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Abstract� We consider the capacitated square covering problem �CSCP�� which is described as follows�
Given a set of points� each having a demand� in the two�dimensional Euclidean plane� we �nd the minimum
number of squares with the same size and capacity to cover all the points under the capacity constraint� As
CSCP is NP�hard� we focus on heuristic algorithms in this paper� We �rst test a set covering approach� in
which a CSCP is solved as a set covering problem� Since its performance is not always satisfactory� though
it works quite well for a certain type of instances� we then propose a more robust metaheuristic approach�
In this approach� starting with a feasible solution using a rather large number of squares� we remove squares
one by one� After each removal of a square� the resulting infeasible solution is repaired by a local search
method so that it becomes feasible� To increase the performance� we incorporate the idea of tabu search
and scatter search as well as an adaptive control mechanism of penalty weights� Computational results on
randomly generated instances with up to ���� points indicate the e	ectiveness of our approaches�
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� Introduction

Given a set of points in the two�dimensional Euclidean plane� the square covering problem

asks to �nd the minimum number of squares of the given size that cover all the points�
where each square is placed in the plane with its sides parallel to axes� The problem has
applications in such �elds as VLSI design� location of emergency facilities� image processing
and others� and theoretical results have been achieved in literature� In ��� and ����� the
problem of asking to cover points in the plane by a given number of squares or disks of
prescribed size is proved to be NP�hard� In �	�� a polynomial time approximation scheme

PTAS�� which uses a uni�ed technique called the shifting strategy� is presented� A similar
technique was independently proposed in ���� and has often been used to develop PTASs for
covering and packing problems in the plane and geometric location problems ���

In this paper� we consider the capacitated square covering problem 
CSCP�� in which each
point has its demand and squares have a common capacity� and focus on developing heuristic
algorithms� mainly from a practical viewpoint� We �rst test a set covering approach� which
is based on the transformation of CSCP into the set covering problem 
SCP� by enumerating
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all sets of points that can be covered by a square� as will be described in Section �� This
approach solves the resulting SCP instance by an existing SCP algorithm�

Since the set covering approach becomes inapplicable when the number of sets to enu�
merate explodes� we propose� as a more robust one� a metaheuristic approach in Section ��
This is a two�phase heuristic algorithm� we construct a feasible solution in the �rst phase

construction phase�� and reduce the number of squares step by step in the second phase

improvement phase�� For the �rst phase� we present a constructive method and show that
it has an approximation ratio of four� 
By using a PTAS developed for the 
uncapacitated�
square covering problem� we can improve the approximation ratio to �� � for any � � ��� In
the improvement phase� we �rst remove one square from the best feasible solution obtained
so far� Since the removal makes the solution infeasible in general� we repair it by local
search� without changing the number of squares� In our local search� the quality of solutions
are measured by the weighted sum of penalties� where the penalty represents how much
constraints are violated� If the locally optimal solution obtained is still infeasible� we return
to the best feasible solution� remove another square instead� and apply a local search again�
this process may be considered as a multi�start local search 
MLS�� If a feasible solution is
found by the MLS� we repeat the removal of one more square and its repair by MLS to �nd
a better feasible solution�

In Section �� we try to improve our metaheuristic approach� For this end� we extend the
local search to tabu search ��� and use it in the framework of scatter search ���� Furthermore�
we introduce an adaptive control mechanism of the penalty weights� To compare e�ectiveness
of our approaches� we solve randomly generated instances with up to ���� points� The
experimental results are reported in Section ��

� Problem De�nition

Let P � f�� �� � � � � ng stand for a given set of points 
xi� yi� 
i � P � in the two�dimensional
Euclidean plane� each having a demand di � �� The squares to cover these points have the
same side length l � � and capacity c � �� The capacitated square covering problem 
CSCP�
seeks to �nd the minimum number of squares that cover all the points under the capacity
constraint that the total demand of the points covered by a square does not exceed c� where
each square must be placed in the plane with its sides parallel to x� or y�axis� Throughout
this paper� we consider the x�axis as a horizontal line from left to right� and the y�axis as a
vertical line from bottom to top� To ensure feasibility of the problem� we assume di � c for
all i � P �

CSCP can be formulated as a problem of �nding a collection S � fS�� S�� � � � � SjSjg of
disjoint subsets of P such that its union is P 
i�e�� S is a partition of P � and each S � S

S � P � satis�es the following inequalities 
stating that the points in S can be covered by
a single square and satisfy the capacity constraints��

maxfjxi� � xi� j� jyi� � yi� jg � l� �i�� i� � S� 
��

X

i�S

di � c� 
��

The objective is to minimize the number of subsets in S� In this formulation� each square
is identi�ed with a subset S � S� and square S is said to cover point i if i � S holds� To
cover point i by a square S� the point i must be contained in the region of square S� in
this situation� we say that S geometrically covers point i without referring to constraint
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��� In other words� the set of points covered by a square S are chosen from those points
geometrically covered by S so that the capacity constraint 
�� is satis�ed�

Although the position of square S is not explicitly given in the formulation� it can be
determined from constraint 
�� by putting its bottom�left corner at 
xmin� ymin�� where
xmin � minfxi j i � Sg and ymin � minfyi j i � Sg�

A subset S � P is called valid if it satis�es constraints 
�� and 
��� We call a partition
S � fS�� S�� � � � � SjSjg of P a solution� and call it feasible if all S � S are valid�

� Set Covering Approach

For a given CSCP instance� let F denote the collection of all valid subsets S � P � By
introducing a ��� variable z
S� for each S � F such that z
S� represents whether S is
contained in the solution S or not� we can formulate CSCP as follows�

minimize
X

S�F

z
S�

subject to
X

S� i�S

z
S� � �� i � P�

z
S� � f�� �g� S � F �

Since� for any S � F � any of its subset S� � S is also valid� we can replace the equality
constraints by inequalities X

S� i�S

z
S� � �� i � P

without changing the optimal value� For the same reason� F may be de�ned as the collection
of all valid subsets maximal with respect to set�inclusion� The resulting problem is in the
form of the set covering problem 
SCP�� and we can solve it by using an existing SCP
algorithm� We call this the set covering approach�

In order to enumerate all maximal valid subsets e�ciently in F � we can use a polynomial
delay algorithm given in Appendix A� Given an undirected graph 
V�E� and a weight w
i�
for each i � V as well as a constant �� this algorithm enumerates all maximal cliques K
in 
V�E� such that the total weight of the vertices in K does not exceed �� For a given
CSCP instance� we de�ne graph 
V�E� by letting V � P and E � f
i�� i�� � P � P j
maxfjxi��xi� j� jyi��yi� jg � lg� Then� a subset S � V forms a clique in 
V�E� if and only if
it satis�es the geometric constraint 
��� Therefore� by setting w
i� � di 
i � V � and � � c�
we can use this algorithm for our purpose�

For the uncapacitated case 
i�e�� the capacity c is in�nite�� the enumeration can be
achieved more easily� Let S � F be a maximal valid subset� and let iL � argminfxi j i � Sg
and iB � argminfyi j i � Sg� Then� S is equal to a set of points i � P such that 
xi� yi� �
�xiL � xiL � l�� �yiB � yiB � l�� This implies that we can enumerate all maximal valid subsets
by considering� as such iL and iB � all pair of 
possibly the same� points i� and i� in P

such that xi� � xi� � xi� � l and yi� � yi� � yi� � l� Let �F be the collection of subsets
enumerated in this way� Although �F may contain subsets that are not maximal� their
validity is guaranteed� Furthermore� the size of �F is at most �jP j� where � is the largest size
of S � �F � Since in many cases� � is much smaller than jP j� we can practically use �F in the
set covering approach� This simple enumeration method runs in O
jP j log jP j�

P
S� �F jSj�

time� if we use appropriate data structures such as heap and balanced binary search tree�
Since the output size is �


P
S� �F jSj�� only O
jP j log jP j� time is additional�
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As will be reported in Section �� the performance of the set covering approach crucially
depends on the number of subsets in F � If points are densely located in the plane 
which
means that many points can be geometrically covered simultaneously by a square� and the
capacity constraint is not very tight� the set covering approach becomes practically infeasible
due to a huge number of maximal valid subsets� To overcome this di�culty� we next propose
a metaheuristic approach�

� Metaheuristic Approach� Basic Ideas

Our metaheuristic approach consists of two phases� we �rst construct a feasible solution

construction phase�� and decrease the number of squares one by one 
improvement phase��
Its framework is described below�

CSCP algorithm

Step � �Construction��
Construct an initial feasible solution S���� Set k �� ��

Step k �Improvement��
Apply a metaheuristic algorithm to �nd a feasible solution S�k� with jS�k���j � �
squares� If we fail to �nd such a solution� then output the current best solution S�k���

and terminate� otherwise let k �� k � �� and return to Step k�

In this section� after explaining a method to construct an initial feasible solution and an�
alyzing its approximation ratio� we will describe basic components of our metaheuristic
algorithms� Other ingredients to improve the performance will be presented in the next
section�

��� Construction Phase

����� Algorithm

Our construction algorithm starts with no square� and iteratively puts a new square Sj in
the plane until all points are covered� After putting a new square Sj � we insert as many
points as possible into Sj under constraints 
�� and 
��� and then adjust its position in the
hope that it covers some more points�

The algorithm is summarized below� During the computation� set U stores the points
not covered by any square yet�

CONSTRUCTION
Input� An instance of CSCP�
Output� A feasible solution S����

Step � �Initialization�
Initialize a collection of subsets S��� by S��� �� � and U �� P � Set j �� ��

Step � �Determination of target points�
If U � �� then output S��� and terminate� S��� is a feasible solution� Otherwise� let
iL be the leftmost point in U � 
If there is more than one such point� take the bottom
one�� Let A be the set of all uncovered points i 
� U� such that i is within the closed
rectangle �xiL � xiL� l�� �yiL� l� yiL� l� de�ned by iL 
see Figure � 
��
	�� where white
points denote uncovered points��
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The points in A are called target points� In the following� Steps ��� will be repeated
until every target point is covered by some square�

Step � �Covering by a new square�
Let iB be the uncovered target point with the smallest y�coordinate� 
If there is
more than one such point� take the leftmost one�� Let j �� j � � and introduce a
new square Sj 
which corresponds to adding an empty set Sj to S����� and place
it in the plane so that its bottom�left corner is at 
xiL � yiB � 
Figure � 
��
��
��
���
Consider those uncovered points i 
� U� now geometrically covered by square Sj �
i�e�� 
xi� yi� � �xiL � xiL � l� � �yiB � yiB � l�� and add into Sj as many such points as
possible under the capacity constraint 
�� in non�decreasing order of yi� breaking ties
by preferring smaller xi 
black points in Figure � 
��
��
��� where gray points denote
those which have already been covered�� Delete all points in Sj from set U �

Step � �Covering some more points�
Let xmin �� minfxi j i � Sjg and ymax �� maxfyi j i � Sjg� If xmin � xiL holds� go to
Step � 
Figure � 
���� Otherwise� change the position of square Sj so that its top�left
corner is at 
xmin� ymax� 
Figure � 
��	
��� 
��	
���� 
This operation slides square
Sj to the rightmost position� and then to the bottommost position� while keeping all
points i � Sj geometrically covered by Sj �� Consider those points i � U which got
geometrically covered by Sj as a result of the operation� and add as many such points
as possible to Sj in the non�decreasing order of xi� Delete from set U all points added
to Sj �

Step � �Repetition of the process�
If A 
 U � �� return to Step �� otherwise return to Step ��

Figure � illustrates the process of CONSTRUCTION� In this example� the capacity c of
a square is four� and the demand di of each point i is one or two as shown in the �gure�
White points represent those which have not been covered yet� while gray ones have already
been covered� and black ones are being covered by the current square drawn with thick
lines� At �rst� we apply Steps � and �� and we get 
��� where points inside the two adjacent
squares with broken lines are target points A� 
�� shows the result after applying Step ��
One square is introduced and it covers three points� while one point with a demand of two
is left uncovered even though it is geometrically covered� because of the capacity constraint�
Since we cannot slide the square in Step �� we go to Step � and return to Step �� 
��
illustrates the result after one more square is introduced in the next iteration of Step �� and

�� shows the result of Step �� Since there still remains an uncovered target point� we return
to Step �� and we get 
��� where 
�� shows the result of Step �� Since all target points are
now covered� we return to Step �� and determine the next target points as illustrated by two
broken squares in 
	�� In 
�� all points in P are covered� and CONSTRUCTION terminates�
In this example� four squares in 
��� 
��� 
�� and 
� constitute the output solution�

����� Approximation Ratio

We analyze algorithm CONSTRUCTION and show that it has an approximation ratio of
four� We �rst give two lower bounds on the optimal value m�� One is trivially derived from
the capacity constraints�

m� �

P
i�P di

c
�
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Figure �� An illustrative example of CONSTRUCTION

The other is based on the geometric property� Let PL be the set of all points chosen as iL in
some iteration of Step �� For convenience� we consider the process of CONSTRUCTION as
a series of jPLj rounds� each starting when iL is selected and target points A are determined
in Step ��

We claim that no two di�erent points i� and i� in PL can be covered simultaneously by
a square� Without loss of generality� assume that i� is selected as iL in an earlier round
than i�� Then xi� � xi� holds� Furthermore� i� is a target point in the round of i�� implying
xi� � xi� � l or jyi� � yi� j � l� hence the claim is true� Therefore� at least jPLj squares are
necessary to cover all points in PL � P � and we have

m� � jPLj�

We note that squares Sj are introduced only in Step �� We classify those squares Sj into
two groups� If some target point i that is geometrically covered by Sj remains uncovered
after the Step �� then Sj is called saturated 
because the point i is excluded due to the
capacity constraint�� otherwise called unsaturated�

Let Ssat � S��� be the collection of saturated squares� For a square Sj � Ssat� consider
the time when Step � is completed after Sj is introduced� Let ij be the target point with
the smallest y�coordinate among those that are left uncovered even though geometrically
covered by Sj 
if there is more than one such point� take the leftmost one�� Obviously� the
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residual capacity c�
P

i�Sj
di of square Sj is less than dij � and thus

X
Sj�Ssat

�
�c�X

i�Sj

di

�
A �

X
Sj�Ssat

dij �

Since ij will be selected as iB at the next iteration of Step �� and covered by the next square
Sj��� we have ij �� ij� for any two distinct saturated squares Sj and Sj� �j �� j��� Therefore�
we obtain

jSsatjc �
X

Sj�Ssat

dij �
X

Sj�Ssat

X
i�Sj

di � �
X
i�P

di�

and

jSsatj � �

P
i�P di

c
� �m�� ���

�The idea of this analysis is essentially the same as that of the Next�Fit bin packing
algorithm	
���

Next� we analyze the number of unsaturated squares� Once Step � ends with an unsat�
urated square Sj � no target point located below the upper side of Sj is left uncovered� and
hence� at the subsequent iterations in the same round� new squares will be placed in the
plane completely above Sj � Since all target points for the current round can be geometrically
covered by two squares� the number of unsaturated squares is at most two per round� and
thus at most �jPLj squares in total�

jSj � jSsatj � �jPLj � �m�� ��

Putting the results ��� and �� together� we obtain the following theorem�

Theorem � CONSTRUCTION has an approximation ratio of four� For the uncapacitated

case� all the squares are unsaturated� and the approximation ratio becomes two�

We note here that Step  has no e�ect to the analysis of approximation ratio� but is
practically useful in reducing the number of squares�

As mentioned in Introduction� it is known that the uncapacitated square covering prob�
lem has a PTAS� By modifying CONSTRUCTION to utilize a �� � ���approximation algo�
rithm for the uncapacitated version� we can achieve �� � �� approximation ratio for CSCP�
For a given CSCP instance� ignoring the capacity constraints� we �rst obtain a �� � ���
approximation solution �S � f �S�� �S�� � � � � �S �mg to the resultant uncapacitated problem in�
stance� Then� we apply CONSTRUCTION while setting target points A to �S� at the ��th
iteration of Step �� �The algorithm then terminates in �m rounds�� By the same argument
above� the number of saturated squares is shown to be at most �m�� where m� is the op�
timal value� As for unsaturated squares� their number is at most �m� which is the number
of rounds� because whenever Step � ends with an unsaturated square� no uncovered target
point is left and the current round is completed� Since �m � �� � ��m� holds by assumption�
the total number of squares is bounded by �m� � �m � �� � ��m��

Although this modi�cation improves the approximation ratio� it makes CONSTRUC�
TION slower� Therefore� we adopt the original one in our implementation�
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��� Improvement Phase

The objective of step k in the improvement phase is to �nd a feasible solution with jS�k���j��
squares� where S�k��� is the best solution obtained so far� To achieve this� we employ
metaheuristic algorithms� whose core part is local search� Local search is a method that
iteratively replaces the current solution S by another one S � that can be obtained from S by
a slight modi�cation� Such a solution S � is called a neighbor of S� and the set of neighbors is
called the neighborhood� Local search terminates when the current solution is locally optimal
�i�e�� no better solution exists in its neighborhood��

In this subsection� we describe a multi�start local search algorithm �MLS�� which re�
peatedly executes local search from di�erent initial solutions� In the rest of this section� we
explain the components of our local search and how to generate initial solutions�

����� Search Space and Penalty Function

Suppose that the current best solution uses m � � squares� MLS operates on the set of all
�feasible and infeasible� solutions S � fS�� S�� � � � � Smg with m squares� which implies that
the constraints ��� and ��� are not necessarily satis�ed during the search� For convenience�
we sometimes represent a solution S by a mapping �S � P � f�� �� � � � �mg such that
�S�i� � j �� i � Sj � and we denote �S simply by �� when S is clear from context�

To evaluate solutions� we introduce penalty function p�S� to be minimized� which takes
value � if S is feasible� and a positive value otherwise� More precisely� for each square Sj � S�
we de�ne penalty functions pgeo�Sj� and pcap�Sj�� which represent how much Sj violates
constraints ��� and ���� respectively� by

pgeo�Sj� � maxf���x�Sj�� lg� maxf���y�Sj�� lg�

pcap�Sj� � max

��
���

X
i�Sj

dj � c

��
� �

where
�x�Sj� � max

i��i��Sj
jxi� � xi� j and �y�Sj� � max

i��i��Sj
jyi� � yi� j�

�If Sj contains less than two points� �x�Sj� and �y�Sj� are de�ned as ��� Then p�S� is
given by the weighted sum of these penalties

p�S� �
X
Sj�S

	
wgeo
j pgeo�Sj� � wcap

j pcap�Sj�


� ���

where weights wgeo
j and wcap

j are program parameters� which are adaptively controlled during
search as will be explained in the next section� The objective of MLS is to �nd a solution S
such that p�S� � ��

Our MLS adopts the best admissible move strategy� the current solution is replaced by
the best neighbor in the sense of having the minimum penalty value� If there are more than
one best solution� to break ties� we use a secondary criterion g�S� �a smaller value is better�
de�ned by

g�S� �
X
Sj�S

��x�Sj� � �y�Sj�� �

The values of �x and �y a�ect the penalty value p�S� only when they are larger than l�
However� even if �x � l and �y � l hold� squares with smaller �x and �y may have
higher potential for covering more points without violating the geometric constraint ����
The criterion g�S� gives higher priority to such squares�
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����� Shift and Swap Neighborhoods

To generate neighbors of the current solution S� MLS uses two types of operations� Shift
and Swap� A shift operation Shift�i� j� is de�ned for a pair of point i and square Sj such
that j �� ��i�� and moves point i into Sj �i�e�� ��i� �� j�� A swap operation Swap�i�� i��
is de�ned for a pair of two points i� and i� with ��i�� �� ��i�� and switches them �i�e��
��i�� � ��i���� Let NShift�S� �resp�� NSwap�S�� denote the set of solutions obtained from
S by applying a shift �resp�� a swap� operation� The size of NShift�S� is O�mn� and that
of NSwap�S� is O�n��� where n and m are the numbers of points and squares� respectively�
Since it is time�consuming to search the whole neighborhoods at each iteration of local
search� we restrict them as follows�

� Shift�i� j� is applied to S only if both of the following conditions hold�

�� �a� Square S��i�� which currently covers i� has a positive penalty� or �b� point
i has the minimum or maximum x� or y�coordinate in S��i� �which means that
point i is on the boundary of the minimum rectangle containing all points in
S��i���

�� �a� Square Sj covers no point� i�e�� Sj � 	� or �b� Sj contains a point i� whose L��
distance from i� maxfjxi�xi� j� jyi�yi� jg� is less than or equal to max dist shift�
where max dist shift is a program parameter�

� Swap�i�� i�� is applied to S only if both of the following conditions hold�

�� Square S��j�� or S��j�� has a positive penalty�

�� The L��distance between i� and i� is less than or equal to max dist swap� which
is another program parameter�

We denote by �NShift�S� and �NSwap�S�� respectively� the shift and swap neighborhoods re�
duced in this way� These restrictions are expected to exclude shift and swap operations that
are unlikely to improve the current solution S� For example� in the case of Shift�i� j�� condi�
tions ���a� and ���b� assures the possibility to decrease the values of pgeo�S��i��� p

cap�S��i��
and �x�S��i����y�S��i��� respectively� while condition � is to keep the increment of the
penalty pgeo�Sj� below max dist shift�

In our current implementation� we set max dist shift � l and max dist swap � l�

����� Initial Solutions of MLS

To launch local search� we need to prepare an initial solution� In our MLS� we generate
it by removing one square Sj from the best feasible solution S�k��� � fS�� S�� � � � � Sm��g�
As the removal of Sj leaves the points in Sj uncovered� we cover them by the remaining m
squares by applying the following step jSj j times in a greedy fashion� apply a shift operation
Shift�i� j�� with i � Sj and j� �� j such that the minimum penalty increase is attained� �In
our implementation� to reduce the computational e�orts� we check only those pairs i and
j� satisfying the above condition ���b��� From the resultant solution� we then execute local
search� If the local optimum obtained is infeasible� the same process is repeated by removing
another square until a feasible solution is found� or m�� times� whichever comes �rst� In the
latter case� there is no square to remove any more� and we conclude that MLS has failed to
improve the best solution and return to the CSCP algorithm� which immediately terminates
after outputting the best solution S�k����
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Now we mention about the order of squares Sj to be removed from S�k���� To �nd a
feasible solution �if any� in fewer runs of local search� we remove �rst a square Sj � S�k���

that covers the smallest number of points� so that the total penalty increase in the resulting
initial solution may be small�

����� Algorithm

The entire algorithm of MLS is summarized below�

Multi�Start Local Search �MLS�

Input� A feasible solution S�k��� with m � � squares�
Output� A feasible solution S�k� with m squares� or �failure��

Step � �Initial solution��
If all m�� initial solutions have been tested without �nding a feasible solution� return
�failure�� Otherwise� according to the rule described in Section ����� generate a
solution S with m squares�

Step � �Local search��
If S is feasible� let S�k� �� S and return S�k�� Otherwise� �nd the best solution S � in
�NShift�S� 
 �NSwap�S�� If S � is better than the current solution S� let S �� S � and

return to Step �� otherwise return to Step ��

� Metaheuristic Approach� Improved Algorithms

In this section� we present some ideas for improving the performance of MLS� by incorpo�
rating tabu search and scatter search� The resulting two algorithms are denoted by MTS
�Multi�start Tabu Search� and SSLS �Scatter Search with Local Search�� respectively� We
also tested a combination of tabu search and scatter search� denoted by SSTS �Scatter Search
with Tabu Search�� Finally� we propose a method of controlling the penalty weights wgeo

j

and wcap
j in penalty function ����

��� Multi�Start Tabu Search

Local search terminates when a locally optimal solution is obtained� However� continuing the
search beyond the local optimum appears e�ective for �nding better solutions� To achieve
this� we adopt tabu search 	��� In tabu search� the current solution S is always replaced
with the best one S � in the neighborhood� even if S � is not better than S� To realize an
e�ective search while avoiding going back to solutions already visited� tabu search makes
use of memory that stores the search history� which is typically embodied in tabu lists�
In our tabu search� tabu list T stores the points i � P such that ��i� has recently been
changed� and prohibits to change it again while i is contained in T � More precisely� T is
initially set to the empty set� and updated whenever the current solution S is replaced by
its neighbor S �� if S � is obtained from S by Shift�i� j�� we insert point i to T � while if
S � is obtained by Swap�i�� i��� we insert both points i� and i� to T � Those points in T
will be maintained for tabu tenure iterations� where tabu tenure is a program parameter�
In searching neighborhood� we call a neighbor S � tabu and exclude it from candidates� if
it is obtained by applying Shift�i� j� with i � T or Swap�i�� i�� with i�� i� � T � As in
the standard implementation of tabu search� we introduce an aspiration criterion� the tabu
status of a solution S � is overruled� if its penalty value is smaller than that of the best
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solution found in the current run of tabu search� �Recall that tabu search is repeatedly
executed in MTS� The best solution is reset whenever tabu search restarts��

Our tabu search terminates when one of the following conditions is met�

� A feasible solution is found�

� Neighborhood search has been repeated max iteration times�

In the former case� the best solution to CSCP is improved and MTS terminates� while in the
latter case� tabu search has failed to �nd a feasible solution� and restarts from another initial
solution� �Initial solutions are generated in the same way as MLS�� The entire algorithm of
MTS is described below�

Multi�Start Tabu Search �MTS�

Input� A feasible solution S�k����
Output� A feasible solution S�k� with one less square than S�k� or �failure��

Step � �Initial solution��
As in MLS�

Step � �Tabu search��
If S is feasible� let S�k� �� S and return S�k�� If the solution has been replaced
max iteration times� then return to Step �� Otherwise� �nd the best neighbor S � �
�NShift�S� 
 �NSwap�S� that is not tabu and let S �� S �� Update the tabu list and

return to Step ��

In the computational experiments in Section �� we set the parameters as tabu tenure �
��� � jP j and max iteration � � � jP j according to preliminary experiments� In the pre�
liminary experiments� we observed that max iteration had a larger impact on the results
than tabu tenure� and the best value of max iteration depends on the maximal computa�
tion time speci�ed by users� At the current stage� in order to �nd their appropriate values�
preliminary experiments are necessary to a certain extent�

��� Scatter Search with Local Search

Scatter search is an evolutionary approach� which works on a set of solutions� called the
reference set� �Solutions in the reference set are called reference solutions�� Scatter search
repeats an operation of creating new solutions by combining two or more reference solu�
tions and updating the reference set so that it contains good and diverse solutions� Scatter
Search contrasts with other evolutionary procedures� such as genetic algorithms� by provid�
ing unifying principles for combining solutions based on generalized path constructions �in
both Euclidean and neighborhood spaces� and by utilizing strategic designs where other ap�
proaches resort to randomization 	��� We incorporate an idea of scatter search into MLS for
the purpose of generating initial solutions more e�ectively� and also for making it possible
to execute local search more than m � � times� where m � � is the number of squares used
in the current best solution� In SSLS� the reference set consists of some of local optima
obtained so far� In this subsection� we �rst explain how to manage the reference set� and
then how to use it to create initial solutions�
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Reference set

In principle� we store solutions of high quality in the reference set� To achieve diversi�cation�
however� using a program parameter min dist ref � we keep the distance of any two reference
solutions at least min dist ref � where the distance between S and T is de�ned as follows�
Let � denote a one�to�one mapping � � f�� �� � � � �mg � f�� �� � � � �mg� The distance is then
given by min� jfi � P j ���S�i�� �� �T �i�gj� This minimization problem is formulated as
an assignment problem and solvable in O�m�r � m logm�� time� where r is the number of
pairs of subsets �S� T � � S �T such that S T �� 	� and r is at most minfjP j�m�g� For our
purpose here� however� an optimal � is not necessary� but an approximate value is su�cient�
Therefore� we obtain � simply by a greedy method� in the order of j � �� �� � � � �m� let
��j� �� j�� where j� has the maximum value of

jSj  Tj� j

maxfjSj j� jTj� jg
�de�ned as � if jSj j � jTj� j � ��

in f�� �� � � � �mg n f����� ����� � � � � ��j � ��g�
The reference set is initially empty� and updated whenever local search terminates� Let

S� be the obtained locally optimal solution� If there is no reference solution whose distance
from S� is less than min dist ref � then we add S� into the reference set� removing the worst
one if the number of reference solutions exceeds max num ref as a result of this� On the
other hand� suppose that some reference solution has a distance less than min dist ref � If
S � has a penalty value smaller than any of such solutions� they are all removed from the
reference set� and S � is added instead� otherwise� the reference set is unchanged�

Path�Relinking

In SSLS� initial solutions are generated in the same way as MLS for the �rst num initial
runs of local search� while for the subsequent runs� initial solutions are generated by a
method called path�relinking� Path�relinking generates a sequence of solutions� called a
path� from one solution �initiating solution� toward another one �guiding solution�� �In
general� it is possible to consider more than one solution as guiding solutions�� In our
implementation� we �rst choose an initiating solution S � fS�� S�� � � � � Smg and a guiding
solution T � fT�� T�� � � � � Tmg randomly from the reference set� Then� we generate a path
�S��S�� � � � �Sq� by extending it from S� � S to Sq � T � where Sk�� is obtained by applying
a shift operation to Sk �k � �� �� � � � � q� ��� After the choice of S and T � we �nd a mapping
� to measure the distance from S to T � by the greedy method used in the reference set
management� For the current path �S��S�� � � � �Sk� �� � k � q�� let Dk be the set of all
points i � P such that ���Sk �i�� �� �T �i�� To extend the path to Sk��� we apply a shift
operation Shift�i� j� with i � Dk and j � �T �i� so that jDk��j � jDkj�� holds� �Therefore�
the length of the path q is jD�j�� From among such jDkj choices of Shift�i� j�� we choose
and apply the best one in the sense of achieving the minimum penalty�

After the path is generated� �at most� num best best solutions in fS��S�� � � � �Sq��g are
selected as initial solutions of local search�

SSLS terminates when a feasible solution is found or the total computation time exceeds
a prespeci�ed bound� The entire algorithm of SSLS is summarized below�

Scatter Search with Local Search �SSLS�

Input� A feasible solution S�k��� with m � � squares�
Output� A feasible solution S�k� with m squares� or �failure��
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Step 	 �MLS��
Execute local search num initial times in the framework of MLS� updating the ref�
erence set at the end of each local search� If a feasible solution is found during this
process� output it as S�k� and terminate�

Step � �Path�relinking��
If the predetermined computation time is reached� terminate after returning �failure��
Otherwise� choose two reference solutions S and T randomly� and generate num best
initial solutions by the path�relinking�

Step � �Local search and update of reference set��
For each solution generated in Step �� apply local search� If a feasible solution is found�
output it as S�k� and terminate� otherwise update the reference set and return to Step
��

For the computational experiments in Section �� we set num initial � ��� max num
ref � ��� min dist ref � � and num best � �� Although it might be possible to improve
the performance of SSLS by tuning the parameters more carefully� on the other hand� it
is reported in 	�� that how to manage the reference set is not very critical in the use of
path�relinking�

��� Scatter Search with Tabu Search

We also tested scatter search with tabu search �SSTS�� which di�ers from SSLS only in using
tabu search in place of local search in Step � and Step �� In the experiments� we use the
same parameter setting as MTS and SSLS except for letting max iteration � � � jP j�

��� Adaptive Control of Penalty Weights

In preliminary experiments� the performance of our metaheuristic algorithms was observed
to depend on penalty weights wgeo

j and wcap
j � Since their appropriate values may vary from

instance to instance and hence it is di�cult to �nd such values in advance� we incorporate
an adaptive control mechanism of the penalty weights�

At the beginning of the improvement phase� we initialize wgeo
j and wcap

j to one for all
squares Sj � and update penalty weights when a locally optimal solution is obtained �i�e��
when local search terminates in MLS or SSLS� and when the current solution is replaced by
a neighbor with a larger penalty value in MTS or SSTS�� Let S� be the local optimum at
hand� For each S�j � S

�� its weights are updated by

wgeo
j �� wgeo

j

�
� � � �

pgeo�S�j �

pgeomax

�
and wcap

j �� wcap
j

�
� � � �

pcap�S�j �

pcapmax

�
�

where
pgeomax �� max

S�

j
�S�

pgeo�S�j � and pcapmax �� max
S�

j
�S�

pcap�S�j ��

and � � � is a prespeci�ed parameter� �If pgeomax � � �resp�� pcapmax � �� holds� no weight
wgeo
j �resp�� wcap

j � is updated�� The above rule has the e�ect of making it easier for those
constraints violated by S� to be satis�ed in the subsequent search�

The penalty weights are not reset even when local search or tabu search restarts from
another initial solution� In MLS� MTS and in the �rst num initial iterations of SSLS and
SSTS� we generate initial solutions S by removing one square from the current best solution
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S�k���� Penalty weights are de�ned for each square in S�k���� and each S � S inherits
the weights in S�k���� After local search or tabu search terminates and the weights are
updated according to the above rule� the original weights de�ned for S�k��� are replaced by
the updated ones� respectively� �The weights of the square that was removed to generate S
are unchanged��

To prevent the penalty weights from increasing unlimitedly� after local search or tabu
search terminates� we normalize weights wgeo

j �resp�� wcap
j � by dividing by the maximum

weight maxj� w
geo
j� �resp�� maxj� w

cap
j� �� As an exceptional rule� if a weight becomes smaller

than wLB �resp�� greater than wUB� during the computation� we set it to wLB �resp�� wUB�� In
our computational experiments� we use � � ��������� wLB � �������� and wUB � ��������

� Computational Experiments

Our algorithms were coded in C language� The computational experiments were all con�
ducted on a personal computer with Xeon ��� GHz�

For experimental purpose� we generated random instances in which x� and y�coordinates
of points are all integers� chosen from 	�� L � �� uniformly� independently and at random�
where integer L is a parameter�� A side length l of a square is �xed to ���� �We tested only
those instances in which coordinates �xi� yi� and side length l are given by integers� but the
integrality does not restrict generality of instances with real coordinates� See Appendix B
for more details�� Demands di of points i are also integers� randomly chosen from 	�� 
�� Each
instance is de�ned by three parameters� density 	� capacity of a square c and number of
points n� where the density 	 � n�l
L�� is the average number of points that fall into a square
with side length l� We generated an instance for every combination of 	 � f� 
� ��g� c �
fd�	
�e� �	� d��	
�e��g and n � f���� ��� 
��� ����g� Therefore� there are � instances in
total�

We solved the above � instances by the set covering and metaheuristic approaches� In
the set covering approach of Section �� we transformed each instance to the corresponding
SCP instance by using the method given in Appendix A� For each instance� Table � shows
the number of maximal valid subsets enumerated� and the computation time �in seconds�
required for the enumeration� For two instances �	� c� n� � ���� ��� 
��� and ���� ��� ������
the enumeration algorithm did not terminate after �� hours due to a huge number of max�
imal valid subsets� From the Table �� we can con�rm that a higher density 	 increases
the number of maximal valid subsets more signi�cantly for capacitated cases� As for the
tightness of the capacity constraints� we observed that in most cases the number of maximal
valid subsets is largest if capacity c is set to �	� This phenomenon can intuitively be ex�
plained as follows� Let G� denote the collection of sets of � points that satisfy the geometric
constraint ���� �A subset in G� becomes valid if it satis�es the capacity constraint as well��
Since� in our instances� points are distributed uniformly and randomly with density 	� we
can consider that the size of G� becomes maximum at � � 	� and decreases exponentially
as j� � 	j increases� First� let us compare the cases of c � d�	
�e and 	
�� In the former
case� only those subsets with less than around d	
�e points can be valid �notice that the
average demand di of point i is ��� while those with 	 points can be valid in the latter
case� Since jG�j is much smaller than jG�j if � is similar to d	
�e� the number of subsets
enumerated is smaller if c � d�	
�e� On the other hand� if capacity c gets much larger than
	� maximal valid subsets are likely to contain more than 	 points� Since the number of such
subsets� containing many points� are relatively few� the number of maximal valid subsets to

�
These instances are available at http���www�or�amp�i�kyoto�u�ac�jp��yagiura�sqcov��
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Table �� Reduction of CSCP instances to SCP instances
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enumerate decreases� compared to the case of c � 	�
We solved the resultant SCP instances �except those two� by a heuristic algorithm pro�

posed in 	��� with the maximal time limit of ���� seconds� excluding the enumeration time
of maximal valid subsets� This algorithm also gives a lower bound based on the Lagrangian
relaxation� In the metaheuristic approach of Section � we tested the four algorithms in
Sections  and �� MLS� MTS� SSLS and SSTS� for the improvement phase� These four al�
gorithms are all equipped with the adaptive control mechanism of penalty weights �Section
���� For all CSCP algorithms� we also set the computation time bound to ���� seconds�
However� those with MLS and MTS terminate before the time limit expires� when no feasible
solution is found in the last m runs of local search and tabu search� respectively� after the
best solution with m squares is obtained �i�e�� all m initial solutions have failed��

The results are summarized in Tables ��� corresponding to the instances with 	 � � 

and ��� respectively� In these tables� for each instance� we show the results of the set cov�
ering approach �SC� and CSCP algorithms with four di�erent metaheuristics �MLS� MTS�
SSLS and SSTS�� respectively� In each entry� the upper row gives the objective value� and
the lower row gives the computation time required to �nd the best feasible solution �tbest�
and the total computation time �ttotal�� both in seconds� in the format tbest
ttotal� Objective
values in bold face indicate the best result obtained by the �ve algorithms� The tables also
show a lower bound obtained by the set covering algorithm �LB�� and an upper bound ob�
tained by CONSTRUCTION �CON� �construction phase of the CSCP algorithm�� �We do
not list the computation time of CONSTRUCTION� because it took less than ��� seconds
for each instance�� If a lower bound is shown in bold face� it means that the value coincides
with an upper bound� and hence� it gives the optimal value� In the columns of LB and
SC� �� means that we failed to execute the set covering approach because the enumeration
algorithm did not stop within �� hours� or the size of the input data exceeded the memory
limit of the computer�

From the results� we can see that the performance of the set covering approach varies
considerably with the type of instances� It works quite well for those instances with a lower
density 	 or no capacity constraint �i�e�� c � ��� while its performance deteriorates unac�
ceptably as the density becomes higher for moderately tight capacity constraint� for such
cases� it is often impossible even to execute the set covering algorithm�

Compared to the set covering approach� metaheuristic approaches are more robust� We
observe that CONSTRUCTION generates a feasible solution with at most about ��! more
squares than the lower bound� MLS is not powerful enough to �nd solutions of high quality�
but it can be improved by incorporating the components of tabu search and scatter search�
Although a fair comparison between MTS and SSLS is di�cult because their termination
criteria are di�erent� we can observe that MTS �nds better solutions in less computation
time� If the computation time is of less concern� SSTS brings the best results among the
tested algorithms�

Our CSCP algorithms use random bits in the improving phase� In order to investigate
the reliability of the results� we solved each instance �ve times� using di�erent random seeds�
with SSTS� For �� instances �including all with n � ��� out of �� the number of squares
in the output solution is the same for all �ve runs� For other �� instances� the di�erence of
the best and worst objective values of the �ve runs is one� and for the other two instances�
the di�erence is two� This result indicates that our CSCP algorithm is not much a�ected
by di�erent random seeds�
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Table �� Computational results of the set covering approach and the metaheuristic ap�
proaches with four di�erent algorithms� MLS� MTS� SSLS and SSTS �for instances with
density �
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LB Lower bound obtained by set covering approach

SC Set covering approach using the algorithm in reference ����

CON� CONSTRUCTION in Section ��

MLS� CON� � Multi�start Local Search in Section ��

MTS� CON� � Multi�start Tabu Search in Section ���

SSLS� CON� � Scatter Search with Local Search in Section ���

SSTS� CON� � Scatter Search with Tabu Search in Section ���
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Table �� Computational results of the set covering approach and the metaheuristic ap�
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� Conclusion

In this paper� we proposed the set covering and the metaheuristic approaches for the ca�
pacitated square covering problem� In the metaheuristic approach� we prepare an initial
feasible solution by a constructive method� which has an approximation ratio of four in
general� and two for the uncapacitated case� For the improvement phase� we tested four
types of metaheuristics� MLS� MTS� SSLS� and SSTS� each equipped with the adaptive con�
trol mechanism of penalty weights� From the experimental results on randomly generated
instances� we conclude as follows�

� If there is no capacity constraint� or the density of points is low� the set covering
approach performs well�

� For other types of instances� the metaheuristic approach with MTS and SSTS give
good solutions�

� If a relatively large amount of computation time is available� the metaheuristic ap�
proach with SSTS is the best choice among the tested algorithms�

As the best feasible solutions obtained by our algorithms often reach the lower bound� our
algorithm appears to be practically e�ective�
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Appendices

A� Enumeration Algorithm for Maximal Weighted Cliques

In the set covering approach in Section 	� we need to enumerate all maximal valid subsets�
To achieve this� we consider the problem of enumerating all maximal weighted cliques in a
graph with vertex weights�

Let G � V�E� be a graph with vertex set V � f�� � � � � ng and an edge set E �
fe�� � � � � emg� We assume without loss of generality that G is simple and connected� Each
vertex i � V is given a weight wi�� where we assume that wi� � wj� holds for any i � j�
i�e�� the vertices are sorted in the decreasing order of their weights� We denote the sum of
weights of vertices in a vertex set S by wS�� A clique of G is a vertex set K � V such that
any two vertices in K are connected by an edge� For a given constant �� a clique K is called
light if wK� � �� If a light clique is included in no other light clique� we call it a maximal

weighted clique�
For a given CSCP instance� we de�ne graph V�E� by letting V � P and E � fi�� i�� �

P � P j maxfjxi� � xi� j� jyi� � yi� jg � lg� A constant � is given by the capacity c� Then� a
set of points S � V forms a clique in G if and only if it satis�es the geometric constraint ���
If S is a light clique� it satis�es the capacity constraint 
� as well� and hence S is a valid
subset� Therefore� we can enumerate all maximal valid subsets by enumerating all maximal
weighted cliques in V�E�� In this appendix� we describe an algorithm for enumerating all
maximal weighted cliques�

In the existing studies� no output linear time algorithm to enumerate all maximal
weighted cliques is known� where output linear time means that the computation time is
linear in the number of output� and the computation time for each output is polynomial on
average in the input size� For the problem of enumerating maximal cliques without weights��
several algorithms have been proposed by Tsukiyama� Ide� Ariyoshi � Shirakawa��	�� John�
son� Yanakakis � Papadimitriou����� and Makino � and Uno����� The time complexities of
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the algorithms in ��	� ��� are the same� but the algorithm in ���� enumerates maximal cliques
in a lexicographic order with the use of memory up to the size of output� The algorithms
in ���� is an improved version of the algorithms in ��	� ���� so that it runs faster for dense
graphs and sparse graphs�

Our algorithm to enumerate all maximal weighted cliques is motivated by the algorithm
of Makino and Uno����� and we describe only the points di�erent from �����

For a vertex set S and a vertex i� let S�i � S � f�� � � � � ig� For two vertex sets X and
Y � we say X is lexicographically larger than Y if the smallest vertex in X n Y � � Y nX�
is contained in X � Let xS� denote the characteristic vector of a vertex set S� i�e�� the i�th
element xiS� of xS� is � if i � S� and �� otherwise� Then� X is lexicographically larger
than Y if and only if xX� is lexicographically larger than xY �� i�e�� there exists i � V
such that xjX� � xjY � for all j � i� and xiX� � xiY ��� For a light clique K� let CK�
denote the lexicographically largest light clique containing K� We note that CK� is always
a maximal weighted clique�

Let K� denote the lexicographically largest maximal weighted clique� For a maximal
weighted clique K 	� K��� we de�ne the parent P K� of K by CK�i��� such that i is the
minimum vertex satisfying CK�i� � K� Such a vertex i is called the parent vertex� and
denoted by iK�� We note that the parent vertex is always included in K� We can observe
that K�i�K��� 
 P K��i�K���� thus P K� is lexicographically larger than K� Therefore�
this parent�child binary relation P K��K� on maximal weighted cliques is acyclic� and
forms a tree rooted at K�� We call this tree the enumeration tree for maximal weighted
cliques of a graph G� vertex weight w� and constant ��

By traversing the enumeration tree in a depth��rst search manner starting from K�� we
can visit all maximal weighted cliques� To operate the depth��rst search without storing
the whole enumeration tree� we generate the children of a vertex only when it becomes
necessary and eliminate the information of a vertex when depth��rst search backtracks from
the vertex� In the following� we explain the way to generate the children of the current
maximal weighted clique�

Let K be a maximal weighted clique� For a vertex i 	� K not adjacent to all vertices
in K�i� we de�ne K�i� by CK�i � �i�� � fig�� where �i� � fj � V j i� j� � Eg� Since
there is a vertex j � K�i n �i�� which satis�es wi� � wj� from i � j� we can see that
K�i � �i� � fig is a light clique� and K�i� is well de�ned�

For a vertex i 	� K adjacent to all vertices in K�i and a vertex j � K� j � i� we de�ne
K�i� j� by CK�i � fig n fjg�� Since wi� � wj� holds� we can see that K�i � fig n fjg is a
light clique� and K�i� j� is well de�ned�

Lemma � For two maximal weighted cliques K and K �� K � is a child of K only if K � �
K�iK ��� holds or K � � K�iK ��� j� holds for some j�

Proof� Suppose that K � is a child of K� Then� K � CK �
�i�K����� for which K �

�i�K���� 


K�i�K���� holds� Let j be the minimum vertex in K nK �� Then� we consider the following
two cases�

�� j is not adjacent to iK ��� In this case� we claim that no vertex in K�i�K�� nK
� is

adjacent to iK ��� Under this claim� K�i�K����iK
�����fiK ��g is equal to K �

�i�K�� since

K �
�i�K���� 
 K�i�K����� hence K

� � K�iK ����

To prove the claim by contradiction� suppose that a vertex j� � K�i�K�� nK
� is adjacent

to iK ��� Then� we have � � wK� � wK �
�i�K����wiK ��� �wj� �wj��� This together

with wiK ��� � wj�� we have wK �
�i�K�� � fj

�g� � �� Since j� is adjacent to all vertices in

K� j� is adjacent to all vertices in K �
�i�K�� since K

�
�i�K���� 
 K�i�K����� This implies that
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K �
�i�K�� � fj

�g is a light clique including K �
�i�K��� This contradicts that CK

�
�i�K��� � K ��

i�e�� K � is the lexicographically largest light clique including K �
�i�K���


� j is adjacent to iK ��� Then� fromK �
�i�K���� 
 K�i�K����� j is adjacent to all vertices

in K �
�i�K��� Since CK �

�i�K��� � K � does not include j� we have wK �
�i�K��� � wj� � ��

Thus� for any vertex j� � i� wK �
�i�K������wj��wj�� � wK �

�i�K����wiK ����wj��

wj�� � �� This means that K�i�K�� n K
� includes no other vertex than j� Therefore�

K�i�K�� � K �
�i�K���� � fjg� and we have that K � � K�iK ��� j��

From the lemma� we can see that the following algorithm computes the children of a
maximal weighted clique K by evaluating at most jV j� candidates�

�� For each K � � K�i� or K�i� j� do


� If P K �� � K then output K �

Since� for any light clique S� CS� can be computed in OjV j � jEj� time by augmenting
S repeatedly� each of K�i� and K�i� j� can be constructed in OjV j � jEj� time� Given the
parent vertex of K �� we can construct its parent P K �� in OjV j� jEj� time� and hence we
can check in OjV j� jEj� time whether P K �� � K holds or not� The computation time for
generating all children is then OjV j�jV j � jEj�� � OjV j�jEj�� Therefore� we obtain the
following theorem�

Theorem � For a given graph G � V�E�� a vertex weight w and a constant �� all maximal

weighted cliques can be enumerated in OjV j�jEj� time for each�

In practical computation� the input graph is often sparse� We here consider the time
complexity with respect to the maximum degree � of G�

Suppose that a child K � of K satis�es K � � K�iK ���� According to ����� if K�i�K�� �
�iK ��� � �� then P K �� � K� holds in the case that K �

�i�K���� � �� and K �
�i�K���� 	�

K�i�K���� holds otherwise� It implies that K is not the parent of K � if K 	� K�� Thus� for a
maximal weighted clique K 	� K�� K

� � K�iK ��� is a child ofK only if K�i�K����iK
��� 	�

�� Since jKj � �� �� at most �� � �� vertices satisfy K�i�K�� � �iK ��� 	� ��

Suppose that a child K � of K does not satisfy K � � K�iK ���� Then� from Lemma ��
K � � K�iK ��� j� holds for some j � K� and iK �� is adjacent to all vertices in K�i�K�����
Hence� the number of such pairs of i and j is at most �� � ���

Since we can construct CS� in O��� time for any light clique S� we obtain the following
lemma�

Lemma � We can enumerate all children of a given maximal weighted clique other than

K� in O��� time�

From the lemma� we obtain the following theorem�

Theorem � We can enumerate all maximal weighted cliques in O��� time for each� with

OjV j�jEj� preprocessing time�

We note that the additional OjV j�jEj� time is the computation time to �nd children of
K��
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B� Scaling Input Data to Integers

Given n points x�i� y
�
i� i � �� 
� � � � � n� in the plane and a real number l� � �� where x�i

and y�i are real numbers� we consider the problem of mapping those points x�i� y
�
i� and l� to

nonnegative integer points xi� yi� i � �� 
� � � � � n� and a positive integer l� respectively� so
that

x�j � x�i � l� � xj � xi � l� �i� j� ��

y�j � y�i � l� � yj � yi � l� �i� j� ��

and l is the minimum�
Note that constraints �� and �� assure that

maxfjx�i � x�j j� jy
�
i � y�j jg � l� � maxfjxi � xj j� jyi � yj jg � l� �i� j�

Therefore� the CSCP instance with the mapped points xi� yi� and l is equivalent to the
instance with the original data�

For a �xed integer � � �� we �rst consider the problem P�� of �nding an integer solution
x � xi j � � i � n� that satis�es �� with l � �� Without loss of generality� we assume that
n � 
 and x�� � x�� � � � � � x�n hold� In this case� we can also assume that x� � x� � � � � � xn
holds monotonicity�� because if there is a solution to P��� say �x � �xi j � � i � n�� then
so is x� � maxf�x�� �x�� � � � � �xig j � � i � n�� which satis�es monotonicity� Suppose that
x�j � x�i � l� holds� Let x�j be given by �xk � where � � k � j� Then� x�k � x�i � l� and thus
�xk � �xi � � holds by assumption� which implies that x�j � x�i � �xk � �xi � �� Similarly� we
can show that x�j �x�i � l� � x�j �x�i � � holds for any i and j� Therefore� x� is a solution
to P��� Then� P�� is formulated as the following integer linear system�

P�� xk�i��� � xi � �� �� �i with ki� � � � n�

xk�i� � xi � �� �i with ki� � i�

xi � xi��� � � i � n�

xi � nonnegative integer� � � i � n�

where ki� � maxfj j x�j � x�i � l�g� For this� we de�ne a directed network N�� as follows�

� Node set V � f�� � � � � ng�

� Arc set A � Af � Ab � Aa� where Af � fi� ki� � �� j � � i � n� ki� � � � ng�
Ab � fki�� i� j � � i � n� ki� � ig and Aa � fi� i� �� j � � i � ng�

� Length of arc di� j� �

��
�

��� ��� if i� j� � Af �
�� if i� j� � Ab�
�� if i� j� � Aa�

It is easy to see that if N�� has a cycle of negative length called a negative cycle�� then
P�� has no solution� On the other hand� suppose that N�� has no negative cycle� Then�
N�� has a shortest path from node � to each i � � i � n�� whose length disti� is a
non�positive integer� and distj� � disti� � di� j� holds for any i� j� � A� This implies
that x � �disti� j � � i � n� gives a solution to P��� Therefore� we can either conclude
that P�� is infeasible� or �nd a solution x to P�� in On

�� time by applying an appropriate
shortest path algorithm e�g�� the label�correcting algorithm ���� to N���

Next� we show that P�� is always feasible for � � bn� ���
c� i�e�� Nbn� ���
c� has
no negative cycle� To prove this� we �rst claim that� for a su�ciently large integer �� such
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that �� � 	l��� ��� where � � minfx�j � x�i � l� j � � i � n� j � ki� � � � ng� network N���

has no negative cycle� This claim is true because x � b��x�i�l
�c j � � i � n� is a solution to

P����

Now let C be any simple cycle in N�� containing mf � �� arcs in Af and mb � ��
arcs in Ab� Then� mf must be smaller than mb� since otherwise the length of C� mb�� ��

��mf � mb �mf ���mf � becomes negative for any � in particular for � � ���� which is a
contradiction� Since the number of arcs in Af �Ab contained in C� mf �mb� is at most n�
mf � mb implies mf � bn � ���
c� and hence the length of C is at least � � bn� ���
c�
This bound is tight� Figure 
 shows a network having a cycle of length � � bn � ���
c��
Therefore� if we set � � bn � ���
c� network N�� has no negative cycle� and hence P��
has a solution� Furthermore� if P��� has a solution� then so does P���� for any ��� � ���
because the length of any simple cycle on N�� is nondecreasing in ��

Since the argument above applies to the problem of �nding y for a �xed l� a solution
x�y� l�� with the minimum integer l� can be obtained in On� logn� time by using a binary
search between � � l � bn � ���
c� Recall that� for a �xed l� we can identify a solution
x�y� l� in On�� time��

��� ��

��� ��

�

�

�
� 
 n

Figure 
� An example of network N�� with a cycle of length �� bn� ���
c�
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