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EXISTENCE OF PERIODIC MINIMIZERS FOR A CLASS OF
INFINITE HORIZON VARIATIONAL PROBLEMS

ALEXANDER J. ZASLAVSKI

Abstract: In this paper we study infinite horizon variational problems arising in continuum mechanics and
establish the existence of a periodic minimizer.

Key words: good function, infinite horizon, periodic minimizer

Mathematics Subject Classification: /9J99

Introduction

The study of variational problems and optimal control problems defined on infinite intervals
has recently been a rapidly growing area of research. These problems arise in engineering [1,
2], in models of economic growth [9, 10, 16, 17, 22, 23], in infinite discrete models of solid-
state physics related to dislocations in one-dimensional crystals [3, 18] and in the theory of
thermodynamical equilibrium for materials [5, 8, 12-15, 19-21].

In this paper we consider the following problem on the half line:

. . 1 T
mf{thl)lOI})fT /0 Flw(®), w' (8),w" (#)dt - w € AI}, (P.)

where
w e A, = {v e W20, 00): (v(0),v'(0)) = z}.

loc

Here W,2!([0,00)) € C' denotes the Sobolev space of functions possessing a locally inte-
grable second derivative and f belongs to a space of functions to be described below.

The interest in variational problems of the form (P.,) stems from the theory of thermo-
dynamical equilibrium for second-order materials developed in [5, 8, 11, 12].

Denote by 2 the set of all continuous functions f: R — R such that for each N > 0 the
function |f(z,y,z)| — oo as |z| = oo uniformly on the set {(z,y) € R?: |z|,|y| < N}. For

the set 20 we consider the uniformity which is determined by the following base
E(N,e,T) = {(f,9) € A x A : (L1)
|f(z1,22,73) — g(71, 72, 23)| < € (z; € R, |z;| <N, i =1,2,3),
(1f (@1, 22,23) + 1) (|g(er, 22, 23)| + 1)~ € [[7,T]
((z1,22,23) € R®, 21|, 22| < N)},
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where N > 0, ¢ > 0,T > 1 [6]. Clearly, the uniform space 2 is Hausdorff and has a countable
base. Therefore 2( is metrizable (by a metric p). It is easy to verify that the uniform space
2 is complete.

Let a = (a1,a2,a3,a4) € R, a; > 0 (i = 1,2,3,4) and let «, 3, v be positive numbers
such that 1 < 8 < a, f <7,y > 1. Denote by M(a, 3,7, a) the set of all functions f € A
such that:

flw,p,r) > a|w|® — a2|p|’8 +az|r|” — a4, (w,p,r) € R3: (1.2)

f, 0f/0p e C?, 8f/or € C*, 8*f/0r*(w,p,r) > 0 for all (w,p,r) € R?; (1.3)

there is a monotone increasing function My : [0,00) — [0, 00) such that for every (w,p,r) €
R3

sup{f(w,p,r), [0f/0w(w,p,r)l, |0f/Op(w,p,r)l, |0f /0r(w,p,r)[}
< My(lw| + ph(X + |r|7). (1.4)

Denote by M(a, 3,7v,a) the closure of M(a, 3,7,a) in A. Leizarowitz and Mizel [8]
and Coleman, Marcus and Mizel [5] considered problems of type (P~) with integrands
f € M(a, B,7,a) in order to study certain models in in the theory of thermodynamical
equilibrium for materials. For these models integrands f have the minus signs in (1.2). A
typical example is an integrand

f(w7p> T) = 1/)(’LU) - bp2 + 01“2; (’U},p, T) € R3)
where b, ¢ are positive constants and 1 (-) is a smooth function satisfying
Y(w) > alw|* —d, we R

for some a > 2, a,d > 0 [8, Section 6].

Consider any f € M(a, B,7,a). Since (1.2) has negative terms the function f can be
unbounded. Nevertheless, as it was shown in [14, Lemma 2.2] the corresponding integral
functional is bounded from below on any bounded interval. Of special interest is the minimal
long-run average cost growth rate

T
u(f) = inf {lim inf Tfl/0 Flw(t),w'(t),w" (t))dt: w € AI} ) (1.5)

T—+oco

Using the boundedness from below of the integral functional it is not difficult to verify that
pu(f) is well defined and is independent of the initial vector . A function w € W10, 00) is

called an (f)-good function if the function ¢ : T — fOT[f(w(t), w'(t),w"(t)) — p(f)ldt, T €
(0, 00) is bounded. For every w € W;>'[0, 00) the function ¢/ is either bounded or diverges

to +00 as T'— 400 and moreover, iflogzcﬁfu is a bounded function, then sup{|(w(t),w’(¢))|: t €
[0,00)} < oo [20]. This fact is a continuous version of a result by Leizarowitz [7] established
for discrete time control systems. Its proof is based on the result of Leizarowitz [7] applied
to a function U% which is defined below.

Leizarowitz and Mizel [8] established that for every f € M(a, B, 7,a) satistying p(f) <
inf{f(w,0,s): (w,s) € R?} there exists a periodic (f)-good function. In Zaslavski [19] it
was shown that this resut is valid for every f € 9M(a, 3,7,a). In this paper we generalize
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the main result of [19] and establish the existence of a periodic (f)-good function for any
fe Dﬁ(a,ﬂ,’],a).
Let f € M(a, B,7,a). For each T > 0 define a function UJ: R? x R — R by

T
Ul (z,y) = inf {/0 flw(t),w' (t),w" (t)dt: w € Ag’y} , (1.6)

where
Al = {v e W>'[0,T]: (v(0),v'(0)) =z, (v(T),v'(T)) =y} (1.7)

In [8], analyzing the problem (Ps) Leizarowitz and Mizel studied the function U%:
R?2 x R?> - R, T > 0 and established the following representation formula

Ul(z,y) = Tu(f) + © (x) — 7/ (y) + 04(2,y), z,y € R*, T >0, (1.8)

where 7. R?> - R and (T, z,y) — 9§(m,y), x,y € R?, T > 0 are continuous functions,

T
7 (z) = inf {lim inf [ [flw(t),w (t),w"(t)) — u(f)]dt: w € Aw} , T € R?, (1.9)

T— o0 0

Gé(m,y) > 0 for each T' > 0, and each z,y € R?, and for every T > 0, and every z € R?
there is y € R? satisfying 6/.(z,y) = 0.

Leizarowitz and Mizel established the representation formula for any integrand f €
M (a, 3,7, a), but their result also holds for every f € M(a, 3,7,a) without change in the
proofs.

In this work we establish the following result.

Theorem 1.1. Let f € M(a, B,7,a). Then there exist an (f)-good function vy € W70, 00)
and Ty > 0 such that vy (t +Ty) = v(t) for each t > 0. Moreover, if

p(f) <inf{f(¢,0,0): t € R},

then there is Tro € (0,T) such that vy is strictly increasing in [0, Tro] and strictly decreasing
m [Tfo, Tf]

The existence of a periodic (f)-good function is a a central problem in the theory of ther-
modynamical equilibrium for second-order materials developed in [5, 8, 11, 12]. Our main
result, Theorem 1.1, establishes the existence of periodic (f)-good functions and describes
their structure for integrands f belonging to the space 9M(a, 3,7v,a) which is essentially
larger than the space 9M(«, 3,7v,a). The full description of integrands belonging to the
space M(a, 3,7, a) was obtained in [24]. The space M (a, 3,7, a) contains integrands which
are not smooth. It should be mentioned that in [8, 19] the proofs of the existence of periodic
(f)-good functions for integrands f € 9M(«, 5,7, a) are strongly based on the smoothness of
the integrands. In [20] we established that there exists a set F C 9M(a, 3,7, a) which is a
countable intersection of open everywhere dense subsets of 9(a, 3,7, a) such that for each
f € F the following turnpike property holds:

There exists a nonempty compact set H(f) C R? such that for each (f)-good function v

H(f)={z € R?: there is a sequence {t;}32, C (0, 00)
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which satisfies lim ¢; = co and lim (v(¢;),v'(t;)) = z}.
11— 00 12— 00

Now it follows from Theorem 1.1 that for any f € F,

H(f) ={(w(t),w'(t)) : t€[0,00)},

where w is a periodic (f)-good function.

Proof of Theorem 1.1

We preface the proof of our main result with the following explanation.
Assume that f € M(a, B,7,a). Then there exists a sequence

{fn};z.ozl C m(aaﬂv’%a)
such that
lim f, = fin 2.
n—oo

By the result of [19] for each natural number n there exists a periodic (f,)-good function w,
with a minimal period 7,,. We will show that if the sequence of {7,}22, is bounded, then a
subsequence of {w,}>°; convreges to a periodic (f)-good function. If the sequence {7, }2>
is unbounded, then a subsequence of {w,}22 ; will converges to a constant function which
will be (f)-good.

We denote by |- | the Euclidean norm in R™. For 7 > 0 and v € W0, 7] we define
X,: [0,7] = R? as follows:

Xo(t) = (v(t),0' (1)), t € [0,7]. (2.1)

We also use this definition for v € W,2'[0, 00).

loc
We consider functionals of the form

1>
(T, Toyw) = ; Flw(t),w'(t), w"(t))dt (2.2)

where —oo < T} < To < +o0, w € W?[Ty,Ty] and f € M(«, B,7, a).
The following result was established in [21, Proposition 5.2].

Propostion 2.1. The function f — u(f) is continuous for f € M(a, B,7,a).
Corollary 2.1. If f € M(a, B,7,a) and

u(f) <inf{f(s,0,0): s € R},
then there exists a neighborhood U of f in M(a, 3,7, a) such that for each h € U,
u(h) < inf{h(s,0,0) : s € R}.
We set for simplicity
M = M(a, B,7,a), M=M(a, 3,7,a).

The following four results were establsihed in [21].
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Propostion 2.2. [21, Proposition 5.3.] Asuume that f € M, {fr}s, C M, {T}32, C
(0,00), T >0, {wi}52, C Wi [0,00), fr = f in M, Ty = T as k — o0, wi(t+Tk) = w(t)
for allt € [0,00), k=1,2,...,

Ifk(oaTkawk) ::U’(fk)Tka k= 1727""

Then there exist T > 0 and w € W10, 00):

loc
w(t+7) = w(t) for all t € [0,7); I7(0,7,w) = Tu(f);
if T >0 thent=T;if T =0, then w(t) = w(0) for all t € [0,00).

Proposition 2.3. [21, Proposition 5.1.] Let f € 9. Then there exist a neighborhood U of
f in MM and a number S > 0 such that for every g € U and every (g)-good function v,

| X, (t)] < S for all large enough t.

Proposition 2.4. [21, Proposition 3.2.] Let f € M, 0 < c; < ca < 00, c3 > 0, e € (0,1).
Then there exists a neighborhood V' of f in 2 such that for every g € VNI, every T € [c1, 2],
and each z,y € R? satisfying |x|, |y| < c3, the inequality |U%(a:,y) — Ul (z,y)| < € holds.

Proposition 2.5. [21, Proposition 3.1.] Let f € M, 0 < ¢; < ¢z < 00, €>0, D >0. Then
there exists a neighborhood V' of f in 2 such that for every g € VNI, every T € [c1, 2],
and every w € W10, T] satisfying

min{I7(0,T,w), (0, T,w)} < D

the inequality
|I7(0, T, w) — I9(0, T, w)| < €

holds.
We also need the following result (see [14, Lemma 3.1]).

Proposition 2.6. Let f € M. Assume that w € W' [0,00), T > 0,

loc
w(t+ 1) =w(t), t €]0,00), 1700, 7, w) = Tu(f),

w(0) = inf{w(t): t € R}, and w'(t) # 0 for somet € R.

Then there ezist 1 > 0, 7o > 71 such that the function w is strictly increasing in [0, 7], w
is strictly decreasing in [11,72], and

w(m) =sup{w(t) : t € [0,00)}, w(t + 1) =w(t), t € R.

1

Proposition 2.7. Let f € 9. For each z € R? there exists w € I/Vfoc [0,00) such that

(w,w")(0) = 2, the set {(w,w')(t) : t € [0,00)} is bounded and for each s >0,

(0, 5,w) = sp(f) + 7! (X (0)) = 77 (X (s))-
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For the proof see Propositions 1.2, 1.3 in [15]. There the result was proved for f € M
but it can be easily extended for f € 9.

Propostion 2.8. Let f € M, w € T/Vlicl[O, 00),
U$(X0(0), Xoo(T)) = I (0, T, w)
for each T > 0, the set {X,,(t) : t € [0,00)} is bounded. Then w is (f)-good.

Proposition 2.8 follows from Proposition 2.7 by a simple modofication of the proof of
Lemma 2.6 of [14].

Lemma 2.1. Let f € M. Assume that u € I/VlQOC1 [0, 00),

U/ (X.(0), Xu(t)) = I7(0,t,u) for any t > 0, (2.3)
sup{| X, (t)| : t €[0,00)} < o0 (2.4)

and
either u'(t) > 0 for all t € [0,00) or u'(t) <0 for all t > 0. (2.5)

Then p(f) = inf{f(¢,0,0) : t € R'}.
Proof. Clearly w is either increasing on [0, 00) or decreasing on [0,00) and there is

dy = tllglo u(t) (2.6)

which is finite by (2.4). For each integer i > 1 define u; € W20, 00) by
u;(t) =u(t+1i), t > 0. (2.7)

It follows from (2.7), (2.4), (2.3) and the continuity of U%(T > 0), that for each natural
number n > 1 the sequence {I7(0,n,u;)}$°; is bounded. Combined with (2.4) and (1.2)

1=

this implies that for each natural number n
sup{ [ ful (Ot s i =1,2,...} < . 25)
0

(2.8) and (2.4) imply that there exist a subsequence {u;, }3>, and u, € W27[0,00) such
that for any natural number n

(wiy (t), w5, () = (ua(t),u(t)) as n — oo uniformly in [0, n], (2.9)

ug, — uy as k — oo weakly in L7[0,n]. (2.10)
(2.9), (2.6) and (2.7) imply that

u.(t) = do, t € [0, 00). (2.11)
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By the lower semicontinuity of integral functionals [4], (2.7), (2.3), (2.9), (2.10) and the
continuity of U/ for any natural number n

I7(0,n,u,) <liminf I7(0,n,u;,) = liminf U7 (X,, (0),X,, (n))
k—o0 k—o0 k k
= UT{(Xu* (0): Xu, (n))
and
I7(0,n,u,) = UL (X, (0), X, (n)). (2.12)
Proposition 2.8, (2.12) and (2.11) imply that f(dp,0,0) = u(f). The lemma is proved.
Lemma 2.2. Let f € 9N,

u(f) <inf{f(s,0,0): s € R} (2.13)
{fa, CM, fr— f asn— oo in M,

and
p(fn) <inf{f,(5,0,0): s€ R'}, n=1,2,.... (2.14)

Assume that for each natural number n > 1,

Wy, € VVlQOCI[O, 00), Tn >0, 0 < Tno < Ta, (2.15)
w,(t+70) = wa(t), t € [0,00), I7(0, 7, wn) = ()T, (2.16)

wy, is increasing in [0, T,o] and decreasing in [Tno,Tn].
Then
sup{r,: n=1,2,...} <

and there ezist a strictly increasing sequence of natural numbers {ny}3>,, number 0 < 7o < T
and w € W21 [0, 00) such that

loc

7= lim 7, , 70 = lim 7,,0,
k—o00 k—o00

w(t +7) =w(t), t €[0,00), I(0,7,w) = u(f)r,
w is strictly increasing in [0,70] and strictly decreasing in [1o,T] and for any integer j > 0,
!

wh, (t) = w'(t), wn, (t) = w(t) as k — oo uniformly in [j,j + 1],

Nk

w,  — w" weakly in L"[j,j + 1] as k — oo.
Proof. By Proposition 2.3, (2.16) and (2.13)
sup{|(wn(t),w, (t))| : t €[0,00), n =1,2...} < oco. (2.17)
(2.17) implies that for each 7' > 0

sup{|US(Xuw, (5), Xu, (s + T))|: s >0, n=1,2,...} < c0. (2.18)
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(2.17), the relation lim,,_,~ f» = f and Proposition 2.4 imply that for any 7' > 0
UL (X, (5), X, (5 + T)) = Ut (X, (8), X, (5 + T))| = 0 as n — oo (2.19)

uniformly in s € [0, 00). It follows from (2.16), (2.19), (2.18) and (2.17) that for each 7" > 0
the set
{I' (5,5 +T,wy,): s€[0,00), n=1,2,...} =

{UF (Xw,(8), Xu, (s +T)) : s€[0,00), n=1,2,...}

is bounded. Combining with the relation lim, . f, = f and Proposition 2.5 this fact
implies that for any 7" > 0

[T/ (5,5 + T,w,) — I’ (s,5 + T,w,)| = 0 as n — oo (2.20)
uniformly in s € [0, 00) and
{I7(s,s +T,w,): s€[0,00), n=1,2,...} < 0. (2.21)

We willl show that
sup{r,: n=1,2,...} < 0.

Assume the contrary. Then
sup{r,: n=1,2,...} = 0.
Then one of the following cases holds:
a) sup{mo: n=1,2,...} =00, b) sup{r, —Tno: n=1,2,...} = co. Consider the case
a). By the lemma assumptions,
wh(t) >0, t€[0,7n], n=1,2,... (2.22)

We may assume without loss of generality that

lim 7,0 = oo. (2.23)

n— oo

It follows from (2.21), (2.17) and the growth condition (1.2) that for each T > 0
s+T
sup{/ lwy (8)[7dt : s € [0,00), n =1,2,...} < o0.

By this inequality and (2.17) there are a subsequence {w,, }52, and w € W?7[0,00) such
that for any 7" > 0

(wn,, (t),wy,, (1) = (w(t),w'(t)) as k = oo (2.24)
uniformly on ¢ € [0,T] and

w, — w" weakly in LY[0,T] as n — oc. (2.25)
By (2.24), (2.22) and (2.23)

w'(t) > 0 for all ¢ > 0. (2.26)
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By (2.24), (2.25) and the lower semicontinuity of the integral functionals, (2.20), (2.16),
(2.19) for each 71 > 0, 7 > 1,

If(Tl,TQ,U)) S limianf(Tl,Tg,U)nk)
k—o0

= hknilor.}f Ifnk (Tl » T2, wnk) = h&gf Uvj;nfﬁ ((wnk (Tl)v w;bk (Tl))a (wnk (7_2)) w;uc (T2)))

=lminf U7, (wn, (1), W, (1)), (i (72), w0}, (72))-

By these relations, (2.24) and continuity of U%, T >0foreach 7y > 0,75 >m

If (Tla T2, w) < hkrglogf U-:);—-rl ((wnk (Tl)v w;k (Tl))a (wnk (T2)7 w;k (TQ)))

= UL_, (w(n),w'(n)), (w(rz),w'(12))).
Thus

I (r,m,w) = UL, (w(m),w' (1)), (w(72), w' (12))) (2.27)
for each 7 > 0, 72 > 1. By (2.24), (2.17),
sup{|Xw(t)| : t €]0,00)} < 0. (2.28)
(2.27), (2.28), (2.26) and Lemma 2.1 imply that
p(f) = inf{f(t,0,0): t € R'},
a contradiction. Therefore the case a) does not hold and
sup{rno: n=1,2,...} < 0.
Analogously we can show that the case b) does not hold and
sup{rn, —Tho: n=1,2,...} < 0.
Thus
sup{rn,: n=1,2,...} < 0. (2.29)

Extracting a subsequence and re-indexing we may assume without loss of generality that
there exists

7= lim 7,. (2.30)

n—oo

We will show that 7 > 0. Indeed assume that 7 = 0. By (2.17) there is a constant co > 0
such that

|wn (t2) — wn(t1)| < colta — ]

for each t1,t2 € R and each natural number n. Combined with (2.16) this implies that for
each natural number n

max{wy,(t) : t €[0,00)} —min{w,(t): ¢t € [0,00)} < cor, = 0 as n — 0.
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Together with (2.24) this implies that w is a constant and u(f) = inf{f(¢,0,0) : ¢t € R}, a
contradiction. Therefore 7 > 0. By (2.21), (2.17) and the growth condition (1.2), for each
T>0

s+T
sup{/ lwl! ()|7dt : s € [0,00), n =1,2,...} < 0.

By this inequality and (2.17) there are a subsequence {w,, }?>, and w € W?7[0,00) such
that for any 7" > 0

(Wn, (2),w0;,, (1)) = (w(t),w'(t)) as k — oo (2.31)
uniformly on ¢ € [0,7] and
w, — w" weakly in LY[0,T] as n — ooc. (2.32)

By (2.31), (2.32) and the lower semicontinuity of the integral functionals [4], (2.20), (2.16),
(2.19) for each 71 > 0, 7 > 1,

If(Tl,TQ,’LU) < limianf(Tl,Tg,wnk) = lim inf I (T1, T2y Why, )

k—o0 k—o0

= lim inf ULt (W (1), ), (7)), (0, (72), W), (72)))

= liminf U,y (W (1), 0, (71)), (wny (72), 0], (72)))-
By these relations, (2.31) and continuity of U%, T>0foreach >0, >1
(1,72, w) < lim inf UL,y (@ (1) w0, (11)), (i (72), 0}, (72)))
= UL, (w(m), 0 (1)), (w(72), v (72))).
Thus
(r,m,w) = UL, (w(n),w' (1)), (w(r2),w'(12))) (2.33)
for each 7 > 0, » > 7. By (2.31), (2.17),
sup{|Xw(t)| : t €[0,00)} < 0. (2.34)
(2.30), (2.31), (2.16) imply that for each t € [0, c0)
w(t+71) = leH;o w(t+71n,) = klin;o Wpy (E+ Ty ) = klin;o W, (t) = w(t)
and
w(t +7) = w(t) for all ¢t € [0, 00). (2.35)
(2.35), (2.33) imply that w is an (f)-good function and
170, 7,w) = Tu(f). (2.36)
We may suppose extracting a subsequence and re-indexing, if necessary, that there exists

To = lim 7,,0.
k—o0
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By (2.31) and the lemma assumptions,
w'(t) > 0 for any t € [0,79), w'(t) <0 for any t € (79, 7).

Since p(f) < inf{f(¢,0,0) : t € R} we conclude that 7o € (0,7), w is strictly increasing in
[0, 70] and strictly decreasing in [ro, 7]. This completes the proof of the lemma.

Completion of the proof of Theorem 1.1. If u(f) = inf{f(s,0,0) : s € R}, then the assertion
of the theorem is valild. Therefore we may assume without loss of generality that

u(f) <inf{f(s,0,0): s € R}. (2.37)
There exists a sequence {f,}22; C 9 such that

lim f, = fin 2.

n—oo

By Corollary 2.1 we may assume without loss of generality that for each natural number n
p(fn) < inf{f,(s,0,0): s € R'}. (2.38)

Let n > 1 be a natural number. By the main result of [19] there exist a periodic (f,)-good
function w,, € WQ’I[O, o0) and 7 > 0 such that

loc
wn(t +7) = w,(t), t €[0,00), I7(0,7,w,) = pu(fn)T.
We may assume without loss of generality that
wp(0) = inf{w,(0) : ¢t € [0,00}.

(Otherwise we consider a translation of w). By (2.38) w, is not a constant. Now we can
see that all the assumptions made in Proposition 2.6 hold with the integrand f,, and the
periodic function w,,. Therefore, by Proposition 2.6 there exist

Tn >0, 0< Tho < Tn

such that
wn(t + Tn) = wn(t)7 t E [0’ OO), If(O,Tn,’wn) = /’L(fn)Tna

wy, is increasing in [0, 7,0] and decreasing in [T,0,7,]. Now we can easy to see that all
the assumptions made in Lemma 2.2 hold. Therefore, by Lemma 2.2 there exist numbers
0< 7 <7andw e W2'0,00) such that

loc
w(t+ 1) =w(t), t € ]0,00), 1700, 7, w) = p(f)T,

w is strictly increasing in [0, 7p] and strictly decreasing in [rg,7]. This completes the proof
of the theorem.
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