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Abstract: A numerical method for solving the Ho synthesis problem is presented. The problem is posed as
an unconstrained, nonsmooth, nonconvex minimization problem. The optimization variables consist solely
of the entries of the output feedback matrix. No additional variables, such as Lyapunov variables, need to
be introduced. The main part of the optimization procedure uses a line search mechanism where the descent
direction is defined by a recently introduced dynamical systems approach. Numerical results for various
benchmark problems are included in the paper. In addition, the effectiveness of a preliminary part of the
algorithm for successfully and quickly finding stabilizing controllers is also demonstrated.
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Introduction

The H., synthesis problem involves finding an output feedback control matrix K that min-
imizes the H., norm of a certain transfer function, subject to the constraint that K is
stabilizing. This is a challenging problem and even finding a stabilizing K can be diffi-
cult. Indeed, if the entries of K are restricted to lie in prescribed intervals, then finding a
stabilizing K is an NP-hard problem [6].

Existing numerical methods for the H, synthesis problem are often based on first refor-
mulating the problem into one involving linear matrix inequalities (LMIs) and an additional
nonconvex rank constraint or nonconvex equality constraint. Numerical methods for such
reformulations of the problem include those based on linearization [9], [17], [20]; alternating
projections [13], [14], [26]; augmented Lagrangian methods [3], [4], [10], [25]; and sequential
semidefinite programming [11].

The H., synthesis problem can also be reformulating into a problem involving bilinear
matrix inequalities (BMIs). Numerical methods for such reformulations of the problem
include [11], [18], [22] and [28]. See also the references therein.

A disadvantage of these approaches is that they require the introduction of Lyapunov
variables. As the number of Lyapunov variables grows quadratically with the number of state
variables, the total number of variables can be quite large and even problems of moderate
size can lead to numerical difficulties [2].

In this paper the H, synthesis problem is posed as an unconstrained, nonsmooth, non-
convex minimization problem. The optimization variables for this reformulation consist
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solely of the entries of the output feedback matrix K and no additional variables, such as
Lyapunov variables, need to be introduced. The approach taken to solve this problem is
based on using the recently developed global optimization algorithm presented in [23] and
[24]. This optimization algorithm uses a line search mechanism where the descent direction
is defined via a dynamical systems approach. It can be applied to a wide range of functions,
requiring only function evaluations to work. In particular it does not require gradient (or
gradient like) information and hence it is well suited to optimizing our reformulation of the
H, synthesis problem.

Similar approaches, that is, ones based on directly minimizing an appropriate nonsmooth
function of K, are taken in [7] in addressing various problems of robust stabilization, and in
[1] and [2] for the H, synthesis problem. The cost function we use is different to the ones
used in these other works, as is our underlying method of optimization.

In [7] when optimizing robust stability and in [1] and [2] when dealing with the H
synthesis problem, a stabilization solution is first sought by trying to solve some auxiliary
problem and then optimization is performed locally about this solution. We employ a similar
approach in that the main part of the algorithm is preceded by a section designed specifically
to find a stabilization solution. Like the main part of the algorithm, this first part is based
on decreasing a nonsmooth, nonconvex cost function, though the optimization procedure
used is different to the one used in the main part of the algorithm.

The paper is structured as follows. In Section 2 we recall the H, synthesis problem as
well as a specialization of this problem, the robust stabilization problem. In Section 3 we
reformulate these problems as unconstrained optimization problems in the output feedback
matrix K. We also mention some of the issues involved in trying to solve such problems.
Section 4 outlines the optimization approach used. Numerical experiments for various H.,
synthesis and robust stabilization problems are presented in Section 5. In addition, this
section contains experiments demonstrating the effectiveness of the preliminary part of the
algorithm for successfully and quickly finding stabilizing controllers. The paper ends with
some concluding remarks.

Problem Formulations

The H,, Synthesis Problem

Recall the static output feedback H., synthesis problem.

Problem 1 Given a linear time invariant (LTI) system

Ci? A Bl B2 xr
zZ| = Cl D11 D12 w, (1)
Y CQ D21 0 u

where x € R” is the state, u € R™2 is the control, y € RP? is the measured output, w € R™!
is the external input and z € RP* is the controlled output, find a static output feedback

u=Ky

such that the Ho, norm of T, .(s, K), the closed loop transfer function from w to z, is
minimal over the set of K for which A + By K (5 is stable. O
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We note that, given a system (1) and a output feedback matrix K, the closed loop
dynamics from w to z are given by

T _ A+B2K02 B1 +B2KD21 T
z|  |Ci+D2KCy Dj;+DisKDoy| |w|”

As is well known, the dynamic output feedback H., synthesis problem can be posed as a
static output feedback problem for an augmented system. Indeed, for a given system (1),
suppose we would like to find an order k < n dynamic controller of the form

-l Il

Here 2 € R*. Then the dynamic output feedback H,, synthesis problem is equivalent to
Problem 1 with the following substitutions:

A Bg A 0 B;
K—>[CK DK}’A%{O Ok]’Bl_)[ ],

0 B

BQ—> |:Ik; 0

0 I
:|7C1_>|:Ol 0]702_>|:C2 Ok:|7

0
D .
D1 = [0 Di2], Dy — {Dm]

0r and I} denote the k x k zero and identity matrices respectively. Note that K which was
ma X pa has been replaced by a matrix of dimension (k + ms) X (k + p2).

@ The Robust Stabilization Problem

Before introducing the robust stabilization problem, we present some preliminaries.
If X is a square matrix, let a(X) denote the maximum of the real parts of the eigenvalues
of X,

a(X) = max Re(Ai(X)).

Of course, X is stable if and only if a(X) < 0.
For X € C"*", let B(X) denote its complex stability radius [15],

B(X) == min{||E|| | E € C™*",a(X + E) > 0}.

Here ||-|| denotes the maximum singular value norm, ||E|| = omax(E). B(X) is zero if and
only if X is unstable. The complex stability radius of a stable matrix X determines how
robust the stability of X is with respect to additive (complex) perturbations of X. For any
X, B(X) gives the distance to the unstable matrices.

The robust stabilization problem is the following.

Problem 2 Given a linear time invariant (LTI) system

& = Az + Bu
y=Cx
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where z € R” is the state, u € R™ is the control, and y € RP the output, find a static output
feedback control law

u=Ky
that maximizes the complex stability radius of the closed loop system matrix A + BKC"

max ((A+ BKC).
KeRmxp

O

Problem 2 is a special case of Problem 1, as we now show. Suppose X is a stable matrix
with associated transfer function H(s) := (sI — X)~!. Then 8(X) and the H., norm of H
are related by

BX) = [H(s)ll-

As a result, Problem 2 is equivalent to minimizing the H., norm of the transfer function
(sI — (A+ BKC(C))~! subject to the constraint that A + BKC is stable. Given A4, B and C
as in Problem 2, taking the same A, By =1, B =B,C; =1,Cs =C, D1y =0, D15 =0
and Dy, = 0, it can be readily shown that Problem 1 reduces to Problem 2.

A Nonsmooth, Nonconvex Optimization Problem
Using the terminology of Problem 1, define

f(K) — _HTwyZ(S)K)Hgol) if CM(A + B2KO2) <0, (2)
T a(A+B2KO2), if a(A+B2KO2) Z 0.

The main idea behind our approach is to try to solve Problem 1 by trying to solve the
following unconstrained minimization problem:

min  f(K).
KeRm2xp2

Our motivation for choosing this particular objective function is as follows. The set of
stabilizing K’s is {K | a(A + BoKC>) < 0} and our aim is to minimize ||T% -(s,K)||co
over this set. Finding a K that minimizes ||T, -(s, K)||~ is the same as finding a K that
minimizes —||Ty . (s, K)||2!. However, using —||Ty,-(s, K)||-} has the following advantage.
Within the stabilizing set, —||Ty .(s, K)||! is negative and converges to zero if a(A4 +
B, K(C5) converges zero. It follows that f is a continuous function of K, that is a globally
defined extension of —||T,, .(s, K)||=!. (Note that ||Ty .(s, K)|lc does not have a useful
continuous extension as it becomes unbounded as K goes to the boundary of the set of
stabilizing K’s.) Furthermore, f penalizes non-stabilizing K’s.

The fact that ||Ty, -(s, K)||c can only be evaluated at stabilizing K’s makes minimizing
this quantity more difficult. Non-stabilizing K’s provide a rather limited amount of infor-
mation in regard to this objective function. The only information they do provide is the
extent to which they are in fact non-stabilizing. This information is given by the quantity
a(A + By K(C5), and has been incorporated into f.

The main part of the algorithm, which will be used to minimize f, see Section 4, only
needs to be able to evaluate f in order to work. There exist efficient numerical methods for
calculating Ho, norms (and hence for calculating f). We use the Matlab function hinfnorm.
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We now make some observations regarding the robust stabilization problem. These
observations will of course also necessarily tell us something about the more general H.
synthesis problem.

If the problem we are considering is actually a robust stabilization problem, i.e., a case
of Problem 2, then in the definition of f, the term —||T, . (s, K)||= is just —3(A + BKC).
Both a and —f are nonsmooth and nonconvex, and 3, but not «, is locally Lipschitz
[7]. As noted in [7], lack of convexity means finding a global minimizer of —f3 can be
expected to be difficult and lack of smoothness means it is not possible to use standard local
optimization methods such as steepest descent and Newton type methods. (Apparently
applying such local optimization methods leads to problems at points where the gradient of
B is discontinuous.)

Therefore we have a nonsmooth, nonconvex global optimization problem; quite a difficult
problem. All other known formulations of the H, synthesis problem, such as those involving
rank constrained LMIs, are also nonconvex and global in nature. While to our disadvantage
our formulation is nonsmooth, to our advantage we have not had to introduce Lyapunov
variables and hence we have a problem formulation in many less variables than we would
have otherwise. Here are some additional, particular aspects of the problem that are worth
keeping in mind.

As already mentioned, just finding a stabilizing solution can be a challenge in itself. The
set of stabilizing K’s can be quite small. For example, for the Boeing 767 system considered
in Section 5, the following is a stabilizing solution,

—-1.7319 -2.1035e—5

K= \45050e+1 2.1706e—4 |-

Changing the (1,2) entry of this K by plus or minus 1075 makes the closed loop system
unstable. As the feasible region can be quite localized, one would expect that finding such
solutions, and moreover finding globally optimal solutions, would be quite difficult. A global
search would have to search quite small regions. This may not be feasible. For example,
the calculation of a function value can be fairly time consuming; in the Boeing 767 problem,
which has 55 states, to calculate the value of 3 at a point takes approximately 0.35 seconds
on a 3 GHz Pentium 4 machine.

As we have already indicated, for Problem 1, the quantity we are interested in minimizing,
[|Tw,-(s, K)||oo, is not defined for all K’s. (Problem 2 is similar in that, while 3 is defined
everywhere, it is 0 for all non-stabilizing K’s.) In ‘ordinary’ constrained optimization (see
[27] and references therein), it is still possible to evaluate the objective function outside the
feasible region. This may be extremely helpful for finding deep local minimizers inside the
feasible region. For Problems 1 and 2 we do not have this advantage. In fact, the feasible
region, the set of stabilizing K’s, cannot even be usefully quantified.

Finally, it is worth mentioning that finding K that minimizes a(A + BKC) is quite
different to finding K that minimizes —3(A+ BK (). In the first case, one seeks to find a K
that causes solutions of the closed loop system to decay to zero as quickly as possible. (We
are assuming there exist K for which the closed loop system is stable.) No regard is given
to how robustly stable A + BKC' is with respect to perturbations. In the second case, one
optimizes robust stability. While K must stabilize the system, no regard is given to how
quickly solutions decay to zero. In other words, in terms of optimality, the behaviors of the
functions a(A + BKC) and —f3(A + BKC) are quite different.
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A Global Optimization Algorithm

Our algorithm has two main parts. The first part is a nonsmooth gradient descent like
algorithm for finding an initial stabilizing solution. This part of the algorithm is based on
minimizing the function

g:R™*P> 5 R K — (4 + BKC) (3)

and is described in Subsections 4.1 and 4.2 below.

The second part of the algorithm uses the stabilizing solution found by the first part as
a starting point to minimize f. A recently developed global optimization algorithm, AGOP,
which is presented in [23] and [24], is used to minimize f. In the remainder of this section
we present a step-by-step outline of the algorithm, as well as descriptions of its various
components. We start by describing AGOP.

AGOP is designed for solving unconstrained continuous optimization problems. It uses
a line search mechanism where the descent direction is defined via a dynamical systems
approach. It can be applied to a wide range of functions, requiring only function evaluations
to work. In particular it does not require gradient information and can be used to find
minima of non-differentiable functions.

Briefly, AGOP works as follows. Suppose f : R* — R is the function to be minimized.
(In our case, f is given by (2).) AGOP must first be given a set of points, say Q =
{z1,...,24} C R". Generally, a suitable choice for an initial set of points is the set, of vertices
of a box centered around z = 0. (For minimizing f given by (2), we will actually use a
different choice which will be detailed later.) Suppose that z, €  has the smallest cost
of the points in 2, that is, that f(z,) < f(x) for all z € Q. The set Q and the values of
f at each of the points in Q allow us to generate a dynamical system; see [23] for details.
This dynamical system determines a possible descent direction v at the point z,; again see
[23] for details. An inexact line search along this direction provides a new point Z,41. A
local search about %441 is then carried out. This is done using a direct search method called
local variation. This is an efficient local optimization technique that does not explicitly
use derivatives and can be applied to nonsmooth functions. A good survey of direct search
methods can be found in [19]. Letting z,4+1 denote the optimal solution of this local search,
the set ) is augmented to include z441. Starting with this updated €2, the whole process can
be repeated. The process is terminated when v is approximately 0 (or a prescribed bound
on the number of iterations is reached). The solution returned is the current z,, that is, the
point in  with the smallest cost. (If f is continuously differentiable then the solution will
be a local minima.)

Note that the convex hull of the set of points in the initial €2 is roughly where AGOP
looks for a solution. However, because line search segments are not constrained to lie in
some prescribed region, during its operation the algorithm may add to € points that are
not in the convex hull of the original 2. As a result, the solution produced by the algorithm
may not lie in the convex hull of the initial set of points.

In our application of AGOP in this paper, 2 is initially constructed from the stabilizing
solution, K*%*P found by the first part of the algorithm. The initial © consists of K" and
the vertices of a particular box. This box is constructed to contain K***P and to be roughly
contained in the set of stabilizing K’s. Applying AGOP to 2 gives a new K. This K is then
used to construct (a new box and then) a new 2 and this process is repeated a number of
times. While AGOP can be applied just once and then the process terminated, the iterative
process described each time refines the search area and increases the likelihood that deep
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solutions can be found. Of course, the price is an increase in the amount of computation
required.

The above description along with the details below, are one way for automatically refining
Q. We do not claim that it is necessarily the best possible. This issue, optimal stopping
criteria, and other such matters, are all interesting questions for future investigations.

The algorithm consists of the following steps.

MAIN ALGORITHM:

Step 0. Choose an initial point K°. K° = 0 is an appropriate choice if no information is
available regarding were an optimal solution might be found.

Step 1. Using K as an initial point, apply a local optimization procedure to the function
g given by (3) to find an initial stabilizing solution K*'*"; see Subsection 4.1.

Step 2. Let ¢ =1 and K'! = K3tP,

Step 3. Create a box B around KY; see Subsection 4.3. Let Q consist of K7 and the
vertices of B.

Step 4. Using 2, apply algorithm AGOP to the objective function f to get a new solution
Kot If

FIK™) < f(K7) — tol

then we set ¢ = ¢+ 1 and go to step 3. Otherwise the program is terminated.

Finding an Initial Stabilizing K

In this subsection we describe our method for finding an initial stabilizing controller.

Step 0:  (Initialization)
Suppose we are given an initial controller matrix K° (if no such K° is available, take
K° =0). Let B={K € R™2*P2 | |K;;| < p for all 4,j} be a given box containing K°.
Set s = 0.

Step 1:  (Calculate a local descent direction)
For the function g given by (3), calculate a candidate local descent direction L at the
point K¥; see Subsection 4.2.

Step 2:  (Coarse line search)
Let § > 0 be a given step size parameter and let N be the smallest positive integer
such that K° + NJL ¢ B. Set

K = arg min f(K),
Ke{K*+I5L| 1=0,...,N}

and

Kiett = K — 0L and Kiign = K + 6L.
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Step 3:  (Finer line search)
Let the parameter i be a given positive integer. Set

1
A= %(Kright — Kiegt),

K5t = arg min f(K),
KG{K]eft+lA | l:O,...,Z?’]}
Kleft - Ks+1 + A:
Keight = KT — AL

If max;; |Ai;] < €, go to Step 4. Otherwise, go to Step 3.
Step 4: If s+ 1=, go to Step 5. Otherwise, set s = s + 1 and go to Step 1.
Step 5: Kt = K5,

Finding a Local Descent Direction

Candidate local descent directions for nonsmooth functions can be calculated in number of
ways. In this subsection we present our method for finding such a direction for the function
g given by (3).

Given a K, a direction L is found by comparing the value of g at nearby points along
the coordinate axes. Let {E;; € R™*P2 | § = 1,... ,ms, j = 1,...,p2} be the standard
orthonormal basis for R™2*P2 and let € > 0 be a given small parameter. L;;, the (i,7)
component of L, is calculated as follows. Define

a=g(K —¢€E;;), b=g(K), c=g(K +¢eE;).

Then,
0, if(a=b=c)or(a>b, b<ec),
Lij=< b—¢, if(a=b<c)or(a>b>c)or (b>a>c),
a—>b, if(a>b=c)or(a<b<c)or(b>c>a).

This method of calculating a descent direction is sort of similar to using finite-difference
derivative approximation methods for differentiable functions, see for example [5]. The main
difference is that right and left differences are considered and a direction chosen based on
which gives greatest decrease. (Another difference is that we do not scale the L;;’s by 1/e,
but this is not so important.)

Creating Appropriate Boxes

Suppose K®%*P ig a stabilizing matrix. We generate a box B which contains K*%*" and
which is roughly a subset of the stabilizing matrices as follows. Let {E;; € R™>*P> | § =

1,...,ma, 7 =1,...,p2} be the standard orthonormal basis for R™2*P2. For each (i, ),
define
7;3-““ = arg minweR 0% (4)
subject to  a(A + B(K®**** + ~vE;;)C) <0,
and
,Y;]r_lax = arg maX,yeR Y (5)

subject to (A + B(K**" + vE;;)C) < 0.
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Note that in (4) and (5) above, 'y;]‘?i“ and 7}3** are not required to be exact minimizers
and maximizers; approximate values are sufficient.

The box is given by
B={K| K" <K;<KJ™
where
K;?in — Kis;ab + ,Y;?inEij,
K%lax — Kis]@ab + ’Y;?ainj'

Numerical Experiments

This section contains some numerical experiments for various problems from the literature.
Considered are both robust stabilization problems and H,, synthesis problems. In addition,
in the last part of this section, results of using the preliminary part of the algorithm for
finding stabilizing controllers are also presented.

All computational results were obtained using a 3 GHz Pentium 4 machine. Our algo-
rithm was coded using Matlab 7.0.

Turbo-generator: Robust Stabilization

The first system considered is a turbo-generator model from [16] (system TG1 from the
COMPIL.ib collection [21]). For this system, n = 10 and m = p = 2. The A matrix for this
system is stable with 8(A4) = 0.00767. Our aim is to find K that maximizes S(A + BKC).

The results of running the algorithm are given in Table 1 below. As can be seen from the
table, the best stability radius achieved was 3(A + BKC) = 0.0784, which is substantially
better than B(A). The best K found was

—0.99935 —1.0807

K= —0.099408 —0.15920| °

Table 1: Turbo-generator: Robust Stabilization, & = 0. ¢ denotes the iteration number, 3
the stability radius, 7' the time in seconds required for each iteration, and N the number of
f evaluations required for each iteration.

| 6 [T N |
15202 | 13| -
6.89e-2 | 21 | 2800
7.19¢-2 | 37 | 4900
7.82e-2 | 41 | 5500
7.84¢-2 | 73 | 8900
7.84e-2 | 73 | 9400

U W N = Ol

Robust stabilization of the turbo-generator model is also considered in [7]. The solution
given there is
—0.7763 —0.7193

K=1_0.0035 —0.1515|"
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for which (A + BKC') = 0.0785. This value is basically the same as our own.

Boeing 767: Robust Stabilization

The next system considered is a model of a Boeing 767 aircraft at a flutter condition [8]
(system AC10 from the COMPI,ib collection [21]). For this system, n = 55 and m = p = 2.
The A matrix is unstable. In this subsection we consider for this system the problems of
robust stabilization via static control and robust stabilization via low-order dynamic control.

Numerical methods capable of finding stabilizing controllers for the system have only
recently appeared; see [7], [1] and [2]. As we will see below, our algorithm is also able
to stabilize this system. We note however that if, rather than using the full algorithm, a
stabilizing solution is sought by just applying AGOP to f, then a stabilizing solution may
not be found. In fact this deficiency motivated use to create the portion at the start of the
algorithm that seeks a stabilizing solution.

In [7], robust stabilization of the system is considered for & = 0 (the static controller
case), and k = 1 and k£ = 2 (low-order dynamic control). We now demonstrate that our
algorithm is able to find better solutions than those appearing in [7], which up to now have
been the best available.

For k = 0, the results are given in Table 2. The stability radius achieved by the algorithm
was 3(A + BKC) = 9.33 x 10> with

—-1.1179  —1.6880e—5

K =143557e+1 1.9930e—4 |

By comparison, the solution obtained in [7] produces a stability radius of (A + BKC) =
7.91 x 10~°, which is less than our own value.

Table 2: Boeing 767: Robust Stabilization, & = 0. ¢ denotes the iteration number, 3 the
stability radius, 7' the time in seconds required for each iteration, and N the number of f
evaluations required for each iteration.

| 8 | T[] N |
9.09e-6 | 1.1 -
7.04e-5 | 320 | 2000
9.20e-5 | 480 | 3100
9.23e-5 | 470 | 3000
9.33e-5 | 480 | 2900
9.33e-5 | 500 | 3000

U= W N = OL

For k = 1, the results are given in Table 3. The stability radius achieved by the algorithm
was 1.24 x 10~* with

4. B —2.0566e—1 —1.2201e+2 5.6638¢—3
{CK DK}: —1.5569¢—2 —5.2806e—1 2.5267e¢—6
K FK —1.4663¢—2 5.8900 3.9470e—5

By comparison, the solution obtained in [7] produces a stability radius of 9.98 x 10>, which
again is less than our own value.
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Table 3: Boeing 767: Robust Stabilization, & = 1. ¢ denotes the iteration number, 3 the
stability radius, T the time in seconds required for each iteration, and N the number of f
evaluations required for each iteration.

| 6 [T N |
3.056-6 | 1.5 | -
1.24e-4 | 640 | 4200
1.24e-4 | 660 | 4300

N\ ] | Ne)

For k = 2, the results are given in Table 4. The stability radius achieved by the algorithm
was 2.00 x 10~* with

—4.1367e+1 —4.6368e+1 4.7884e+1 —1.3239e—2
Ak DBg| | —3.788%e+1 —4.2488e+1 —3.3479e+1 —8.5480e—3
[ ] —1.3890e—1 —2.1165e—1 1.1020 —3.648%e—-5
—5.6430e—1 —=5.2074e—1 5.7206e—2 —1.2360e—4

Ck Dk

By comparison, the solution obtained in [7] produces a stability radius of 1.02 x 10~*. Hence,
our stability radius is again better, and in this case, rather significantly better.

Table 4: Boeing 767: Robust Stabilization, k& = 2. ¢ denotes the iteration number, 3 the
stability radius, 7' the time in seconds required for each iteration, and N the number of f
evaluations required for each iteration.

| 6 [T [ N ]
243¢5 | 24 | -
1.86e-4 | 1300 | 8400
2.00e-4 | 2200 | 17000
2.00e-4 | 1800 | 16000

W N = Ol

Finally, before ending this subsection, let us make an observation regarding the Boeing
767 system. Examining the system matrices reveals that, while the nonzero entries in B are
of the same magnitude, the entries in the first row of C' are roughly 10° times smaller in
magnitude than the entries of the second row of C. That is, the problem is poorly scaled.
This issue can be overcome by multiplying the second row of C' by 10~°. If a controller K
could be found for this re-scaled system, a controller for the original unscaled system would
be K with its last column multiplied by 107°. Using this re-scaling method, just using
AGOP applied to f also finds a stabilizing solution. In the results given above, we have not
used re-scaling, and hence the full algorithm is superior in this regard.

Boeing 767: H., Synthesis

In this subsection we again consider the Boeing 767 system but this time consider the
problem of H., synthesis.
For k£ = 0, the results are given in Table 5. The minimum value achieved by the algorithm
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was || T (5, )]s = 13.2 with

K= —8.9180e —1 2.1578e —5
a 4.2991 2.0537e — 5| "

For comparison purposes, the best result from the literature, see [2], gives Ho, norm equal
to 13.1

Table 5: Boeing 767: Ho, Synthesis, &k = 0. ¢ denotes the iteration number, ||T}, .||« the
H, norm of the closed loop transfer function from w to z, T the time in seconds required
for each iteration, and N the number of f evaluations required for each iteration.

la[Tw:llo [ T [ N |
0] 546e+2 | 1.6 | -
1| 1.32e+1 | 630 | 4700
2 | 1.32e+1 | 590 | 4300

For k£ =1, the results are given in Table 6. The minimum value achieved by the algorithm
was ||Tw,-(s,[Ax Br; Cx Dk])|lec = 10.4 with

4. B { —24176  —2.637Tle—1 2.6845e — 4]
{CK DK} =| -29232 3.173le—1 1.4342e—5] .
oK [—3.4393(5 —1 2400le—1 4.9838¢ — 5J

The best result from the literature, again see [2], gives Ho, norm equal to 10.2.

Table 6: Boeing 767: Ho, Synthesis, k = 1. ¢ denotes the iteration number, ||T} .||c the
H., norm of the closed loop transfer function from w to z, T the time in seconds required
for each iteration, and NV the number of f evaluations required for each iteration.

[a[Twsll [ T [ N |
0 7.33e+2 | 2.1 -
1.3le+1 | 810 | 63000
1.20e+1 | 1300 | 9100
1.04e+1 | 1200 | 8100
1.04e+1 | 1300 | 9200

= 0 N =

Transport Airplane: H,, Synthesis

The final system considered is a transport airplane [12] (system ACS8 from the COMPI.ib
collection [21]). For this system, n =9, ms = 1 and p» = 5. The A matrix is unstable.

The results are given in Table 7. The minimum value achieved by the algorithm was
[|Tw (s, K)|loo = 2.01 with

K =[1.3018 —0.98672 —1.4860 0.063107 1.4209].

In [2], the result for this problem has the same H., norm.
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Table 7: Transport Airplane: H,, Synthesis, k = 0. q denotes the iteration number, || T, - || oo
the H,, norm of the closed loop transfer function from w to z, T the time in seconds required
for each iteration, and NV the number of f evaluations required for each iteration.

[Tw:lle [ T [ N |
132 [13] -
2.13 | 15 | 3200
2.04 | 32 | 5200
2.02 | 31 | 5000
2.01 | 35 | 5200
2.01 | 33 | 5000

U= W N = Ol

Stabilization

Once the algorithm finds a stabilizing solution, it does not necessarily stop immediately
though nor does it try to minimize (3) as much as it can. In this final part of the numerical
results section, we demonstrate that the preliminary part of the algorithm can often be
successful in quickly finding stabilizing controllers. In this case, the algorithm is terminated
as soon as a stabilizing solution is found.

We ran the algorithm on each of the static output feedback problems given in the
COMPI,ib collection which were not open loop stable. Details of the problems can be
found in [21].

Results are given in Table 8 and are quite good. Stabilizing controllers were found for
43 of the 49 systems. Of the 43 that were successfully stabilized, a stabilizing solution for
35 of the systems was found in 1.0 seconds or less.

@ Conclusions

In this paper the H., synthesis problem was posed as an unconstrained, nonsmooth, non-
convex minimization problem in the entries of the output feedback matrix K. A numerical
method for solving this reformulation of the problem was presented and application of the
algorithm to various benchmark problems produced quite positive results. In particular, the
algorithm was able to significantly improve on the best results appearing in the literature for
robust stabilization of the Boeing 767 model. The effectiveness of the preliminary part of the
algorithm for successfully and quickly finding stabilizing controllers was also demonstrated.
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