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Abstract� A numerical method for solving the H� synthesis problem is presented� The problem is posed as

an unconstrained� nonsmooth� nonconvex minimization problem� The optimization variables consist solely

of the entries of the output feedback matrix� No additional variables� such as Lyapunov variables� need to

be introduced� The main part of the optimization procedure uses a line search mechanism where the descent

direction is de�ned by a recently introduced dynamical systems approach� Numerical results for various
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� Introduction

The H� synthesis problem involves �nding an output feedback control matrix K that min�
imizes the H� norm of a certain transfer function� subject to the constraint that K is
stabilizing� This is a challenging problem and even �nding a stabilizing K can be di��
cult� Indeed� if the entries of K are restricted to lie in prescribed intervals� then �nding a
stabilizing K is an NP�hard problem ����

Existing numerical methods for the H� synthesis problem are often based on �rst refor�
mulating the problem into one involving linear matrix inequalities �LMIs	 and an additional
nonconvex rank constraint or nonconvex equality constraint� Numerical methods for such
reformulations of the problem include those based on linearization �
�� ����� ���� alternating
projections ����� ����� ���� augmented Lagrangian methods ���� ���� ����� ���� and sequential
semide�nite programming �����

The H� synthesis problem can also be reformulating into a problem involving bilinear
matrix inequalities �BMIs	� Numerical methods for such reformulations of the problem
include ����� ����� �� and ���� See also the references therein�

A disadvantage of these approaches is that they require the introduction of Lyapunov
variables� As the number of Lyapunov variables grows quadratically with the number of state
variables� the total number of variables can be quite large and even problems of moderate
size can lead to numerical di�culties ���

In this paper the H� synthesis problem is posed as an unconstrained� nonsmooth� non�
convex minimization problem� The optimization variables for this reformulation consist
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solely of the entries of the output feedback matrix K and no additional variables� such as
Lyapunov variables� need to be introduced� The approach taken to solve this problem is
based on using the recently developed global optimization algorithm presented in ��� and
���� This optimization algorithm uses a line search mechanism where the descent direction
is de�ned via a dynamical systems approach� It can be applied to a wide range of functions�
requiring only function evaluations to work� In particular it does not require gradient �or
gradient like	 information and hence it is well suited to optimizing our reformulation of the
H� synthesis problem�

Similar approaches� that is� ones based on directly minimizing an appropriate nonsmooth
function of K� are taken in ��� in addressing various problems of robust stabilization� and in
��� and �� for the H� synthesis problem� The cost function we use is di�erent to the ones
used in these other works� as is our underlying method of optimization�

In ��� when optimizing robust stability and in ��� and �� when dealing with the H�

synthesis problem� a stabilization solution is �rst sought by trying to solve some auxiliary
problem and then optimization is performed locally about this solution� We employ a similar
approach in that the main part of the algorithm is preceded by a section designed speci�cally
to �nd a stabilization solution� Like the main part of the algorithm� this �rst part is based
on decreasing a nonsmooth� nonconvex cost function� though the optimization procedure
used is di�erent to the one used in the main part of the algorithm�

The paper is structured as follows� In Section  we recall the H� synthesis problem as
well as a specialization of this problem� the robust stabilization problem� In Section � we
reformulate these problems as unconstrained optimization problems in the output feedback
matrix K� We also mention some of the issues involved in trying to solve such problems�
Section � outlines the optimization approach used� Numerical experiments for various H�

synthesis and robust stabilization problems are presented in Section �� In addition� this
section contains experiments demonstrating the e�ectiveness of the preliminary part of the
algorithm for successfully and quickly �nding stabilizing controllers� The paper ends with
some concluding remarks�

� Problem Formulations

��� The H� Synthesis Problem

Recall the static output feedback H� synthesis problem�

Problem � Given a linear time invariant �LTI	 system
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where x � R
n is the state� u � R

m� is the control� y � R
p� is the measured output� w � R

m�

is the external input and z � Rp� is the controlled output� �nd a static output feedback

u � Ky

such that the H� norm of Tw�z�s�K	� the closed loop transfer function from w to z� is
minimal over the set of K for which A�B�KC� is stable� �
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We note that� given a system ��	 and a output feedback matrix K� the closed loop
dynamics from w to z are given by

�
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As is well known� the dynamic output feedback H� synthesis problem can be posed as a
static output feedback problem for an augmented system� Indeed� for a given system ��	�
suppose we would like to �nd an order k � n dynamic controller of the form
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Here xK � R
k � Then the dynamic output feedback H� synthesis problem is equivalent to

Problem � with the following substitutions�
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�k and Ik denote the k � k zero and identity matrices respectively� Note that K which was
m� � p� has been replaced by a matrix of dimension �k �m�	� �k � p�	�

��� The Robust Stabilization Problem

Before introducing the robust stabilization problem� we present some preliminaries�

If X is a square matrix� let ��X	 denote the maximum of the real parts of the eigenvalues
of X �

��X	 �� max
i

Re��i�X		�

Of course� X is stable if and only if ��X	 � ��
For X � C n�n � let ��X	 denote its complex stability radius �����

��X	 �� minfkEk j E � C
n�n � ��X �E	 � �g�

Here k�k denotes the maximum singular value norm� kEk � �max�E	� ��X	 is zero if and
only if X is unstable� The complex stability radius of a stable matrix X determines how
robust the stability of X is with respect to additive �complex	 perturbations of X � For any
X � ��X	 gives the distance to the unstable matrices�

The robust stabilization problem is the following�

Problem � Given a linear time invariant �LTI	 system

�x � Ax �Bu

y � Cx
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where x � Rn is the state� u � Rm is the control� and y � Rp the output� �nd a static output
feedback control law

u � Ky

that maximizes the complex stability radius of the closed loop system matrix A�BKC�

max
K�Rm�p

��A�BKC	�

�

Problem  is a special case of Problem �� as we now show� Suppose X is a stable matrix
with associated transfer function H�s	 �� �sI �X	��� Then ��X	 and the H� norm of H
are related by

��X	 � kH�s	k��� �

As a result� Problem  is equivalent to minimizing the H� norm of the transfer function
�sI � �A�BKC		�� subject to the constraint that A�BKC is stable� Given A� B and C
as in Problem � taking the same A� B� � I � B� � B� C� � I � C� � C� D�� � �� D�� � �
and D�� � �� it can be readily shown that Problem � reduces to Problem �

� A Nonsmooth� Nonconvex Optimization Problem

Using the terminology of Problem �� de�ne

f�K	 ��

�
�kTw�z�s�K	k��� � if ��A �B�KC�	 � ��
��A�B�KC�	� if ��A �B�KC�	 � ��

�	

The main idea behind our approach is to try to solve Problem � by trying to solve the
following unconstrained minimization problem�

min
K�Rm��p�

f�K	�

Our motivation for choosing this particular objective function is as follows� The set of
stabilizing K�s is fK j ��A � B�KC�	 � �g and our aim is to minimize kTw�z�s�K	k�
over this set� Finding a K that minimizes kTw�z�s�K	k� is the same as �nding a K that
minimizes �kTw�z�s�K	k��� � However� using �kTw�z�s�K	k��� has the following advantage�
Within the stabilizing set� �kTw�z�s�K	k��� is negative and converges to zero if ��A �
B�KC�	 converges zero� It follows that f is a continuous function of K� that is a globally
de�ned extension of �kTw�z�s�K	k��� � �Note that kTw�z�s�K	k� does not have a useful
continuous extension as it becomes unbounded as K goes to the boundary of the set of
stabilizing K�s�	 Furthermore� f penalizes non�stabilizing K�s�

The fact that kTw�z�s�K	k� can only be evaluated at stabilizing K�s makes minimizing
this quantity more di�cult� Non�stabilizing K�s provide a rather limited amount of infor�
mation in regard to this objective function� The only information they do provide is the
extent to which they are in fact non�stabilizing� This information is given by the quantity
��A�B�KC�	� and has been incorporated into f �

The main part of the algorithm� which will be used to minimize f � see Section �� only
needs to be able to evaluate f in order to work� There exist e�cient numerical methods for
calculating H� norms �and hence for calculating f	� We use the Matlab function hinfnorm�
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We now make some observations regarding the robust stabilization problem� These
observations will of course also necessarily tell us something about the more general H�

synthesis problem�

If the problem we are considering is actually a robust stabilization problem� i�e�� a case
of Problem � then in the de�nition of f � the term �kTw�z�s�K	k��� is just ���A�BKC	�
Both � and �� are nonsmooth and nonconvex� and �� but not �� is locally Lipschitz
���� As noted in ���� lack of convexity means �nding a global minimizer of �� can be
expected to be di�cult and lack of smoothness means it is not possible to use standard local
optimization methods such as steepest descent and Newton type methods� �Apparently
applying such local optimization methods leads to problems at points where the gradient of
� is discontinuous�	

Therefore we have a nonsmooth� nonconvex global optimization problem� quite a di�cult
problem� All other known formulations of the H� synthesis problem� such as those involving
rank constrained LMIs� are also nonconvex and global in nature� While to our disadvantage
our formulation is nonsmooth� to our advantage we have not had to introduce Lyapunov
variables and hence we have a problem formulation in many less variables than we would
have otherwise� Here are some additional� particular aspects of the problem that are worth
keeping in mind�

As already mentioned� just �nding a stabilizing solution can be a challenge in itself� The
set of stabilizing K�s can be quite small� For example� for the Boeing ��� system considered
in Section �� the following is a stabilizing solution�

K �

�
������
 ������e��
�����
e�� �����e��

�
�

Changing the ��� 	 entry of this K by plus or minus ���� makes the closed loop system
unstable� As the feasible region can be quite localized� one would expect that �nding such
solutions� and moreover �nding globally optimal solutions� would be quite di�cult� A global
search would have to search quite small regions� This may not be feasible� For example�
the calculation of a function value can be fairly time consuming� in the Boeing ��� problem�
which has �� states� to calculate the value of � at a point takes approximately ���� seconds
on a � GHz Pentium � machine�

As we have already indicated� for Problem �� the quantity we are interested in minimizing�
kTw�z�s�K	k�� is not de�ned for all K�s� �Problem  is similar in that� while � is de�ned
everywhere� it is � for all non�stabilizing K�s�	 In �ordinary� constrained optimization �see
��� and references therein	� it is still possible to evaluate the objective function outside the
feasible region� This may be extremely helpful for �nding deep local minimizers inside the
feasible region� For Problems � and  we do not have this advantage� In fact� the feasible
region� the set of stabilizing K�s� cannot even be usefully quanti�ed�

Finally� it is worth mentioning that �nding K that minimizes ��A � BKC	 is quite
di�erent to �nding K that minimizes ���A�BKC	� In the �rst case� one seeks to �nd a K
that causes solutions of the closed loop system to decay to zero as quickly as possible� �We
are assuming there exist K for which the closed loop system is stable�	 No regard is given
to how robustly stable A �BKC is with respect to perturbations� In the second case� one
optimizes robust stability� While K must stabilize the system� no regard is given to how
quickly solutions decay to zero� In other words� in terms of optimality� the behaviors of the
functions ��A�BKC	 and ���A�BKC	 are quite di�erent�



��� M� MAMMADOV AND R� ORSI

� A Global Optimization Algorithm

Our algorithm has two main parts� The �rst part is a nonsmooth gradient descent like
algorithm for �nding an initial stabilizing solution� This part of the algorithm is based on
minimizing the function

g � Rm��p� � R� K �� ��A �BKC	 ��	

and is described in Subsections ��� and �� below�

The second part of the algorithm uses the stabilizing solution found by the �rst part as
a starting point to minimize f � A recently developed global optimization algorithm� AGOP�
which is presented in ��� and ���� is used to minimize f � In the remainder of this section
we present a step�by�step outline of the algorithm� as well as descriptions of its various
components� We start by describing AGOP�

AGOP is designed for solving unconstrained continuous optimization problems� It uses
a line search mechanism where the descent direction is de�ned via a dynamical systems
approach� It can be applied to a wide range of functions� requiring only function evaluations
to work� In particular it does not require gradient information and can be used to �nd
minima of non�di�erentiable functions�

Brie�y� AGOP works as follows� Suppose f � Rn � R is the function to be minimized�
�In our case� f is given by �	�	 AGOP must �rst be given a set of points� say � �
fx�� ���� xqg � Rn � Generally� a suitable choice for an initial set of points is the set of vertices
of a box centered around x � �� �For minimizing f given by �	� we will actually use a
di�erent choice which will be detailed later�	 Suppose that x� � � has the smallest cost
of the points in �� that is� that f�x�	 � f�x	 for all x � �� The set � and the values of
f at each of the points in � allow us to generate a dynamical system� see ��� for details�
This dynamical system determines a possible descent direction v at the point x�� again see
��� for details� An inexact line search along this direction provides a new point �xq��� A
local search about �xq�� is then carried out� This is done using a direct search method called
local variation� This is an e�cient local optimization technique that does not explicitly
use derivatives and can be applied to nonsmooth functions� A good survey of direct search
methods can be found in ��
�� Letting xq�� denote the optimal solution of this local search�
the set � is augmented to include xq��� Starting with this updated �� the whole process can
be repeated� The process is terminated when v is approximately � �or a prescribed bound
on the number of iterations is reached	� The solution returned is the current x�� that is� the
point in � with the smallest cost� �If f is continuously di�erentiable then the solution will
be a local minima�	

Note that the convex hull of the set of points in the initial � is roughly where AGOP
looks for a solution� However� because line search segments are not constrained to lie in
some prescribed region� during its operation the algorithm may add to � points that are
not in the convex hull of the original �� As a result� the solution produced by the algorithm
may not lie in the convex hull of the initial set of points�

In our application of AGOP in this paper� � is initially constructed from the stabilizing
solution� Kstab� found by the �rst part of the algorithm� The initial � consists of Kstab and
the vertices of a particular box� This box is constructed to contain Kstab and to be roughly
contained in the set of stabilizing K�s� Applying AGOP to � gives a new K� This K is then
used to construct �a new box and then	 a new � and this process is repeated a number of
times� While AGOP can be applied just once and then the process terminated� the iterative
process described each time re�nes the search area and increases the likelihood that deep
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solutions can be found� Of course� the price is an increase in the amount of computation
required�

The above description along with the details below� are one way for automatically re�ning
�� We do not claim that it is necessarily the best possible� This issue� optimal stopping
criteria� and other such matters� are all interesting questions for future investigations�

The algorithm consists of the following steps�

MAIN ALGORITHM�

Step �� Choose an initial point K�� K� � � is an appropriate choice if no information is
available regarding were an optimal solution might be found�

Step �� Using K� as an initial point� apply a local optimization procedure to the function
g given by ��	 to �nd an initial stabilizing solution Kstab� see Subsection ����

Step �� Let q � � and K� � Kstab�

Step �� Create a box B around Kq� see Subsection ���� Let � consist of Kq and the
vertices of B�

Step �� Using �� apply algorithm AGOP to the objective function f to get a new solution
Kq��� If

f�Kq��	 � f�Kq	� tol

then we set q � q � � and go to step �� Otherwise the program is terminated�

��� Finding an Initial Stabilizing K

In this subsection we describe our method for �nding an initial stabilizing controller�

Step �� �Initialization	
Suppose we are given an initial controller matrix K� �if no such K� is available� take
K� � �	� Let B � fK � Rm��p� j jKij j � � for all i� jg be a given box containing K��
Set s � ��

Step �� �Calculate a local descent direction	
For the function g given by ��	� calculate a candidate local descent direction L at the
point Ks� see Subsection ���

Step �� �Coarse line search	
Let � 	 � be a given step size parameter and let N be the smallest positive integer
such that Ks �N�L 
� B� Set

�K � argmin
K�fKs�l�L j l������ �Ng

f�K	�

and

Kleft � �K � �L and Kright � �K � �L�
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Step �� �Finer line search	
Let the parameter � be a given positive integer� Set

� �
�

�
�Kright �Kleft	�

Ks�� � argmin
K�fKleft�l� j l������ ���g

f�K	�

Kleft � Ks�� ���

Kright � Ks�� ���

If maxij j�ij j � �� go to Step �� Otherwise� go to Step ��

Step �� If s� � � S� go to Step �� Otherwise� set s � s� � and go to Step ��

Step �� Kstab � KS�

��� Finding a Local Descent Direction

Candidate local descent directions for nonsmooth functions can be calculated in number of
ways� In this subsection we present our method for �nding such a direction for the function
g given by ��	�

Given a K� a direction L is found by comparing the value of g at nearby points along
the coordinate axes� Let fEij � R

m��p� j i � �� � � � �m�� j � �� � � � � p�g be the standard
orthonormal basis for Rm��p� and let � 	 � be a given small parameter� Lij � the �i� j	
component of L� is calculated as follows� De�ne

a � g�K � �Eij	� b � g�K	� c � g�K � �Eij	�

Then�

Lij �

	

�

�� if �a � b � c	 or �a 	 b� b � c	�
b� c� if �a � b � c	 or �a � b 	 c	 or �b 	 a � c	�
a� b� if �a 	 b � c	 or �a � b � c	 or �b 	 c 	 a	�

This method of calculating a descent direction is sort of similar to using �nite�di�erence
derivative approximation methods for di�erentiable functions� see for example ���� The main
di�erence is that right and left di�erences are considered and a direction chosen based on
which gives greatest decrease� �Another di�erence is that we do not scale the Lij �s by �
��
but this is not so important�	

��� Creating Appropriate Boxes

Suppose Kstab is a stabilizing matrix� We generate a box B which contains Kstab and
which is roughly a subset of the stabilizing matrices as follows� Let fEij � Rm��p� j i �
�� � � � �m�� j � �� � � � � p�g be the standard orthonormal basis for Rm��p� � For each �i� j	�
de�ne

min
ij � argmin��R 

subject to ��A �B�Kstab � Eij	C	 � ��
��	

and

max
ij � argmax��R 

subject to ��A�B�Kstab � Eij	C	 � ��
��	
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Note that in ��	 and ��	 above� min
ij and max

ij are not required to be exact minimizers
and maximizers� approximate values are su�cient�

The box is given by

B � fK j Kmin
ij � Kij � Kmax

ij g

where

Kmin
ij � Kstab

ij � min
ij Eij �

Kmax
ij � Kstab

ij � max
ij Eij �

� Numerical Experiments

This section contains some numerical experiments for various problems from the literature�
Considered are both robust stabilization problems and H� synthesis problems� In addition�
in the last part of this section� results of using the preliminary part of the algorithm for
�nding stabilizing controllers are also presented�

All computational results were obtained using a � GHz Pentium � machine� Our algo�
rithm was coded using Matlab ����

��� Turbo�generator� Robust Stabilization

The �rst system considered is a turbo�generator model from ���� �system TG� from the
COMPleib collection ���	� For this system� n � �� and m � p � � The A matrix for this
system is stable with ��A	 � �������� Our aim is to �nd K that maximizes ��A �BKC	�

The results of running the algorithm are given in Table � below� As can be seen from the
table� the best stability radius achieved was ��A � BKC	 � ������� which is substantially
better than ��A	� The best K found was

K �

�
���


�� �������
����

��� �����
�

�
�

Table �� Turbo�generator� Robust Stabilization� k � �� q denotes the iteration number� �
the stability radius� T the time in seconds required for each iteration� and N the number of
f evaluations required for each iteration�

q � T N

� ���e� ��� �
� ���
e� � ���
 ���
e� �� �
��
� ���e� �� ����
� ����e� �� �
��
� ����e� �� 
���

Robust stabilization of the turbo�generator model is also considered in ���� The solution
given there is

K �

�
������� �����
�
����
�� �������

�
�
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for which ��A �BKC� � ������� This value is basically the same as our own�

��� Boeing ���� Robust Stabilization

The next system considered is a model of a Boeing �	� aircraft at a 
utter condition ���
�system AC� from the COMPleib collection ����� For this system� n � �� and m � p � ��
The A matrix is unstable� In this subsection we consider for this system the problems of
robust stabilization via static control and robust stabilization via low�order dynamic control�

Numerical methods capable of �nding stabilizing controllers for the system have only
recently appeared� see ���� �� and ���� As we will see below� our algorithm is also able
to stabilize this system� We note however that if� rather than using the full algorithm� a
stabilizing solution is sought by just applying AGOP to f � then a stabilizing solution may
not be found� In fact this de�ciency motivated use to create the portion at the start of the
algorithm that seeks a stabilizing solution�

In ���� robust stabilization of the system is considered for k � � �the static controller
case�� and k �  and k � � �low�order dynamic control�� We now demonstrate that our
algorithm is able to �nd better solutions than those appearing in ���� which up to now have
been the best available�

For k � �� the results are given in Table �� The stability radius achieved by the algorithm
was ��A �BKC� � ����� ��� with

K �

�
���� ��	���e��
������e� �����e��

�
�

By comparison� the solution obtained in ��� produces a stability radius of ��A � BKC� �
���� ���� which is less than our own value�

Table �� Boeing �	�� Robust Stabilization� k � �� q denotes the iteration number� � the
stability radius� T the time in seconds required for each iteration� and N the number of f
evaluations required for each iteration�

q � T N

� ����e�	 � �
 ����e�� ��� ����
� ����e�� ��� ���
� ����e�� ��� ����
� ����e�� ��� ����
� ����e�� ��� ����

For k � � the results are given in Table �� The stability radius achieved by the algorithm
was ���� ��� with

�
AK BK

CK DK

�
�

�
������		e� �����e�� ��		��e��
����	�e�� ������	e� ����	�e�	
���		�e�� ������ ������e��

�
� �

By comparison� the solution obtained in ��� produces a stability radius of ��������� which
again is less than our own value�
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Table �� Boeing �	�� Robust Stabilization� k � � q denotes the iteration number� � the
stability radius� T the time in seconds required for each iteration� and N the number of f
evaluations required for each iteration�

q � T N

� ����e�	 �� �
 ���e�� 	�� ����
� ���e�� 		� ����

For k � �� the results are given in Table �� The stability radius achieved by the algorithm
was ����� ��� with

�
AK BK

CK DK

�
�

�
���
����	�e� ���	�	�e� ������e� ������e��
�������e� �������e� �������e� �������e��
������e� ���	�e� ���� ���	���e��
���	���e� �������e� �����	e�� ����	�e��

�
��� �

By comparison� the solution obtained in ��� produces a stability radius of �������� Hence�
our stability radius is again better� and in this case� rather signi�cantly better�

Table �� Boeing �	�� Robust Stabilization� k � �� q denotes the iteration number� � the
stability radius� T the time in seconds required for each iteration� and N the number of f
evaluations required for each iteration�

q � T N

� ����e�� ��� �
 ��	e�� ��� ����
� ����e�� ���� ����
� ����e�� ��� 	���

Finally� before ending this subsection� let us make an observation regarding the Boeing
�	� system� Examining the system matrices reveals that� while the nonzero entries in B are
of the same magnitude� the entries in the �rst row of C are roughly �� times smaller in
magnitude than the entries of the second row of C� That is� the problem is poorly scaled�
This issue can be overcome by multiplying the second row of C by ���� If a controller K
could be found for this re�scaled system� a controller for the original unscaled system would
be K with its last column multiplied by ���� Using this re�scaling method� just using
AGOP applied to f also �nds a stabilizing solution� In the results given above� we have not
used re�scaling� and hence the full algorithm is superior in this regard�

��� Boeing ���� H� Synthesis

In this subsection we again consider the Boeing �	� system but this time consider the
problem of H� synthesis�

For k � �� the results are given in Table �� The minimum value achieved by the algorithm
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was kTw�z�s�K�k� � ��� with

K �

�
������e�  �����e� �

����� ������e� �

�
�

For comparison purposes� the best result from the literature� see ���� gives H� norm equal
to ��

Table �� Boeing �	�� H� Synthesis� k � �� q denotes the iteration number� kTw�zk� the
H� norm of the closed loop transfer function from w to z� T the time in seconds required
for each iteration� and N the number of f evaluations required for each iteration�

q kTw�zk� T N

� ���	e�� �	 �
 ���e� 	�� ����
� ���e� ��� ����

For k � � the results are given in Table 	� The minimum value achieved by the algorithm
was kTw�z�s� �AK BK � CK DK ��k� � ��� with

�
AK BK

CK DK

�
�

�
� �����	 ���	��e�  ��	���e� �

������� ����e�  �����e� �
�������e�  �����e�  ������e� �

�
� �

The best result from the literature� again see ���� gives H� norm equal to ����

Table 	� Boeing �	�� H� Synthesis� k � � q denotes the iteration number� kTw�zk� the
H� norm of the closed loop transfer function from w to z� T the time in seconds required
for each iteration� and N the number of f evaluations required for each iteration�

q kTw�zk� T N

� ����e�� �� �
 ��e� �� 	����
� ���e� ��� ���
� ���e� ��� ���
� ���e� ��� ����

��� Transport Airplane� H� Synthesis

The �nal system considered is a transport airplane ��� �system AC� from the COMPleib
collection ����� For this system� n � �� m� �  and p� � �� The A matrix is unstable�

The results are given in Table �� The minimum value achieved by the algorithm was
kTw�z�s�K�k� � ��� with

K �
�
���� �����	�� ����	� ���	��� �����

	
�

In ���� the result for this problem has the same H� norm�
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Table �� Transport Airplane� H� Synthesis� k � �� q denotes the iteration number� kTw�zk�
the H� norm of the closed loop transfer function from w to z� T the time in seconds required
for each iteration� and N the number of f evaluations required for each iteration�

q kTw�zk� T N

� ��� �� �
 ��� � ����
� ���� �� ����
� ���� � ����
� ��� �� ����
� ��� �� ����

��� Stabilization

Once the algorithm �nds a stabilizing solution� it does not necessarily stop immediately
though nor does it try to minimize ��� as much as it can� In this �nal part of the numerical
results section� we demonstrate that the preliminary part of the algorithm can often be
successful in quickly �nding stabilizing controllers� In this case� the algorithm is terminated
as soon as a stabilizing solution is found�

We ran the algorithm on each of the static output feedback problems given in the
COMPleib collection which were not open loop stable� Details of the problems can be
found in ����

Results are given in Table � and are quite good� Stabilizing controllers were found for
�� of the �� systems� Of the �� that were successfully stabilized� a stabilizing solution for
�� of the systems was found in �� seconds or less�

� Conclusions

In this paper the H� synthesis problem was posed as an unconstrained� nonsmooth� non�
convex minimization problem in the entries of the output feedback matrix K� A numerical
method for solving this reformulation of the problem was presented and application of the
algorithm to various benchmark problems produced quite positive results� In particular� the
algorithm was able to signi�cantly improve on the best results appearing in the literature for
robust stabilization of the Boeing �	� model� The e�ectiveness of the preliminary part of the
algorithm for successfully and quickly �nding stabilizing controllers was also demonstrated�
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