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Abstract: This paper is concerned with the minimum maximal flow problem, i.e., a problem of minimizing
the flow value attained by a maximal flow for a given network. The optimal value indicates how inefficiently
the network can be utilized under restricted controllability. We discuss the extension of the gap function
defining the set of all maximal flows and then formulate the problem as a D.C. optimization problem. Based
on this formulation, we propose the cut and split method combined with a local search technique.
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Introduction

We consider a network (V,s,t, E,0%,07,c), where V is the set of m + 2 nodes containing
the source node s and the sink node ¢, E is the set of n arcs, 87 and &~ are incidence
functions, and ¢ is the vector of dimension n whose hth element ¢y, is the capacity of arc h.
We assume that each element of ¢ is a positive integer throughout this paper. A vector x
of dimension n is said to be a feasible flow if it satisfies the inequality 0 < x < ¢, called the
capacity constraint, and the equality Ax = 0, called the conservation constraint, where the
m X n matrix A is the incidence matrix whose (v, h) element a, is given by

+1 ifdth=wv
ayp, =4 —1 ifd"h=v (1.1)
0 otherwise.

Let X denote the set of all feasible flows, i.e.,

X={zeR"|Ax=0,0<z <c}, (1.2)
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and Xy denote the set of all vertices of X. Note that each vertex v € Xy is an integer
vector by the total unimodularity of A and the integrality of the capacity vector ¢. For a
feasible flow x, the flow value of x, denoted by ¢(x), is given by

P(x) = Z Th — Z Zp. (1.3)

Oth=s O~ h=s

Using the row vector d of dimension n whose element dj, is

+1 ifdth=s
dy={-1 ifo h=s (1.4)

0 otherwise,

we can simply write ¢(x) = dx. We assume that a given network has no ¢-s-path, which
ensures that de > 0 for all © € X. A feasible flow x is said to be a mazimal flow if there is
no feasible flow y such that y = = and y # . We denote the set of all maximal flows by
XM, i.e.,

Xy={zeX|AyeX :y2ax, y#x} (1.5)

We assume that X, is nonempty. The problem of minimizing the flow value among maximal
flows, called the minimum mazimal flow problem and abbreviated by (mmF’), is written as

(mmF) min o(x) = dz

s.t. x € Xy

The difficulty of the problem comes from the nonconvexity of X,;, and hence sophisticated
algorithms are required. Note that (mmF') embraces the minimum maximal matching
problem, which is an N P-hard problem (see e.g. Garay-Johnson [14]).

In the field of network flow theory such as maximum flow problem and minimum cost
flow problem, we usually take it for granted that we can control each arc flow, namely we can
freely increase and decrease each arc flow as long as the feasibility is met. However, when we
are not allowed to decrease arc flows, the solution to be obtained depends on a given initial
flow. Under the condition of such uncontrollability, it is meaningful to know the minimum
flow value among the maximal flows since this value indicates how inefficiently a network
can be utilized. The concept of uncontrollable flow was first raised by Iri [18,19], which is
closely related to but different from the maximal flow. Shi-Yamamoto first raised (mmF)
and proposed an algorithm in [29]. After this several algorithms for (mmF') combining
local search and global optimization technique have been proposed in e.g. Gotoh-Thoai-
Yamamoto [15] and Shigeno-Takahashi-Yamamoto [30]. As will be seen in the next section,
(mmF) is a special case of linear optimization problems over the efficient set. The algorithms
for (mmF’) mentioned above are mainly based on the algorithms for the linear optimization
problem over the efficient set. However, we have neither theoretical evidence that these
algorithms are efficient, nor comparative study from the viewpoint of computational time.

The purpose of this paper is to propose an algorithm for (mmF) within the frame-
work of D.C. optimization. The algorithm is based on local search and global optimization
technique.

In Section 2 we briefly review some fundamental theorems of the linear optimization
problem over the efficient set, and then we reformulate the problem by the gap function.
We also mention the connectedness of the efficient set. Section 3 is devoted to explaining
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the cut and split method. In Section 4 we extend the gap function and apply the cut and
split method to (mmF). Finally, some conclusion and further works will be discussed in
the last section.

Throughout this paper we use the following notations: R™ denotes the set of all real
column vectors of dimension n. Let R} = {z € R" |z 20} andR}, ={x € R" |z >0}.
Let R,, denote the set of all real row vectors of dimension n, R,,+ and R, 44 are defined in
the similar way. We use e to denote the row vector of ones, 1 to denote the column vector
of ones, and e; to denote the ith unit row or column vector of an appropriate dimension.
Let I denote the identity matrix of an appropriate size. We use @' and AT to denote the
transposed vector of @ and the transposed matrix of A, respectively. For a set S, we denote
the interior of S by int S, the closure of S by cl S, and the relative boundary of S by 0S.
We use Py to denote the set of all vertices of a polyhedron P. For two vectors v and w of
dimension n, let [v, w] denote the line segment with endpoints v and w.

Linear Optimization Problem Over the Efficient Set

Given a polyhedron D = {x € R" | Be < z, 2 0} with B € R™*™ and z € R™, and a
criterion matrix C' € RP*™ with p 2 2, the linear multicriteria problem is

max Cx
T

(MC)
st. x€D.
The point @ € D is said to be an efficient point for (MC') if there is no point y € D such
that Cy 2 Cx and Cy # Cx. The efficient set for (MC), denoted by Dg, is the set of all
efficient points for (M C), i.e.,

Dp={x€eD|AyeD:Cyz2Cx, Cy+#Cz}. (2.6)

We assume that D is bounded for simplicity. The linear optimization problem over the
efficient set is

P mai:n px

(Pr) st. x € Dg,

where p € R,,. Note that (mmF) is (Pg) with D = X and C' = I, hence Dg = X/, and
p = d. Figure 1 shows a two-dimensional example of the problem (Pg), where ¢! is the ith
row of C' for i = 1,2. The efficient set Dg is depicted by bold lines.

Since Philip first considered (Pg) and proposed an algorithm based on local search and
cutting plane technique in [25], a number of papers followed his work. The overview about
the efficient set and several algorithms for (Pg) can be found in Yamamoto [37]. For the
details about (Pg), the reader should refer to White [36], Sawaragi-Nakayama-Tanino [27]
and Steuer [31]. The mathematical structure of the efficient set is studied in Naccache [24],
Benson [7] and Hu-Sun [17]. The method enumerating the efficient vertices for (M C) can
be found in Ecker-Kouada [10,11]. For solution methods for (Pg), see Benson [4-6], Bolin-
tineanu (8], Ecker-Song [12], Fiilop [20], Dauer-Fosnaugh [9], Thach-Konno-Yokota [32],
Sayin [28], Phong-Tuyen [26], Thoai [33], Muu-Luc [22] and An-Tao-Thoai [3]. D.C. opti-
mization approaches for (Pg) can be seen in An-Tao-Muu [1,2].
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Figure 1: A two-dimensional example of (Pg)
Gap Function and Some Fundamental Theorems
We define the gap function g : R - RU {—o0} by
g(x) =max{eCy|ye D, Cy=2Cx}—eCu. (2.7)

If there is no point y € D such that Cy =2 Cx then g(x) = —oo. Note that g(z) = 0 for
all z € D and ¢ is a concave and piece-wise linear function (see Figure 2). It is easily seen
that

Dp={zeD|gz) <0} (2.8)

Indeed, a point « € D is in Dg if and only if Cy = Cx for all y € D such that Cy = C,
that is equivalent to g(x) < 0. Then the alternative form of (Pg) is

min T
i p

P
(Pe) st. xeD, —g(x) 20.

Since —g is a convex function, the inequality constraint —g(x) = 0 is called a reverse
convez constraint, and hence (Pg) is a linear reverse convex problem, which is one of D.C.
optimization problems (See Tuy [35] and Horst-Tuy [16]). Moreover, it is known that the
above alternative form of (Pg) can be cast into the problem

mmin px + tg(x)

(Pe(t)) st. xxeD

where ¢ > 0 is an exact penalty parameter. Note that a tight exact penalty parameter
is given in e.g. An-Tao-Muu [1] and Dauer-Fosnaugh [9]. When we consider (mmF), the
problem

mai:n dzr + tg(x)

(mmE(t)) st. xeX
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is equivalent to (mmF) for any t > t* = max{dx | * € X} —min{dx | x € X} (See
Muu-Shi [23]).

NI(@)

eC
Figure 2: An example of the gap function g

We introduce some important theorems about (Pg), whose proofs can be found in e.g.
Steuer [31] and White [36]. We will outline some of the proofs to make this paper self-
contained.

Theorem 2.1. The point T € D is an efficient point for (MC) if and only if there exists
A € Rpy 1 such that T is an optimal solution of the single criterion problem

max ACz
T

(SC) st. x€D.

Furthermore, there exists M > 0 such that we can replace the above Ry with
A:{AERP++|A§€, A].:M} (29)
Proof. See Appendix A. n

By Theorem 2.1, we have only to choose A € A and solve (SC(A)) to obtain an initial point
in Dg N Dy. It was shown in Shigeno-Takahashi-Yamamoto [30] that n? suffices for M of
(2.9), when we consider (mmF'). The following theorem is also well known.

Theorem 2.2. The set Dg is a connected union of the several faces of D.

See Steuer [31] and Naccache [24] for the detail.
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D.C. Optimization

A set S is said to be a D.C. set (difference of two convex sets) if S = Q\R for two convex
sets @) and R. Similarly, a function f is said to be a D.C. function if f = q—r for two convex
functions ¢ and r. The optimization problem described in terms of D.C. sets and/or D.C.
functions is called a D.C. optimization problem. D.C. optimization problem covers many
of nonlinear programming problems such as location planning problem, engineering design
problem, multilevel programming problem, and optimization problem over the efficient set.

Let D = {xz € R"| f(x) £0}, where f : R - R U {400} is a convex function. We
assume that D is bounded for simplicity. Let h: R” — RU{+0o0} be a convex function and
assume

int{xeR"|h(x) L0} ={x e R"|h(x)<0}. (3.10)
In this section, we focus on a canonical form D.C. problem:

min xr
i p

CDC
( ) st. x €D, h(x) 20,

where p € R,. Letting H ={x € R" | h(x) £ 0}, (CDC) can be written as

min x
i p

cDC
( ) st. « € D\int H.

In the case where D is a polyhedron given by D = {x € R" | Bz < 2z, x 2 0} with B €
R™*™ and z € R™, the above problem is called a linear reverse convezx problem (LRCP).
Figure 3 shows two-dimensional examples of the problems (C'DC') and (LRC P), respectively.
Below we explain the cut and split method for (LRCP). For other algorithms on D.C.
optimization, the reader should refer to Tuy [34,35] and Horst-Tuy [16].

Figure 3: Two-dimensional examples of (CDC) and (LRCP)

Cut and Split Method
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To apply the cut and split (CS for short) method for (LRCP) we assume that
D C RY and 0 € Dy Nint H. (3.11)

In the first step of the CS method for (LRCP), we find an initial feasible solution x,
which serves as an initial incumbent, and set up the family S of polyhedral cones, initially
S := {R}. In each iteration, we calculate a lower bound with respect to K for each cone
K € S, then we split the cone whose lower bound is minimum until the optimality condition
is met. To calculate a lower bound we define a concavity cut for K\H as follows. Given
a polyhedral cone K with a vertex at 0 and exactly n extreme rays, let u® denote the
intersection point of 0H and the ith extreme ray of K for i = 1,... ,n. The concavity cut
Ik(x) 20 for K\H is given by the linear function lx : R* — R such that

Ig(z) =eU 'z -1, (3.12)

where U = [u!,--- ,u"]. Note that [x(0) = —1 and Ix(u’) =0 for i = 1,... ,n. Figure 4
shows an example of the concavity cut. See Horst-Tuy [16] for the detail.

Figure 4: The concavity cut lx(z) = 0 for K\H

For each K € § we solve the linear programming problem

min px

(LP(K) z
st. x€DNK, Ig(x) 20,
to obtain a solution w’ with the optimal value pw’, which is a lower bound with respect to
K. If h(w®) 20, ie., wK € Dg, and pw® < pZ for some K then we update the incumbent
Z to w®. When there remain cones after discarding the cones K with pw® > pz if any,
then we choose one of them and perform either the w-subdivision or the bisection, which
are defined below, and go to the next iteration.

For a cone K generated by n extreme rays with directions r',...,r", let w € K be
a point such that w = EjeJ ;77 for some 6; > 0 for j € J, where J C {1,...,n} is
the index set of at least two elements, i.e., |J| = 2. Let K; denote the cone generated
by {r',...,r"}\{r’} U{w} for each j € J. The cone K is then split into |J| cones K;.
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Figure 5: The w-subdivision

This splitting is called the w-subdivision (See Figure 5). When w = (r +r')/2 for r,r’' €
{rl ..., 7"} such that ||r — r'|| is maximum, the subdivision is called the bisection.
The CS method is described as follows.

/** CS method **/

(0) (initialization) Find an initial feasible solution & of (LRCP). Set Ky := R}, S := {Ko},
R:=8, and k := 0.

(k) (iteration k) For each K € S, solve Bk :=min{pz |z € DN K, lx(x) = 0} to obtain
a solution w’, where Ix(z) 2 0 is the concavity cut for K\ H.

(k1) (update) Solve B* := min{fk | K € S, h(w®) 20} to obtain the cone K*. If
B* < pZ then set & := wk”

(k2) (termination) Let R := { K € R | fx < px }. If R’ =0 then stop, since & solves
(LRCP).

(k3) (subdivision) Solve min{ S8k | K € R'} to obtain the cone K**. Perform either
the w-subdivision for some w € K** or the bisection on K**. Let S** be the
partition of K**. Set S := S§**, R := S** U (R'\{K**}), k := k+ 1 and go to (k).

The convergence of the CS method critically depends on the subdivision rule of K**.
Let us denote w®" for iteration k by w®. If the subdivision is ezhaustive, namely any
nested sequence of cones generated in the algorithm will shrink to a ray, there is at least
one accumulation point w* of {w*} contained in OH, and hence w* is feasible. Since pw*

is a lower bound of (LRCP) for all k, w* is an optimal solution of (LRCP).

Cut and Split Methods for (mmF)

In this section we apply the cut and split method to (mmF'). The problem (mmF) is written
as

min dx
T

(mmF)
st.  x € Xy,
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where X ={xz € R" | Az =0,0SxScland Xy ={xec X |[Aye X :y2x, y#x}.
Using the gap function

g@) =max{ey |y X, y2 ) —ex, (4.13)
and the set G = {x € R" | —g(x) £ 0}, (mmF) is also written as

min dx
(mmF) T )
st. xe X\intG.

We exclude the trivial case where X = {0}. This implies that 0 ¢ X or —g(0) < 0.
We also assume that there is no t-s-path, which means dx 2> 0 for all x € X. Note that
all vertices of X are integer vectors by the total unimodularity of A and the integrality of
c. If x € X is an integer vector, then g(x) takes an integer. As stated in Subsection 2.1,
g(x) 2 0 for all x € X. Additionally we have the following lemma.

Lemma 4.1. g(x) > 0 for all points x in the relative interior of X.

Proof. Let & be a point in the relative interior of X, i.e., Ax =0 and 0 < x < ¢. Letting
' = (1+4¢)x for a sufficiently small € > 0, we see that Az’ =0and 0 < ' < ¢, i.e., &' € X.
Therefore g(z) 2 e(x’ —x) = cex > 0. 0

The following corollary is a direct consequence of Lemma 4.1.

Corollary 4.2. X, € 0X.

Extension of Gap Function

The domain of g, denoted by dom g, is given by domg = {x € R" | g(x) > —oc }. Since
g(v) = —oo if there is no point y € X such that y 2 v, no information is available about
how far the point v is from the domain of g. In this subsection we extend the gap function
g to R™. The gap function g(x) of (4.13) is given by the optimal value of the problem

max ey —ex
Y

(Pa(x)) st. Ay =0,0=<y<c,
yzw,

whose dual problem is

min  «ac-— Bxr —ex
o0
(Dg()) s.t. TA+a—-pB2e,
a,B320.

Note that (D¢ (x)) is always feasible, e.g. take # = 3 = 0 and a 2 e. Therefore, (Pg(x)) is
infeasible if and only if (Dg(x)) is unbounded. Adding the upper bound constraints 8 < 3
to (Dga(x)) yields the following problem

min  «ac-— Bxr —ex
o0
(Dg()) s.t. TA+a-p082e,
@20, 080,
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where 3 > 0 will be specified in the following theorem. The dual problem of (Dg(x)) is

max ey —exr —Bt

)

(Pa(z)) st. Ay=0,0%<

Then we define the extended gap function g: R™ — R as
gx)=max{ey—pBt|ye X, y+t>z, t>0}—ex. (4.14)
Theorem 4.3.
(i) The domain of g is R™.
(ii) If B = ne then § = g on the domain of g.

Proof. (i) For any @ € R™, (Dg(x)) has a feasible solution and the objective function
is bounded. By the duality theorem of linear programming there is an optimal value of
(Pg(z)), and hence g(x) > —oo for any = € R™.

(ii) Let Q and Q denote the feasible sets of (Dg(x)) and (Dg(x)), respectively, i.e.,

Q= {(7r7a7ﬁ) €Rm+2n|7"A+a_B§€, a,,BEO}, and

Q= {(ﬂaaala)ERm+2n|ﬂA+a_IB§ea aéoa Oéﬂgg}

By the theory of linear programming, if every vertex v of  satisfies v < 3 then we have
g(x) = g(x) for all = in the domain of g. Replacing 7 by w! — 72 with 7!, 72 > 0 and
introducing a slack variable vector v = 0, ) is rewritten as

(WI)I (Wl)I (Wl)I
(72 (72 (7?)
Q= a’ (AT AT T -1 -I)| &' | =1, a' |20
B’ B’ B’
¥ ¥ ¥

Let v be a vertex of 2. Then it is a basic solution of the system defining (2, i.e., v =
(w?,w") = (B~'1,0) for some nonsingular n x n submatrix B of (AT —AT I —I —I).
Since the incidence matrix A is totally unimodular, i.e., each subdeterminant of A is —1, 0,
or +1,s01is (AT —AT I —I —I). Therefore the matrix B~! is composed of —1, 0 and +1,
and hence B~1'1 < nl. This completes the proof. n

Theorem 4.3 yields an equivalent form of (mmF). Namely, fixing 3 = ne we can reformulate
the problem (mmF) as

min dx
T

(mmF) o
st.  xe X\intG,

where G = {z € R" | —g(z) £0}.

Local Search
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For v € X N Xy, we define the set of all efficient vertices linked to v by

Ny(v) = {v e Xy NXy|[v,v']is an edge of X } (4.15)
{v'" € Xy | [v,v] is an edge of X and —gG(v') 20}.

When we find a feasible solution w € Xjs, we apply the Local Search procedure starting
with w (LS(w) for short) for further improvement.
The procedure is described as follows.

/** LS(w) procedure **/

(0) (initialization) If w ¢ Xy then solve min{dx | x € F'}, where F' is the face of X
containing w in its relative interior, to obtain a vertex v € Xjr N Xy, otherwise set
v?:=w. Set k:=0.

(k) (iteration k) Solve min {dv | v € Nys(v*) } to obtain a solution v*. If dv* > dv* then
stop, v¥ is the local optimal vertex of (mmF). Otherwise set v**! := v* k:=k +1
and go to (k).

Remark 4.4. If w € Xy, the face F' of X containing w in its relative interior is contained
in X5 by Theorem 2.2.

Cut and Split Method for (mmF)

We can directly apply the CS method to (mmF) since it satisfies the assumptions of
(3.11), i.e.,

X CR? and 0 € Xy Nint G, (4.16)

To make the algorithm more efficient we combine the LS(w) procedure with the CS method,
namely we apply the LS(w) procedure to obtain a tighter upper bound every time we find
a feasible solution w € X,.

The CS method for (mmF) is described as follows.

/*¥* CS method for (mmF) **/

(0) (initialization) Find an initial feasible vertex w® € XN Xy of (mmF). If Npyr(w®) =0
then stop. We see that w® is the unique optimal solution of (mmF). Otherwise, apply
the LS(w") procedure to obtain a local optimal vertex & € X N Xy. Set Ky := R7,
S ={Ko},R:=S8,v:=0and k:=0.

(k) (iteration k) For each K € S, solve 8k := min{dz |z € X N K, Ix(z) 2 0} to obtain
a solution w’, where Ix(z) 2 0 is the concavity cut for K\G.

(k1) (update) Set £ :={K € S | w® € Xy, }. If £L # 0 then apply the LS(w¥) proce-
dure to obtain a local optimal vertex v for each K € £. Solve min {dv® | K € L}
to obtain the cone K*. If dv® < dz, set & := v¥".

(k2) (termination) Set R' :={K € R | fx <dz}. If R' =0 or dz — y < 1 then stop,
since & solves (mmF).
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(k3) (subdivision) Solve min { Bk | K € R’} to obtain the cone K**. If Bx++ > v then
set v := Bi+~. Let & be the partition of K** obtained by the w-subdivision
on K** for some direction w € K**, or the bisection. Set & := §**, R := S** U
(R'\{K**}), k:=k+ 1 and go to (k).

Remark 4.5. In Step k3 the direction w € K** is obtained as follows. Suppose that K**
is generated by the directions w',...,u" such that w! € 9G, initially u’ = a*e’ with
a* = max{a|—g(ae’) £0} for each i = 1,... ,n. The function lx++ : R" — R defining
the concavity cut lg-«(x) = 0 for K**\G is given by lx-(z) = eU 'z — 1, where U =

[ul,...,u"]. Here we solve

n=max{lg~(y) |y € XNK**}, (4.17)

to obtain a solution y*. Since K** is in R/, i.e., Bk < d&, we see that n =2 0. If n >0
then we perform w-subdivision on K** with w = y*. If n = 0 then we discard K** from R’
and go back to Step k2. In this case there is no point v € Xy N K** such that v # u’ for
each i = 1,... ,n. Then we can discard K** from further consideration, because at least
one vertex of X solves (mmF).

Every time we obtain an optimal solution y* of (4.17) with > 0, we can perform
y*-subdivision on K**. This assertion follows from the following theorem.

Theorem 4.6. Let K** be a cone generated by the directions u',... ,u™ such that u' € 8G
for each i =1,...,n, and y* be an optimal solution of (4.17) with n > 0. Then y* # au’
foranyi=1,...,n and for any a > 0.

Proof. Assume that y* lies on an extreme ray of K**, i.e., y* = au’ for some a > 0 and
ul. Since 0 < n =lg-(y*) =eU '(au’) —1 = a—1, we have @ > 1. By the choice of u/,
we have g((1 + &)u’) < 0 for any € > 0. Therefore we have g(y*) < 0. On the other hand,
y* € X N K* C K, which implies g(y*) = 0. This is a contradiction. 0

Furthermore the following assertion is also available in this subdivision rule.

Theorem 4.7. Let K be the cone generated by the directions ul, ... u" and U = [ul,. ..,
u”]. Ifu' € Xy for each i =1,... ,n then some u’ solves min{dx |z € X N K, Ix(x) =

0}

Proof. Let w be an optimal solution of min{dx | £ € X N K, Ix(x) 2 0}. Since w € K,
there are nonnegative numbers p1, ... ,u, such that w = 2?21 wiu'. Also we see that
0 S ik(w) =eU (X, pu’)—1 =" w —1, and hence Y  pu; = 1. Note that
dx > 0 for all z € X by the assumption that a given network has no ¢-s-path. Let u’ attain
min{du’ |i=1,...,n}. Then du’ <Y | p;du’ = dw, in other words, u? € X solves
min{de |z € XNK, lg(x) 20} 0

We see that the set {x € K** | [g««(x) > 0} does not contain a vertex of X when n of
(4.17) is zero. Suppose that an oracle is available that provides a vertex of X in {x € K** |
lg++(x) > 0} whenever there are some, and take the vertex as the direction w in Step k3.
Then, owing to the finiteness of Xy, the w-subdivision is repeated at most | Xy| times, and
hence the CS method terminates after finitely many iterations. However, the oracle is costly
and the authors estimate it N P-complete to check whether Xy N{x € K** | g+ (x) > 0}
is not empty. See Freund-Orlin [13].
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We illustrate the CS method for (mmF') in Figure 6, in which we use a two-dimensional
general polyhedron X = {z € R> | Bt <z, z > 0 }insteadof X = {x € R" | Az =0, 0 <
x < ¢} since the latter is unsuitable for illustration. We first obtain a local optimal vertex
z € Xy N Xy and set Ky := R’} (See (a)). We determine the concavity cut I, (x) = 0 for
Ko\G and obtain a point w0 (See (b)). The value dw*° is a lower bound with respect to
Kp. Since wo ¢ X3 and dw’° < dz, we split the cone Ky into K; and K> (See (c)). In
the next iteration, points wX' and w2 are obtained (See (d)). We see that w®2 € X, and
hence apply the LS(w®2) procedure to obtain a better point v2 and update the incumbent
Z to v&2. The cone K, is discarded, since dw’? 2> dx. Meanwhile K is split into K3 and
K, since w1 ¢ Xy and dw®1 < dz (See (e)). We obtain points w2 and w4 in the next
iteration (See (f)) and continue the algorithm.

Conclusion and Further Works

Computational experiment should be carried out to verify the efficiency of the algorithm we
proposed in this paper. In many problems formulated as (Pg) the criterion matrix C has
quite a small number p of rows. Some sophisticated algorithms for (Pg) take advantage of
this property. However, in (mmF’) the number p is equal to the number of arcs, i.e., p = n.
Therefore it is likely that a primitive method surpasses some sophisticated algorithms. The
comparative studies of several algorithms for (mmF’) are significant and required for further
works.

If we can reduce the number of variables in (mmF), we can make the CS method more
efficiently. The dimension of X = {x € R" | Az = 0, 0 £ < ¢} is much smaller than
the number of variables in many cases. This property seems to be useful, however, there is
still some difficulties to overcome (See Appendix B).

Appendix A

The Proof of Theorem 2.1

Proof. (<) Assume that & € D is not an efficient point for (M C'). There exists y € D
such that Cy 2 Cx and Cy # Cx. Then, & is not an optimal solution of (SC(X)) for any
A €R,++. (=) Suppose & € D is an efficient point for (MC). Let Lg = diag{l1,...,l.},
where

1 ifz; =0 3
l; = nE= fori=1,...n. (5.18)
0 otherwise

If there exists a vector u € R™ satisfies the system
Cuz0, Cu#0, Lyu=>0, Bu=0, (5.19)

setting * = & + fu for a sufficiently small § > 0, we see € D satisfies Cx = CZ and
Cx # Cz. This contradicts that & is an efficient point for (MC). Then, there is no
vector u € R™ satisfies the system (5.19). Applying the Tucker’s alternative theorem (See
Mangasarian [21]), there are vectors A € R,, u € R,, and v € R,,, such that

AC+pLlyz+vB=0, A>0, u=0. (5.20)
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(a) initialization

(b) obtaining wo

K,

le(m) = 0

(c) splitting Ko into K; and Ko

(d) obtaining w®* and w2

(e) splitting K into K3 and K4

(f) obtaining w* and w4

Figure 6: An example of the CS method for (mmF)
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For any = € R™, we see that
AXo(x—z)+plg(z—z)+vB(xz—x) =0. (5.21)

Therefore for any € D, we have pLg(Z — x) < 0 and vB(Z — ) = 0, and hence
ACZ 2 ACx. It remains to proof the assertion that there exists M > 0 such that we
can replace R,14 with A of (2.9). By the theory of the parametric linear program, Dg
is the union of finitely many faces F},---,Fx of D such that Fj is the optimal face of
(SC(AF)) for some A¥ € Ry 4. Let ap =1/min{\f |i=1,...,p}fork=1,...,K and
M = max{ax(A\*1) | k = 1,... ,K}. Then \* = (M/A*1)A* € A and F* remains the
optimal face of (SC(A")) for each k =1,... , K. ]

Appendix B

An idea to reduce the number of variables
After explaining a possible way to reduce the number of variables of (mmF’) we demonstrate
that it does not work well due to the high degeneracy of the problem.

An idea to reduce the variables is a combination of primal and dual representations of the
feasible region X = {x € R" | Az =0, 0 < = < ¢}. First choose a vertex v° € Xy Nint G
and enumerate all, say ¢ adjacent vertices v',...,v? € Xy linked to v°. Then X can be
rewritten as

X:{a:ER"

q
w:vo+2ui(vi—v0),0§w§c,uigOforallizl,...,q}.
i=1

We define X2 ={pe€RI|0Zv°+Vu<e, u>0}, where V =[v! —0°, ... w7 -2 €
R and X ={pe X | —g%(u) >0}, where

7% () =max{eVv —net |ve X Vv4+t>2Vu, t>20)}—eVp.
Then the problem (mmF) is equivalent to

min  d(v° + V)
(mmFR) K
st. pweXE.

If ¢ < n, (mmFg) is worth considering, however, ¢ can be much larger than n in spite of the
low dimensionality of X. Take the network in Figure 7 with unit capacity for all arcs, i.e.,
c = e, and take the origin 0 as v” € Xy Nint G. Then we see that the unit flow conveyed
along a simple path from source to sink is a vertex of X linked to the origin. This means
that g is as many as the simple paths from source to sink, which amounts to 3% = 27 in this
example while n = 15 and dim X = 13.
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Figure 7: The case where ¢ is larger than n
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