p&°°(S;) and p®P(S;), which represent how much S; violates
constraints (1) and (2), respectively, by

pE(S;) = max{0,A.(S;) — I} + max{0,A,(S;) — I},

pP(S;) = max(0, Z dj—cp,
i€8,
where
A-’E(Sj) = ilglzagfgj |xi1 - mi2| and AU(S]) = ilglzagfgj |yi1 - yzz|
(If S; contains less than two points, A,(S;) and A,(S;) are defined as 0.) Then p(S) is
given by the weighted sum of these penalties

p(S) = Y (WP (S;) + wi™p™P(S))) (5)
S;€8

where weights w#*® and w;"" are program parameters, which are adaptively controlled during
search as will be explained in the next section. The objective of MLS is to find a solution &
such that p(S) = 0.

Our MLS adopts the best admissible move strategy; the current solution is replaced by
the best neighbor in the sense of having the minimum penalty value. If there are more than
one best solution, to break ties, we use a secondary criterion ¢(S) (a smaller value is better)
defined by

9(8) = Y (Au(S)) +A,(S))).
s;€s
The values of A, and A, affect the penalty value p(S) only when they are larger than I.
However, even if A, <[and A, < [hold, squares with smaller A, and A, may have
higher potential for covering more points without violating the geometric constraint (1).
The criterion g(S) gives higher priority to such squares.

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 473

Shift and Swap Neighborhoods

To generate neighbors of the current solution S, MLS uses two types of operations: SHIFT
and SWAP. A shift operation SHIFT(i,) is defined for a pair of point ¢ and square S; such
that j # o(i), and moves point i into S; (i.e., o(i) := j). A swap operation SWAP(i1,i2)
is defined for a pair of two points i; and iy with o(i;) # o(i2) and switches them (i.e.,
o(i1) <> o(iz)). Let Nggpr(S) (resp., Ngwap(S)) denote the set of solutions obtained from
S by applying a shift (resp., a swap) operation. The size of Ngypr(S) is O(mn) and that
of Ngwap(S) is O(n?), where n and m are the numbers of points and squares, respectively.
Since it is time-consuming to search the whole neighborhoods at each iteration of local
search, we restrict them as follows:

e SHIFT(i,7) is applied to S only if both of the following conditions hold:

1. (a) Square S,(;), which currently covers i, has a positive penalty, or (b) point
i has the minimum or maximum z- or y-coordinate in S,(;) (which means that
point ¢ is on the boundary of the minimum rectangle containing all points in
So‘(i))-

2. (a) Square S; covers no point; i.e., S; = 0, or (b) S; contains a point i’ whose Lo-
distance from i, max{|z; — x|, |y; — yir|}, is less than or equal to maz_dist_shi ft,
where mazx_dist_shi ft is a program parameter.

e SwaP(i1,i2) is applied to S only if both of the following conditions hold:

1. Square S, j,) or S,(j,) has a positive penalty.

2. The L.-distance between i; and 45 is less than or equal to max_dist_swap, which
is another program parameter.

We denote by Nauer(S) and Ngwap(S), respectively, the shift and swap neighborhoods re-
duced in this way. These restrictions are expected to exclude shift and swap operations that
are unlikely to improve the current solution S. For example, in the case of SHIFT(3, j), condi-
tions 1-(a) and 1-(b) assures the possibility to decrease the values of p&°°(S,(;)), p°*P(Sy(s))
and A, (S,()), Ay(Se(i)), respectively, while condition 2 is to keep the increment of the
penalty p&°°(S;) below max_dist_shi ft.

In our current implementation, we set max_dist_shift = | and max_dist_swap = .

Initial Solutions of MLS

To launch local search, we need to prepare an initial solution. In our MLS, we generate
it by removing one square S; from the best feasible solution S*=1) = {S;,S5,...,Sm41}
As the removal of S; leaves the points in S; uncovered, we cover them by the remaining m
squares by applying the following step |S;| times in a greedy fashion; apply a shift operation
SHIFT(3,j') with 4 € S; and j' # j such that the minimum penalty increase is attained. (In
our implementation, to reduce the computational efforts, we check only those pairs i and
j' satisfying the above condition 2-(b).) From the resultant solution, we then execute local
search. If the local optimum obtained is infeasible, the same process is repeated by removing
another square until a feasible solution is found, or m+1 times, whichever comes first. In the
latter case, there is no square to remove any more, and we conclude that MLS has failed to
improve the best solution and return to the CSCP algorithm, which immediately terminates
after outputting the best solution S*~1).

474 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

Now we mention about the order of squares S; to be removed from S*~1). To find a
feasible solution (if any) in fewer runs of local search, we remove first a square S; € S*=1)
that covers the smallest number of points, so that the total penalty increase in the resulting
initial solution may be small.

Algorithm

The entire algorithm of MLS is summarized below.

Multi-Start Local Search (MLS)

Input: A feasible solution S*~1) with m + 1 squares.
Output: A feasible solution S*) with m squares, or “failure.”

Step 1 (Initial solution).
If all m+ 1 initial solutions have been tested without finding a feasible solution, return
“failure.” Otherwise, according to the rule described in Section 4.2.3, generate a
solution § with m squares.

Step 2 (Local search).
If S is feasible, let S**) := S and return S®®). Otherwise, find the best solution S’ in
Nsuer(S) U Ngwap(S). If S’ is better than the current solution S, let S := &' and
return to Step 2; otherwise return to Step 1.

Metaheuristic Approach: Improved Algorithms

In this section, we present some ideas for improving the performance of MLS, by incorpo-
rating tabu search and scatter search. The resulting two algorithms are denoted by MTS
(Multi-start Tabu Search) and SSLS (Scatter Search with Local Search), respectively. We
also tested a combination of tabu search and scatter search, denoted by SSTS (Scatter Search
with Tabu Search). Finally, we propose a method of controlling the penalty weights w%*
and w§™ in penalty function (5).

Multi-Start Tabu Search

Local search terminates when a locally optimal solution is obtained. However, continuing the
search beyond the local optimum appears effective for finding better solutions. To achieve
this, we adopt tabu search [5]. In tabu search, the current solution S is always replaced
with the best one S’ in the neighborhood, even if &’ is not better than S. To realize an
effective search while avoiding going back to solutions already visited, tabu search makes
use of memory that stores the search history, which is typically embodied in tabu lists.
In our tabu search, tabu list 7' stores the points i € P such that o(i) has recently been
changed, and prohibits to change it again while ¢ is contained in 7'. More precisely, T is
initially set to the empty set, and updated whenever the current solution § is replaced by
its neighbor &'; if S’ is obtained from S by SHIFT(Z,j), we insert point 7 to 7', while if
S’ is obtained by SWAP(i1,42), we insert both points 7; and iy to T. Those points in T
will be maintained for tabu_tenure iterations, where tabu_tenure is a program parameter.
In searching neighborhood, we call a neighbor S’ tabu and exclude it from candidates, if
it is obtained by applying SHIFT(%,j) with ¢ € T or SWAP(i1,i2) with i;,io € T. As in
the standard implementation of tabu search, we introduce an aspiration criterion; the tabu
status of a solution S8’ is overruled, if its penalty value is smaller than that of the best

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 475

solution found in the current run of tabu search. (Recall that tabu search is repeatedly
executed in MTS. The best solution is reset whenever tabu search restarts.)
Our tabu search terminates when one of the following conditions is met:

o A feasible solution is found.
e Neighborhood search has been repeated max_iteration times.

In the former case, the best solution to CSCP is improved and MTS terminates, while in the
latter case, tabu search has failed to find a feasible solution, and restarts from another initial
solution. (Initial solutions are generated in the same way as MLS.) The entire algorithm of
MTS is described below.

Multi-Start Tabu Search (MTS)
(k=1)

Input: A feasible solution S
Output: A feasible solution S*) with one less square than S*) or “failure.”

Step 1 (Initial solution).
As in MLS.

Step 2 (Tabu search).
If S is feasible, let S*) := S and return S*). If the solution has been replaced
mazx_iteration times, then return to Step 1. Otherwise, find the best neighbor &' €
Nsuer(S) U Ngwap(S) that is not tabu and let S := &'. Update the tabu list and
return to Step 2.

In the computational experiments in Section 6, we set the parameters as tabu_tenure =
0.2 - |P| and max_iteration = 5 - |P| according to preliminary experiments. In the pre-
liminary experiments, we observed that max_iteration had a larger impact on the results
than tabu_tenure, and the best value of max_iteration depends on the maximal computa-
tion time specified by users. At the current stage, in order to find their appropriate values,
preliminary experiments are necessary to a certain extent.

Scatter Search with Local Search

Scatter search is an evolutionary approach, which works on a set of solutions, called the
reference set. (Solutions in the reference set are called reference solutions.) Scatter search
repeats an operation of creating new solutions by combining two or more reference solu-
tions and updating the reference set so that it contains good and diverse solutions. Scatter
Search contrasts with other evolutionary procedures, such as genetic algorithms, by provid-
ing unifying principles for combining solutions based on generalized path constructions (in
both Euclidean and neighborhood spaces) and by utilizing strategic designs where other ap-
proaches resort to randomization [6]. We incorporate an idea of scatter search into MLS for
the purpose of generating initial solutions more effectively, and also for making it possible
to execute local search more than m + 1 times, where m + 1 is the number of squares used
in the current best solution. In SSLS, the reference set consists of some of local optima
obtained so far. In this subsection, we first explain how to manage the reference set, and
then how to use it to create initial solutions.

476 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

Reference set

In principle, we store solutions of high quality in the reference set. To achieve diversification,
however, using a program parameter min_dist_ref, we keep the distance of any two reference
solutions at least min_dist_ref, where the distance between S and 7 is defined as follows.
Let 7 denote a one-to-one mapping 7 : {1,2,...,m} — {1,2,...,m}. The distance is then
given by min, |{i € P | n(0s(i)) # o7(i)}|. This minimization problem is formulated as
an assignment problem and solvable in O(m(r + mlogm)) time, where r is the number of
pairs of subsets (S,T) € S x T such that SNT # 0, and r is at most min{|P|,m?}. For our
purpose here, however, an optimal 7 is not necessary, but an approximate value is sufficient.
Therefore, we obtain 7« simply by a greedy method; in the order of j = 1,2,... ,m, let
7(7) := 7', where j' has the maximum value of

1S; N Ty
max{|S;], |Tj |}

in {1,2,...,m}\ {r(1),7(2),...,7(j — 1)}.

The reference set is initially empty, and updated whenever local search terminates. Let
S* be the obtained locally optimal solution. If there is no reference solution whose distance
from S* is less than min_dist_ref, then we add $* into the reference set, removing the worst
one if the number of reference solutions exceeds max_num_ref as a result of this. On the
other hand, suppose that some reference solution has a distance less than min_dist_ref. If
S’ has a penalty value smaller than any of such solutions, they are all removed from the
reference set, and S’ is added instead; otherwise, the reference set is unchanged.

(defined as 1 if |S;| = |Tj| = 0)

Path-Relinking

In SSLS, initial solutions are generated in the same way as MLS for the first num_initial
runs of local search, while for the subsequent runs, initial solutions are generated by a
method called path-relinking. Path-relinking generates a sequence of solutions, called a
path, from one solution (initiating solution) toward another one (guiding solution). (In
general, it is possible to consider more than one solution as guiding solutions.) In our
implementation, we first choose an initiating solution S = {S1,S2,...,S,} and a guiding
solution 7 = {T1,Ts,..., T} randomly from the reference set. Then, we generate a path
(S0, 81, -.,8q) by extending it from Sy = S to Sy = T, where Si41 is obtained by applying
a shift operation to S (k= 0,1,...,¢—1). After the choice of S and T, we find a mapping
m to measure the distance from S to 7, by the greedy method used in the reference set
management. For the current path (Sp,Si,...,Sk) (0 < k < q), let Dy be the set of all
points ¢ € P such that 7(os, (7)) # o7(i). To extend the path to Sy1, we apply a shift
operation SHIFT(i, j) with i € Dy, and j = o7 (i) so that |Dyy1| = |Dy|—1 holds. (Therefore,
the length of the path ¢ is |Dg|.) From among such |Dy| choices of SHIFT(4,j), we choose
and apply the best one in the sense of achieving the minimum penalty.

After the path is generated, (at most) num_best best solutions in {S1,Ss,...,S,—1} are
selected as initial solutions of local search.

SSLS terminates when a feasible solution is found or the total computation time exceeds
a prespecified bound. The entire algorithm of SSLS is summarized below.

Scatter Search with Local Search (SSLS)

Input: A feasible solution S*~1) with m + 1 squares.
Output: A feasible solution S™*) with m squares, or “failure.”

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 477

Step 0 (MLS).
Execute local search num_initial times in the framework of MLS, updating the ref-
erence set at the end of each local search. If a feasible solution is found during this
process, output it as S(*) and terminate.

Step 1 (Path-relinking).
If the predetermined computation time is reached, terminate after returning “failure.”
Otherwise, choose two reference solutions S and 7 randomly, and generate num_best
initial solutions by the path-relinking.

Step 2 (Local search and update of reference set).
For each solution generated in Step 1, apply local search. If a feasible solution is found,
output it as S*) and terminate; otherwise update the reference set and return to Step
1.

For the computational experiments in Section 6, we set num_initial = 15, max_num._
ref = 10, min_dist_ref = 3 and num_best = 3. Although it might be possible to improve
the performance of SSLS by tuning the parameters more carefully, on the other hand, it
is reported in [14] that how to manage the reference set is not very critical in the use of
path-relinking.

Scatter Search with Tabu Search

We also tested scatter search with tabu search (SSTS), which differs from SSLS only in using
tabu search in place of local search in Step 0 and Step 2. In the experiments, we use the
same parameter setting as MTS and SSLS except for letting maz_iteration = 3 - |P|.

Adaptive Control of Penalty Weights

In preliminary experiments, the performance of our metaheuristic algorithms was observed
to depend on penalty weights w%** and wj™. Since their appropriate values may vary from
instance to instance and hence it is difficult to find such values in advance, we incorporate
an adaptive control mechanism of the penalty weights.

At the beginning of the improvement phase, we initialize w%*® and wj*™ to one for all
squares S;, and update penalty weights when a locally optimal solution is obtained (i.e.,
when local search terminates in MLS or SSLS, and when the current solution is replaced by
a neighbor with a larger penalty value in MTS or SSTS). Let §* be the local optimum at

hand. For each S} € §*, its weights are updated by

eo €o pgeo(S;) ca ca pcap(s_;)
wi* = wf <1+p-T and w;® =wi (1+p- —z—),

J J J J
max max

where

geo

cap
Prmax

— geo(g* d — cap (Gk
= Imax an = Imax
S]’fES*p (_7) Pmax S;ES*p (_7)7

and p > 0 is a prespecified parameter. (If p8° = 0 (resp., p<®P. = 0) holds, no weight
w§* (resp., ;™) is updated.) The above rule has the effect of making it easier for those
constraints violated by S* to be satisfied in the subsequent search.

The penalty weights are not reset even when local search or tabu search restarts from
another initial solution. In MLS, MTS and in the first num _nitial iterations of SSLS and

SSTS, we generate initial solutions S by removing one square from the current best solution

478 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

S =1 Penalty weights are defined for each square in S*=1) and each S € S inherits
the weights in S(*~1. After local search or tabu search terminates and the weights are
updated according to the above rule, the original weights defined for S(*~1) are replaced by
the updated ones, respectively. (The weights of the square that was removed to generate S
are unchanged.)

To prevent the penalty weights from increasing unlimitedly, after local search or tabu
search terminates, we normalize weights %" (resp., w§*™) by dividing by the maximum
weight max; w%® (resp., max; wj”). As an exceptional rule, if a weight becomes smaller
than wy,p (resp., greater than wyg) during the computation, we set it to wi,g (resp., wyg). In
our computational experiments, we use p = 5.0x1072, wrg = 1.0x107% and wyp = 1.0x107.

@ Computational Experiments

Our algorithms were coded in C language. The computational experiments were all con-
ducted on a personal computer with Xeon 2.8 GHz.

For experimental purpose, we generated random instances in which z- and y-coordinates
of points are all integers, chosen from [0, L — 1] uniformly, independently and at random,
where integer L is a parameter*. A side length [of a square is fixed to 120. (We tested only
those instances in which coordinates (z;,y;) and side length [are given by integers, but the
integrality does not restrict generality of instances with real coordinates. See Appendix B
for more details.) Demands d; of points ¢ are also integers, randomly chosen from [1,9]. Each
instance is defined by three parameters; density u, capacity of a square ¢ and number of
points n, where the density u = n(l/L)? is the average number of points that fall into a square
with side length . We generated an instance for every combination of p € {4,9,16}, ¢ €
{[51/2],5u, [151/2], 00} and n € {100,400, 900,1600}. Therefore, there are 48 instances in
total.

We solved the above 48 instances by the set covering and metaheuristic approaches. In
the set covering approach of Section 3, we transformed each instance to the corresponding
SCP instance by using the method given in Appendix A. For each instance, Table 1 shows
the number of maximal valid subsets enumerated, and the computation time (in seconds)
required for the enumeration. For two instances (u,c¢,n) = (16,80,900) and (16,80, 1600),
the enumeration algorithm did not terminate after 10 hours due to a huge number of max-
imal valid subsets. From the Table 1, we can confirm that a higher density p increases
the number of maximal valid subsets more significantly for capacitated cases. As for the
tightness of the capacity constraints, we observed that in most cases the number of maximal
valid subsets is largest if capacity ¢ is set to 5u. This phenomenon can intuitively be ex-
plained as follows. Let G,. denote the collection of sets of x points that satisfy the geometric
constraint (1). (A subset in G, becomes valid if it satisfies the capacity constraint as well.)
Since, in our instances, points are distributed uniformly and randomly with density u, we
can consider that the size of G, becomes maximum at k = p, and decreases exponentially
as |k — p| increases. First, let us compare the cases of ¢ = [5u/2] and p/2. In the former
case, only those subsets with less than around [u/2] points can be valid (notice that the
average demand d; of point 4 is 5), while those with p points can be valid in the latter
case. Since |G| is much smaller than |G,| if & is similar to [x/2], the number of subsets
enumerated is smaller if ¢ = [54/2]. On the other hand, if capacity ¢ gets much larger than
1, maximal valid subsets are likely to contain more than p points. Since the number of such
subsets, containing many points, are relatively few, the number of maximal valid subsets to

*These instances are available at http://www-or.amp.i.kyoto-u.ac.jp/ yagiura/sqcov/.

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM

Table 1: Reduction of CSCP instances to SCP instances

instance #subset time instance #subset time
m c n m c n
4 10 100 382 <1 9 23 100 25,087 <1
4 10 400 1,398 <1 9 23 400 100,009 1
4 10 900 3,945 <1 9 23 900 350,899 5
4 10 1600 6,867 <1 9 23 1600 667,104 10
4 20 100 1,138 <1 9 45 100 36,789 <1
4 20 400 5,332 <1 9 45 400 541,652 10
4 20 900 15,295 <1 9 45 900 1,669,283 32
4 20 1600 25,537 <1 9 45 1600 3,621,057 75
4 30 100 789 <1 9 68 100 748 <1
4 30 400 6,973 <1 9 68 400 306,296 7
4 30 900 19,075 <1 9 68 900 547,681 14
4 30 1600 29,064 <1 9 68 1600 1,608,035 45
4 o0 100 103 <1 9 o0 100 157 <1
4 o0 400 484 <1 9 o0 400 810 <1
4 o0 900 1,211 <1 9 o0 900 2,077 <1
4 oo 1600 2,177 <1 9 oo 1600 3,683 <1
nstance #subset time
m c n
16 40 100 632,678 167
16 40 400 23,674,855 533
16 40 900 128,706,774 3460
16 40 1600 256,311,677 7557
16 80 100 2,947,030 104
16 80 400 94,377,153 3039
16 80 900 — —
16 80 1600 — —
16 120 100 392 <1
16 120 400 2,324,877 102
16 120 900 98,355,528 5291
16 120 1600 441,429,970 24944
16 00 100 195 <1
16 00 400 1,099 <1
16 00 900 3,056 <1
16 00 1600 5,512 <1

479

480 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

enumerate decreases, compared to the case of ¢ = pu.

We solved the resultant SCP instances (except those two) by a heuristic algorithm pro-
posed in [15] with the maximal time limit of 1800 seconds, excluding the enumeration time
of maximal valid subsets. This algorithm also gives a lower bound based on the Lagrangian
relaxation. In the metaheuristic approach of Section 4, we tested the four algorithms in
Sections 4 and 5, MLS, MTS, SSLS and SSTS, for the improvement phase. These four al-
gorithms are all equipped with the adaptive control mechanism of penalty weights (Section
5.4). For all CSCP algorithms, we also set the computation time bound to 1800 seconds.
However, those with MLS and MTS terminate before the time limit expires, when no feasible
solution is found in the last m runs of local search and tabu search, respectively, after the
best solution with m squares is obtained (i.e., all m initial solutions have failed).

The results are summarized in Tables 2—4, corresponding to the instances with u =4, 9
and 16, respectively. In these tables, for each instance, we show the results of the set cov-
ering approach (SC) and CSCP algorithms with four different metaheuristics (MLS, MTS,
SSLS and SSTS), respectively. In each entry, the upper row gives the objective value, and
the lower row gives the computation time required to find the best feasible solution (tpest)
and the total computation time (ttota1), both in seconds, in the format thest /trotal. Objective
values in bold face indicate the best result obtained by the five algorithms. The tables also
show a lower bound obtained by the set covering algorithm (LB), and an upper bound ob-
tained by CONSTRUCTION (CON) (construction phase of the CSCP algorithm). (We do
not list the computation time of CONSTRUCTION, because it took less than 0.5 seconds
for each instance.) If a lower bound is shown in bold face, it means that the value coincides
with an upper bound, and hence, it gives the optimal value. In the columns of LB and
SC, ‘“—’ means that we failed to execute the set covering approach because the enumeration
algorithm did not stop within 10 hours, or the size of the input data exceeded the memory
limit of the computer.

From the results, we can see that the performance of the set covering approach varies
considerably with the type of instances. It works quite well for those instances with a lower
density p or no capacity constraint (i.e., ¢ = 00), while its performance deteriorates unac-
ceptably as the density becomes higher for moderately tight capacity constraint; for such
cases, it is often impossible even to execute the set covering algorithm.

Compared to the set covering approach, metaheuristic approaches are more robust. We
observe that CONSTRUCTION generates a feasible solution with at most about 30% more
squares than the lower bound. MLS is not powerful enough to find solutions of high quality,
but it can be improved by incorporating the components of tabu search and scatter search.
Although a fair comparison between MTS and SSLS is difficult because their termination
criteria are different, we can observe that MTS finds better solutions in less computation
time. If the computation time is of less concern, SSTS brings the best results among the
tested algorithms.

Our CSCP algorithms use random bits in the improving phase. In order to investigate
the reliability of the results, we solved each instance five times, using different random seeds,
with SSTS. For 35 instances (including all with n < 400) out of 48, the number of squares
in the output solution is the same for all five runs. For other 11 instances, the difference of
the best and worst objective values of the five runs is one, and for the other two instances,
the difference is two. This result indicates that our CSCP algorithm is not much affected
by different random seeds.

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 481

Table 2: Computational results of the set covering approach and the metaheuristic ap-
proaches with four different algorithms: MLS, MTS, SSLS and SSTS (for instances with

density 4)
zlstacncen LB e CON. TS met;/[hrglslrlstlc alggrﬁtshms SSTS
4 10100 49 <0.{1/91800 54 <0.511/0.1 0.14/%.3 0.6719800 0.2?19800
4 10400 213 919.251/?800 230 1?;(2).9 73.5?/13?;32.8 307.281/%800 46.?2;/113800
4 10900 478 197.45;?800 bl4 37.3%5.5 1110‘%;/8180017914.1571800 981.45,;?800
4 101600 848 19.2;118800 905 233.3%56.5 16655.;(?/11800 17115.;4:?1800 1604?5571800
4 20100 25 3.3/215800 28 <0.216}0.1 <0.215}1.6 0.37?800 <0.12/51800
4 20400 100 187.17%800 115 0.411}(1).2 6.9}(1)34.7 199%&%800 24.;;)13800
420900 224 686.28:;(1)800 256 8.12/4153.4 200.82/311137.2 518.%)?}?1800 11522.2/01800
4 201600 308 107 159 438 409 122 111
1299.1/1800 40.7/59.0 1132.4/1800 1726.1/1800 389.7/1800
4 30100 19 0.7/119800 23 <0.12/0<0.1 <0.1131.6 0.5}19800 <0.11/91800
4 30400 72 53.57/71800 88 0.68/21.1 11.!;/683.6 399.:/61800 21.87?800
4 30900 160 1087?571800 191 1.&13?2.7 340.%)(/;’9782.4 1318%97/11800 764.10(7{800
4 301600 284 14222.6?;)1800 345 23.2?25.8 715.?;(}21800 907.:;1/21800 1071;.3:;)/11800
4 00100 18 <0.11/81800 21 <0.11/9<0.1 <0.1131.1 0.2}18800 <0.11/81800
4 00400 66 0.1716800 76 0.67/20.9 2.7(/;30.7 57.93?800 4.2716800
4 00900 146 0.41/11200 169 3.3%.6 57.71/47775.9 984.125/?1800 600.19‘71;800
4 00l600 257 1.72/%00 293 9.82/8157.8 1336???/318001744???/31800 755.263?800

LB: Lower bound obtained by set covering approach

SC:

Set covering approach using the algorithm in reference [15]
CON.: CONSTRUCTION in Section 4.1

MLS: CON. + Multi-start Local Search in Section 4.2
MTS: CON. + Multi-start Tabu Search in Section 5.1
SSLS: CON. + Scatter Search with Local Search in Section 5.2
SSTS: CON. + Scatter Search with Tabu Search in Section 5.3

482 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

Table 3: Computational results of the set covering approach and the metaheuristic ap-
proaches with four different algorithms: MLS, MTS, SSLS and SSTS (for instances with
density 9)

instance metaheuristic algorithms
_ instance ypRg SC CON. 8

L ¢ n MLS MTS SSTS SSTS
21 21 21 21 21

9 23100 21 44/1800 21 01/01 <0.1/14 <0.1/1800 <0.1/1800
86 88 86 86 86

9 23400 86 4506 5/1800 I 0.8/3.6 1.2/86.5 13.9/1800 1.7/1800
202 200 194 193 193

9 23900 193 g97.8/1800 206 68/22.2 32.3/949.1 404.5/1800 802.9/1800
359 358 345 345 344

9 231600 343 41679.3/1800 367 105.3/154.8 88.1/1800 1186.0/1800 502.4/1800
12 13 11 11 11

9 45100 11 1.0/1800 4 «01/<01 <0.1/1.8 0.4/1800 <0.1/1800
a7 50 16 16 46

9 45400 44 4349.7/1800 54 0.5/1.9 19.1/102.7 1191.3/1800 2.3/1800
106 114 102 104 101

9 45900 97 4788.8/1800 121 13.7/22.5 300.2/892.3 224.2/1800 1629.3/1800
198 182 183 180

9 451600 — - 207 56.4/87.5 241.9/1800 1558.1/18001594.5/1800
10 12 10 10 10

9 68100 10 ¢ 1/1800 12 <01/<01 0.1/21 0.1/1800 0.1/1800
39 43 39 10 39

9 68400 36 g9 6/1800 46 1.0/2.0 3.8/91.9 97.0/1800 8.4/1800
86 96 85 88 84

9 68900 78 1451 9/1800 103 63/11.7 401.7/1183.31445.4/1800 674.0/1800
. 149 161 148 152 149

9 681600 134 1502 4/1800 176 778/99.9 755.3/1800 1156.6/1800 69.8/1800
10 11 10 10 10

9 00100 10 4 4/1800 120 <01/<01 <0.1/1.9 0.2/1800 <0.1/1800
38 42 38 38 38

9 00400 38 44/1800 43 0.1/0.9 4.0/93.1 543.9/1800 4.1/1800
82 93 83 87 83

9 00900 82 44 /1800 9 47/8.9 166.8/1042.4 64.1/1800 124.2/1800
143 166 145 155 146

9 00l600 137 4166.8/1800 168 6.4/21.3 679.7/1800 831.0/1800 190.9/1800

LB: Lower bound obtained by set covering approach
SC: Set covering approach using the algorithm in reference [15]
CON.: CONSTRUCTION in Section 4.1

MLS: CON. + Multi-start Local Search in Section 4.2
MTS: CON. + Multi-start Tabu Search in Section 5.1
SSLS: CON. + Scatter Search with Local Search in Section 5.2
SSTS: CON. + Scatter Search with Tabu Search in Section 5.3

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM

Table 4: Computational results of the set covering approach and the metaheuristic ap-
proaches with four different algorithms: MLS, MTS, SSLS and SSTS (for instances with
density 16)

instance

metaheuristic algorithms

o o P 5C CON- - —yrrg MTS SSLS SSTS
12 12 12 12
1640 100 — — 13 ©01/01 <0.1/1.1 <0.1/1800 <0.1/1800
1640 400 — — 53 0.35/13.9 0.3??3.0 4.3?10800 0.3?10800
1640 900 — - 17 0.21/1252.0 24.01/18174.4 160.151/1800 48.}/111800
16 401600 — - 208 2.32/0757.5 27.1718800 10351.3/81800 6.41/91200
1680 100 — — 9 <0.f/0.1 <0.17/2.8 0.2/1800 <0.1;1800
16 80 400 — - 32 0.13/11.7 69.27?75.0 57.42/71800 55.52/?800
1680 900 — - 69 12.96/427.5 130.65/8977.41673.5231800602.3/81800
119 103 107 104
16 801600 — — 128 98.6/76.7 933.5/1800 796.8/1800 74.2/1800
16 120100 7 0.1/1800 9 <0.f/0.1 <0.17/3.4 2.4/1800 <0.1;1800
16 120400 — — 30 <0.31(}1.6 0.8/21509.7 7.8/2f800 0.8/215800
16120900 — — 63 7.6?(1)6.6 25.0/512354.5 869.?;)1800 116.65/21800
161201600 — — 11 4.81/0363.7 148.2;11800 39.3%)800 318.371800
16 00 100 7 <0.1;1800 9 <0.1?<0.1 <0.17/3.3 0.1/71800 <0.1;1800
16 oo 400 25 0.3/215800 28 <0.217/1.0 0.1/21508.9 1.8/215800 0.1/215800
16 00 900 49 16.75;?800 61 3.9;?0.8 52.8/512521.0 54.55/71800 407.3/21800
16 o0 1600 86 556.?/21800 11 4.51/0258.8 84.7%800 859.11(}21800 138.??1800

LB: Lower bound obtained by set covering approach

SC: Set covering approach using the algorithm in reference [15]

CON.: CONSTRUCTION in Section 4.1

MLS: CON. + Multi-start Local Search in Section 4.2
MTS: CON. + Multi-start Tabu Search in Section 5.1
SSLS: CON. + Scatter Search with Local Search in Section 5.2
SSTS: CON. + Scatter Search with Tabu Search in Section 5.3

483

484 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

Conclusion

In this paper, we proposed the set covering and the metaheuristic approaches for the ca-
pacitated square covering problem. In the metaheuristic approach, we prepare an initial
feasible solution by a constructive method, which has an approximation ratio of four in
general, and two for the uncapacitated case. For the improvement phase, we tested four
types of metaheuristics, MLS, MTS, SSLS, and SSTS, each equipped with the adaptive con-
trol mechanism of penalty weights. From the experimental results on randomly generated
instances, we conclude as follows.

e If there is no capacity constraint, or the density of points is low, the set covering
approach performs well.

e For other types of instances, the metaheuristic approach with MTS and SSTS give
good solutions.

o If a relatively large amount of computation time is available, the metaheuristic ap-
proach with SSTS is the best choice among the tested algorithms.

As the best feasible solutions obtained by our algorithms often reach the lower bound, our
algorithm appears to be practically effective.
Acknowledgments

This research was partially supported by Grants-in-Aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows: Theory, Algorithms, and
Applications, Prentice Hall, New Jersey, 1993.

[2] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 65 (1996)
21-46.

[3] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J.
ACM 41 (1994) 153-180.

[4] R.J. Fowler, M.S. Paterson and S.L. Tanimoto, Optimal packing and covering in the
plane are NP-complete, Inform. Process. Lett. 12 (1981) 133-137.

[5] F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston, 1997.

[6] F. Glover, M. Laguna and R. Marti, Fundamentals of Scatter Search and Path Relink-
ing, Control Cybernet. 39 (2000) 653-684.

[7] D.S. Hochbaum and W. Maass, Approximation schemes for covering and packing prob-
lems in image processing and VLSI, J. ACM 32 (1985) 130-136.

[8] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz and R.E.
Stearns, NC-approximation schemes for NP- and PSPACE-hard problems for geometric
graphs, J. Algorithms 26 (1998) 238-274.

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 485

[9] D.S. Johnson, Fast algorithms for bin packing, J. Comput. System Sci. 8 (1974) 272—
314.

[10] D.S. Johnson, M. Yanakakis and C.H. Papadimitriou, On generating all maximal inde-
pendent sets, Inform. Process. Lett. 27 (1998) 119-123.

[11] K. Makino and T. Uno, New algorithms for enumerating all maximal cliques, Algo-
rithm Theory — SWAT2004: 9th Scandinavian Workshop on Algorithm Theory; Lec-
ture Notes in Comput. Sci. 3111 (2004) 260-272.

[12] S. Masuyama, T. Ibaraki and T. Hasegawa, The computational complexity of the m-
center problems on the plane, The Transactions of the IECE of Japan E64 (1981)
57-64.

[13] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating
all the maximal independent sets, SIAM J. Comput. 6 (1977) 505-517.

[14] M. Yagiura, T. Ibaraki and F. Glover, A path relinking approach with ejection chains
for the generalized assignment problem, Furopean J. Oper. Res. to appear.

[15] M. Yagiura, M. Kishida and T. Ibaraki, A 3-flip neighborhood local search for the set
covering problem, European J. Oper. Res. to appear.

Appendices

A. Enumeration Algorithm for Maximal Weighted Cliques

In the set covering approach in Section 3, we need to enumerate all maximal valid subsets.
To achieve this, we consider the problem of enumerating all maximal weighted cliques in a
graph with vertex weights.

Let G = (V,E) be a graph with vertex set V' = {1,...,n} and an edge set E =
{e1,...,em}. We assume without loss of generality that G is simple and connected. Each
vertex ¢ € V' is given a weight w(i), where we assume that w(i) > w(j) holds for any i < j,
i.e., the vertices are sorted in the decreasing order of their weights. We denote the sum of
weights of vertices in a vertex set S by w(S). A cliqgue of G is a vertex set K C V such that
any two vertices in K are connected by an edge. For a given constant «, a clique K is called
light if w(K) < a. If a light clique is included in no other light clique, we call it a mazimal
weighted clique.

For a given CSCP instance, we define graph (V, E) by letting V = P and E = {(i1,1i2) €
P x P | max{|z;, — @i, |, |yi; — Vi |} <1}. A constant « is given by the capacity c¢. Then, a
set of points S C V forms a clique in G if and only if it satisfies the geometric constraint (1).
If S is a light clique, it satisfies the capacity constraint (2) as well, and hence S is a valid
subset. Therefore, we can enumerate all maximal valid subsets by enumerating all maximal
weighted cliques in (V, E). In this appendix, we describe an algorithm for enumerating all
maximal weighted cliques.

In the existing studies, no output linear time algorithm to enumerate all maximal
weighted cliques is known, where output linear time means that the computation time is
linear in the number of output, and the computation time for each output is polynomial on
average in the input size. For the problem of enumerating maximal cliques (without weights),
several algorithms have been proposed by Tsukiyama, Ide, Ariyoshi & Shirakawa[13], John-
son, Yanakakis & Papadimitriou[10], and Makino & and Uno[11]. The time complexities of

486 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

the algorithms in [13, 10] are the same, but the algorithm in [10] enumerates maximal cliques
in a lexicographic order with the use of memory up to the size of output. The algorithms
in [11] is an improved version of the algorithms in [13, 10], so that it runs faster for dense
graphs and sparse graphs.

Our algorithm to enumerate all maximal weighted cliques is motivated by the algorithm
of Makino and Uno[11], and we describe only the points different from [11].

For a vertex set S and a vertex ¢, let S<; = SN {1,...,i}. For two vertex sets X and
Y, we say X is lezicographically larger than Y if the smallest vertex in (X \ Y)U (Y \ X)
is contained in X. (Let z(S) denote the characteristic vector of a vertex set S; i.e., the i-th
element z;(S) of z(S) is 1 if i € S, and 0, otherwise. Then, X is lexicographically larger
than Y if and only if 2(X) is lexicographically larger than z(Y); i.e., there exists i € V
such that z;(X) = «;(Y) for all j < ¢, and z;(X) > x;(Y).) For a light clique K, let C(K)
denote the lexicographically largest light clique containing K. We note that C'(K) is always
a maximal weighted clique.

Let Ky denote the lexicographically largest maximal weighted clique. For a maximal
weighted clique K (# Kj), we define the parent P(K) of K by C'(K<;_1) such that ¢ is the
minimum vertex satisfying C'(K<;) = K. Such a vertex i is called the parent vertez, and
denoted by i(K). We note that the parent vertex is always included in K. We can observe
that K<;xy)—1 C P(K)<ik)-1, thus P(K) is lexicographically larger than K. Therefore,
this parent-child binary relation (P(K),K) on maximal weighted cliques is acyclic, and
forms a tree rooted at K. We call this tree the enumeration tree for maximal weighted
cliques of a graph G, vertex weight w, and constant «.

By traversing the enumeration tree in a depth-first search manner starting from Ky, we
can visit all maximal weighted cliques. To operate the depth-first search without storing
the whole enumeration tree, we generate the children of a vertex only when it becomes
necessary and eliminate the information of a vertex when depth-first search backtracks from
the vertex. In the following, we explain the way to generate the children of the current
maximal weighted clique.

Let K be a maximal weighted clique. For a vertex i ¢ K not adjacent to all vertices
in K<;, we define K[i] by C((K<; NT'(¢)) U {i}), where I'(i) = {j € V | (i,j) € E}. Since
there is a vertex j € K<; \ I'(4), which satisfies w(i) < w(j) from ¢ > j, we can see that
K<;NT(i) U{i} is a light clique, and Ki] is well defined.

For a vertex ¢ ¢ K adjacent to all vertices in K<; and a vertex j € K;j < 4, we define
Kli, j] by C(K<; U{i}\ {j}). Since w(i) < w(j) holds, we can see that K<; U {i}\ {j}is a
light clique, and KTi, j] is well defined.

Lemma 1 For two mazimal weighted cligues K and K', K' is a child of K only if K' =
K[i(K")] holds or K' = K[i(K"), j] holds for some j.

Proof: Suppose that K’ is a child of K. Then, K = C(Klgi(K’)fl) for which Klgi(K')—l C
K<j(kr)—1 holds. Let j be the minimum vertex in K \ K'. Then, we consider the following
two cases.

(1) j is not adjacent to i(K'). In this case, we claim that no vertex in K<+ \ K' is
adjacent to i(K"). Under this claim, (K<) N (i(K")))U{i(K")} is equal to KZ ;. since
Klgi(K')—l C K<j(k1)—1, hence K' = K[i(K")].

To prove the claim by contradiction, suppose that a vertex j' € K<;x+) \ K' is adjacent
to i(K'). Then, we have a > w(K) > w(KZ; k) —w(i(K")) + w(j) + w(j'). This together
with w(i(K")) < w(j), we have w(KZ;) U{j'}) < a. Since j' is adjacent to all vertices in
K, j' is adjacent to all vertices in Klgi(K') since K'Si(K,)f1 C K<j(k')—1- This implies that

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 487

Klgi(K’) U {j'} is a light clique including Klgi(K')- This contradicts that C(Klgi(K')) = K';
i.e., K' is the lexicographically largest light clique including K ’<i(K1)

(2) j is adjacent to i(K"'). Then, from KT,)y C K<ixr)-1, j is adjacent to all vertices
in K. Since C(KZ;) = K' does not include j, we have w(KZ;) + w(j) > o
Thus, for any vertex j' < i, w(K,gi(K')—1) +w(j)+w(f’) = “’(K’gi(K')) —w(i(K")) +w(j)+
w(j') > a. This means that K<k \ K’ includes no other vertex than j. Therefore,
K<iky = K yin—y U{j}, and we have that K' = K[i(K"), j]. M

From the lemma, we can see that the following algorithm computes the children of a
maximal weighted clique K by evaluating at most |V|?> candidates.

1. For each K' = KJi] or K[i, j] do
2. If P(K') = K then output K’

Since, for any light clique S, C(S) can be computed in O(|V| + |E|) time by augmenting
S repeatedly, each of K[i] and K[i,j] can be constructed in O(|V] + |E|) time. Given the
parent vertex of K', we can construct its parent P(K') in O(|V| + |E|) time, and hence we
can check in O(|V|+ |E|) time whether P(K') = K holds or not. The computation time for
generating all children is then O(|[V[*(|V] + |E|)) = O(]V|*|E|). Therefore, we obtain the
following theorem.

Theorem 2 For a given graph G = (V, E), a vertex weight w and a constant «, all maximal
weighted cliques can be enumerated in O(|V|*|E|) time for each.]

In practical computation, the input graph is often sparse. We here consider the time
complexity with respect to the maximum degree A of G.

Suppose that a child K' of K satisfies K' = K[i(K')]. According to [11], if K<+ N
T(i(K')) = 0, then P(K') = Ky holds in the case that K g1 = 0, and Kk &
K <;(k1)—1 holds otherwise. It implies that K is not the parent of K’ if K # K. Thus, for a
maximal weighted clique K # Ko, K' = K[i(K")] is a child of K only if K<; x)NT'(i(K")) #
0. Since |K| < A+ 1, at most A(A + 1) vertices satisfy K<; gy NT(i(K")) # 0.

Suppose that a child K’ of K does not satisfy K’ = K[i(K')]. Then, from Lemma 1,
K' = KJi(K"), j] holds for some j € K, and i(K') is adjacent to all vertices in K<;(xry—1.
Hence, the number of such pairs of ¢ and j is at most A(A + 1).

Since we can construct C'(S) in O(A?) time for any light clique S, we obtain the following
lemma.

Lemma 2 We can enumerate all children of a given maximal weighted clique other than
Ko in O(A%) time. N

From the lemma, we obtain the following theorem.

Theorem 3 We can enumerate all mazimal weighted cliques in O(A*) time for each, with
O(|V|?|E|) preprocessing time. M

We note that the additional O(|V'|?|E|) time is the computation time to find children of
K.

488 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

B. Scaling Input Data to Integers

Given n points (zf,y!) (i = 1,2,...,n) in the plane and a real number I’ > 0, where z/
and y} are real numbers, we consider the problem of mapping those points (z},y!) and I’ to
nonnegative integer points (z;,y;) (i = 1,2,...,n) and a positive integer [, respectively, so
that

vy -z <I' = z; —x; <, Vi, 7, (6)

y;_yigl’ — yj_yigla Vi)j: (7)

and [is the minimum.
Note that constraints (6) and (7) assure that

max{|z; — 25|, ly; —yi|} <1 = max{|z; —z;],|yi —y;|} <1, Vi,

Therefore, the CSCP instance with the mapped points (z;,y;) and [is equivalent to the
instance with the original data.

For a fixed integer A > 0, we first consider the problem (P)) of finding an integer solution
x = (z; | 1 <i < n) that satisfies (6) with I = A. Without loss of generality, we assume that
n>2andz] <z <--- <zl hold. In this case, we can also assume that 21 < z5 < -+ <z,
holds (monotonicity), because if there is a solution to (Py), say & = (#; | 1 <1 < n), then
so is * = (max{&1,&s,...,%;} | 1 < i < n), which satisfies monotonicity. Suppose that
z; —x; < 1" holds. Let z} be given by &, where 1 < k < j. Then, xj — 2} < I’ and thus
T, — &; < A holds by assumption, which implies that =7 — 27 < Z — #; < A. Similarly, we
can show that), — 2} > I' = 27 —z} > X holds for any i and j. Therefore, z* is a solution
to (Px). Then, (P,) is formulated as the following integer linear system:

(Pa) Zi@y41 — 2 > A+ 1, Vi with k(i) +1<n,
Ty — i <A, Vi with k(i) >,
migmi-‘rla 1S7/<TL,

x; : nonnegative integer, 1 <1i<n,
where k(i) = max{j | z; <z} +1'}. For this, we define a directed network N(A) as follows:
e Nodeset V ={1,...,n}.

o Arcset A = Ay U Ay U A,, where Ay = {(4,k(G) +1) | 1 < i < n, k() +1 < n},
Ay = {(k(i),9) |1 <i<n, k(@) >i} and A, = {(i,i+1) |1 <i<n}

—(A+1), if (4,5) € Ay,
e Length of arc d(i,j) = ¢ A, if (i,7) € Ay,
07 lf (%J)EAR

It is easy to see that if N(A) has a cycle of negative length (called a negative cycle), then
(Py) has no solution. On the other hand, suppose that N(\) has no negative cycle. Then,
N (M) has a shortest path from node 1 to each i (1 < i < n), whose length dist(i) is a
non-positive integer, and dist(j) < dist(i) + d(i,j) holds for any (i,j) € A. This implies
that @ = (—dist(i) | 1 < i < n) gives a solution to (Py). Therefore, we can either conclude
that (P,) is infeasible, or find a solution x to (Py) in O(n?) time by applying an appropriate
shortest path algorithm (e.g., the label-correcting algorithm [1]) to N(A).

Next, we show that (P)) is always feasible for A = |(n — 1)/2]; i.e., N(|(n — 1)/2]) has

no negative cycle. To prove this, we first claim that, for a sufficiently large integer A such

HEURISTICS FOR CAPACITATED SQUARE COVERING PROBLEM 489

n}, network N(X)

that A > 31'/6 + 1, where § = min{a, — 2} — ' | 1 <i <n,j = k(i)
| n) is a solution to

has no negative cycle. This claim is true because @ = (|[Az}/l'| | 1
(P5)-

Now let C' be any simple cycle in N(\) containing my (> 0) arcs in Ay and my (> 0)
arcs in Ap. Then, my must be smaller than my, since otherwise the length of C, myA — (A +
1)my = (my — mys)\ —my, becomes negative for any X (in particular for A = X), which is a
contradiction. Since the number of arcs in Ay U A, contained in C, my + ms, is at most n,
my < my implies my < [(n — 1)/2], and hence the length of C is at least A — [(n — 1)/2].
(This bound is tight. Figure 2 shows a network having a cycle of length A — [(n — 1)/2].)
Therefore, if we set A\ = |(n — 1)/2], network N(\) has no negative cycle, and hence (P))
has a solution. Furthermore, if (Py/) has a solution, then so does (Py) for any X" > X,
because the length of any simple cycle on N()) is nondecreasing in .

Since the argument above applies to the problem of finding y for a fixed [, a solution
(x,y,1*) with the minimum integer [* can be obtained in O(n?logn) time by using a binary
search between 1 <1 < |(n —1)/2]. (Recall that, for a fixed I, we can identify a solution
(z,y,1) in O(n?) time.)

+1<
<i<

Figure 2: An example of network N(\) with a cycle of length A — |(n —1)/2].

Manuscript received 28 October 200/
revised 12 April 2005
accepted for publication 16 April 2005

ENDRE BOROS

Rutgers Center for Operations Research, Rutgers University, The State University of New Jersey,
640 Bartholomew Road, Piscataway, NJ 08854-8003, USA

E-mail address: boros@rutcor.rutgers.edu

TOSHIHIDE IBARAKI

Department of Informatics, School of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

E-mail address: ibaraki@ksc.kwansei.ac.jp

HIROYA ICHIKAWA

Sumisho Computer Systems Corporation, Harumi Island Triton Square Office Tower Z, 1-8-12 Harumi,
Chuo-ku, Tokyo 104-6241, Japan

E-mail address: h.ichikawa@jpta.scs.co.jp

490 E. BOROS, T. IBARAKI, H. ICHIKAWA, K. NONOBE, T. UNO AND M. YAGIURA

KoJj1 NONOBE

Department of Art and Technology, Faculty of Engineering, Hosei University,
3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan

E-mail address: nonobe@k.hosei.ac.jp

TAKEAKI UNO
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail address: uno@nii. jp

MUTSUNORI YAGIURA

Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan

E-mail address: yagiura@i.kyoto-u.ac.jp

