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Abstract� This paper is concerned with the minimum maximal �ow problem� i�e�� a problem of minimizing
the �ow value attained by a maximal �ow for a given network� The optimal value indicates how ine�ciently
the network can be utilized under restricted controllability� We discuss the extension of the gap function
de�ning the set of all maximal �ows and then formulate the problem as a D�C� optimization problem� Based
on this formulation� we propose the cut and split method combined with a local search technique�
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� Introduction

We consider a network �V� s� t� E� ��� ��� c�� where V is the set of m � � nodes containing
the source node s and the sink node t� E is the set of n arcs� �� and �� are incidence
functions� and c is the vector of dimension n whose hth element ch is the capacity of arc h�
We assume that each element of c is a positive integer throughout this paper� A vector x
of dimension n is said to be a feasible �ow if it satis�es the inequality � � x � c� called the
capacity constraint� and the equality Ax � �� called the conservation constraint� where the
m� n matrix A is the incidence matrix whose �v� h� element avh is given by

avh �

���
��

�� if ��h � v

�� if ��h � v

	 otherwise�

�����

Let X denote the set of all feasible 
ows� i�e��

X � fx � Rn j Ax � �� � � x � c g� �����
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and XV denote the set of all vertices of X � Note that each vertex v � XV is an integer
vector by the total unimodularity of A and the integrality of the capacity vector c� For a
feasible 
ow x� the �ow value of x� denoted by ��x�� is given by

��x� �
X

��h�s

xh �
X

��h�s

xh� �����

Using the row vector d of dimension n whose element dh is

dh �

���
��

�� if ��h � s

�� if ��h � s

	 otherwise�

�����

we can simply write ��x� � dx� We assume that a given network has no t
s
path� which
ensures that dx � 	 for all x � X � A feasible 
ow x is said to be a maximal �ow if there is
no feasible 
ow y such that y � x and y �� x� We denote the set of all maximal 
ows by
XM � i�e��

XM � fx � X j� �y � X � y � x� y �� x g� �����

We assume that XM is nonempty� The problem of minimizing the 
ow value among maximal

ows� called the minimum maximal �ow problem and abbreviated by �mmF �� is written as

�mmF �

�����
min
x

��x� � dx

s�t� x � XM �

The di�culty of the problem comes from the nonconvexity of XM � and hence sophisticated
algorithms are required� Note that �mmF � embraces the minimum maximal matching
problem� which is an NP 
hard problem �see e�g� Garay
Johnson ������

In the �eld of network 
ow theory such as maximum 
ow problem and minimum cost

ow problem� we usually take it for granted that we can control each arc 
ow� namely we can
freely increase and decrease each arc 
ow as long as the feasibility is met� However� when we
are not allowed to decrease arc 
ows� the solution to be obtained depends on a given initial

ow� Under the condition of such uncontrollability� it is meaningful to know the minimum

ow value among the maximal 
ows since this value indicates how ine�ciently a network
can be utilized� The concept of uncontrollable 
ow was �rst raised by Iri ���� ���� which is
closely related to but di�erent from the maximal 
ow� Shi
Yamamoto �rst raised �mmF �
and proposed an algorithm in ����� After this several algorithms for �mmF � combining
local search and global optimization technique have been proposed in e�g� Gotoh
Thoai

Yamamoto ���� and Shigeno
Takahashi
Yamamoto ��	�� As will be seen in the next section�
�mmF � is a special case of linear optimization problems over the e�cient set� The algorithms
for �mmF � mentioned above are mainly based on the algorithms for the linear optimization
problem over the e�cient set� However� we have neither theoretical evidence that these
algorithms are e�cient� nor comparative study from the viewpoint of computational time�

The purpose of this paper is to propose an algorithm for �mmF � within the frame

work of D�C� optimization� The algorithm is based on local search and global optimization
technique�

In Section � we brie
y review some fundamental theorems of the linear optimization
problem over the e�cient set� and then we reformulate the problem by the gap function�
We also mention the connectedness of the e�cient set� Section � is devoted to explaining
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the cut and split method� In Section � we extend the gap function and apply the cut and
split method to �mmF �� Finally� some conclusion and further works will be discussed in
the last section�

Throughout this paper we use the following notations� Rn denotes the set of all real
column vectors of dimension n� Let Rn� � fx � Rn j x � � g and Rn�� � fx � Rn j x � � g�
Let Rn denote the set of all real row vectors of dimension n� Rn� and Rn�� are de�ned in
the similar way� We use e to denote the row vector of ones� � to denote the column vector
of ones� and ei to denote the ith unit row or column vector of an appropriate dimension�
Let I denote the identity matrix of an appropriate size� We use a� and A� to denote the
transposed vector of a and the transposed matrix of A� respectively� For a set S� we denote
the interior of S by intS� the closure of S by clS� and the relative boundary of S by �S�
We use PV to denote the set of all vertices of a polyhedron P � For two vectors v and w of
dimension n� let �v�w� denote the line segment with endpoints v and w�

� Linear Optimization Problem Over the E�cient Set

Given a polyhedron D � fx � Rn j Bx � z� x � � g with B � Rm�n and z � Rm� and a
criterion matrix C � Rp�n with p � �� the linear multicriteria problem is

�MC�

�����
max
x

Cx

s�t� x � D�

The point x � D is said to be an e�cient point for �MC� if there is no point y � D such
that Cy � Cx and Cy �� Cx� The e�cient set for �MC�� denoted by DE � is the set of all
e�cient points for �MC�� i�e��

DE � fx � D j� �y � D � Cy � Cx� Cy �� Cx g� �����

We assume that D is bounded for simplicity� The linear optimization problem over the

e�cient set is

�PE�

�����
min
x

px

s�t� x � DE�

where p � Rn� Note that �mmF � is �PE� with D � X and C � I � hence DE � XM � and
p � d� Figure � shows a two
dimensional example of the problem �PE�� where c

i is the ith
row of C for i � �� �� The e�cient set DE is depicted by bold lines�

Since Philip �rst considered �PE� and proposed an algorithm based on local search and
cutting plane technique in ����� a number of papers followed his work� The overview about
the e�cient set and several algorithms for �PE� can be found in Yamamoto ����� For the
details about �PE�� the reader should refer to White ����� Sawaragi
Nakayama
Tanino ����
and Steuer ����� The mathematical structure of the e�cient set is studied in Naccache �����
Benson ��� and Hu
Sun ����� The method enumerating the e�cient vertices for �MC� can
be found in Ecker
Kouada ��	����� For solution methods for �PE�� see Benson ������ Bolin

tineanu ���� Ecker
Song ����� F�ul�op ��	�� Dauer
Fosnaugh ���� Thach
Konno
Yokota �����
Sayin ����� Phong
Tuyen ����� Thoai ����� Muu
Luc ���� and An
Tao
Thoai ���� D�C� opti

mization approaches for �PE� can be seen in An
Tao
Muu ��� ���
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Figure �� A two
dimensional example of �PE�

��� Gap Function and Some Fundamental Theorems

We de�ne the gap function g � Rn � R � f��g by

g�x� � max f eCy j y � D� Cy � Cx g � eCx� �����

If there is no point y � D such that Cy � Cx then g�x� � ��� Note that g�x� � 	 for
all x � D and g is a concave and piece
wise linear function �see Figure ��� It is easily seen
that

DE � fx � D j g�x� � 	 g� �����

Indeed� a point x � D is in DE if and only if Cy � Cx for all y � D such that Cy � Cx�
that is equivalent to g�x� � 	� Then the alternative form of �PE� is

�PE�

�����
min
x

px

s�t� x � D� �g�x� � 	�

Since �g is a convex function� the inequality constraint �g�x� � 	 is called a reverse

convex constraint� and hence �PE� is a linear reverse convex problem� which is one of D�C�
optimization problems �See Tuy ���� and Horst
Tuy ������ Moreover� it is known that the
above alternative form of �PE� can be cast into the problem

�PE�t��

�����
min
x

px� tg�x�

s�t� x � D�

where t � 	 is an exact penalty parameter� Note that a tight exact penalty parameter
is given in e�g� An
Tao
Muu ��� and Dauer
Fosnaugh ���� When we consider �mmF �� the
problem

�mmF �t��

�����
min
x

dx� tg�x�

s�t� x � X�
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is equivalent to �mmF � for any t � t� � maxfdx j x � X g � minfdx j x � X g �See
Muu
Shi ������

D

DE

g�x�

c�

c�

eC

Rn

Figure �� An example of the gap function g

We introduce some important theorems about �PE�� whose proofs can be found in e�g�
Steuer ���� and White ����� We will outline some of the proofs to make this paper self

contained�

Theorem ���� The point �x � D is an e�cient point for �MC� if and only if there exists

� � Rp�� such that �x is an optimal solution of the single criterion problem

�SC����

�����
max
x

�Cx

s�t� x � D�

Furthermore� there exists M � 	 such that we can replace the above Rp�� with

� � f� � Rp�� j � � e� �� �M g� �����

Proof� See Appendix A�

By Theorem ���� we have only to choose � � � and solve �SC���� to obtain an initial point
in DE �DV � It was shown in Shigeno
Takahashi
Yamamoto ��	� that n� su�ces for M of
������ when we consider �mmF �� The following theorem is also well known�

Theorem ���� The set DE is a connected union of the several faces of D�

See Steuer ���� and Naccache ���� for the detail�
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� D�C� Optimization

A set S is said to be a D�C� set �di�erence of two convex sets� if S � QnR for two convex
sets Q and R� Similarly� a function f is said to be a D�C� function if f � q�r for two convex
functions q and r� The optimization problem described in terms of D�C� sets and�or D�C�
functions is called a D�C� optimization problem� D�C� optimization problem covers many
of nonlinear programming problems such as location planning problem� engineering design
problem� multilevel programming problem� and optimization problem over the e�cient set�

Let D � fx � Rn j f�x� � 	 g� where f � Rn � R � f��g is a convex function� We
assume that D is bounded for simplicity� Let h � Rn � R�f��g be a convex function and
assume

int fx � Rn j h�x� � 	 g � fx � Rn j h�x� � 	 g� ����	�

In this section� we focus on a canonical form D�C� problem�

�CDC�

�����
min
x

px

s�t� x � D� h�x� � 	�

where p � Rn� Letting H � fx � Rn j h�x� � 	 g� �CDC� can be written as

�CDC�

�����
min
x

px

s�t� x � DnintH�

In the case where D is a polyhedron given by D � fx � Rn j Bx � z� x � � g with B �
Rm�n and z � Rm� the above problem is called a linear reverse convex problem �LRCP ��
Figure � shows two
dimensional examples of the problems �CDC� and �LRCP �� respectively�
Below we explain the cut and split method for �LRCP �� For other algorithms on D�C�
optimization� the reader should refer to Tuy ������� and Horst
Tuy �����

p

D

H

x�

p

x�

D

H

Figure �� Two
dimensional examples of �CDC� and �LRCP �

��� Cut and Split Method
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To apply the cut and split �CS for short� method for �LRCP � we assume that

D j Rn� and � � DV � intH� ������

In the �rst step of the CS method for �LRCP �� we �nd an initial feasible solution �x�
which serves as an initial incumbent� and set up the family S of polyhedral cones� initially
S �� fRn�g� In each iteration� we calculate a lower bound with respect to K for each cone
K � S� then we split the cone whose lower bound is minimum until the optimality condition
is met� To calculate a lower bound we de�ne a concavity cut for KnH as follows� Given
a polyhedral cone K with a vertex at � and exactly n extreme rays� let ui denote the
intersection point of �H and the ith extreme ray of K for i � �� � � � � n� The concavity cut

lK�x� � 	 for KnH is given by the linear function lK � Rn � R such that

lK�x� � eU��x� �� ������

where U � �u�� 	 	 	 �un�� Note that lK��� � �� and lK�u
i� � 	 for i � �� � � � � n� Figure �

shows an example of the concavity cut� See Horst
Tuy ���� for the detail�

K

H

lK�x� � 	

u�

u�

KnH

�

Figure �� The concavity cut lK�x� � 	 for KnH

For each K � S we solve the linear programming problem

�LP �K��

�����
min
x

px

s�t� x � D �K� lK�x� � 	�

to obtain a solution �K with the optimal value p�K � which is a lower bound with respect to
K� If h��K� � 	� i�e�� �K � DE � and p�

K � p�x for some K then we update the incumbent
�x to �K � When there remain cones after discarding the cones K with p�K � p�x if any�
then we choose one of them and perform either the �
subdivision or the bisection� which
are de�ned below� and go to the next iteration�

For a cone K generated by n extreme rays with directions r�� � � � � rn� let � � K be
a point such that � �

P
j�J �jr

j for some �j � 	 for j � J � where J j f�� � � � � ng is
the index set of at least two elements� i�e�� jJ j � �� Let Kj denote the cone generated
by fr�� � � � � rngnfrjg � f�g for each j � J � The cone K is then split into jJ j cones Kj �
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K

K�

K�

K�

� �

r� r�

r�

r� r�

r�

Figure �� The ��subdivision

This splitting is called the ��subdivision �See Figure ��� When � � �r � r���� for r� r� �
fr�� � � � � rng such that kr � r�k is maximum	 the subdivision is called the bisection�
The CS method is described as follows�


�� CS method ��


h�i �initialization� Find an initial feasible solution 
x of �LRCP �� SetK� �� R
n
�	 S �� fK�g	

R �� S	 and k �� ��

hki �iteration k� For each K � S	 solve �K �� min fpx j x � D �K� lK�x� � � g to obtain
a solution �K 	 where lK�x� � � is the concavity cut for KnH �

hk�i �update� Solve �� �� min f�K j K � S� h��K� � � g to obtain the cone K�� If
�� � p
x then set 
x �� �K

�

�

hk�i �termination� Let R� �� fK � R j �K � p
x g� If R� � � then stop	 since 
x solves
�LRCP ��

hk�i �subdivision� Solve min f�K j K � R� g to obtain the cone K��� Perform either
the ��subdivision for some � � K�� or the bisection on K��� Let S�� be the
partition of K��� Set S �� S��	 R �� S�� � �R�nfK��g�	 k �� k�� and go to hki�

The convergence of the CS method critically depends on the subdivision rule of K���
Let us denote �K

��

for iteration k by �k� If the subdivision is exhaustive	 namely any
nested sequence of cones generated in the algorithm will shrink to a ray	 there is at least
one accumulation point �� of f�kg contained in �H 	 and hence �� is feasible� Since p�k

is a lower bound of �LRCP � for all k	 �� is an optimal solution of �LRCP ��

� Cut and Split Methods for �mmF �

In this section we apply the cut and split method to �mmF �� The problem �mmF � is written
as

�mmF �

����� minx dx

s�t� x � XM �
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where X � fx � Rn j Ax � �� � � x � c g and XM � fx � X j� �y � X � y � x� y �� x g�
Using the gap function

g�x� � max f ey j y � X� y � x g � ex� ������

and the set G � fx � Rn j �g�x� � � g	 �mmF � is also written as

�mmF �

����� minx dx

s�t� x � XnintG�

We exclude the trivial case where X � f�g� This implies that � �� XM or �g��� � ��
We also assume that there is no t�s�path	 which means dx � � for all x � X � Note that
all vertices of X are integer vectors by the total unimodularity of A and the integrality of
c� If x � X is an integer vector	 then g�x� takes an integer� As stated in Subsection ���	
g�x� � � for all x � X � Additionally we have the following lemma�

Lemma ���� g�x� � � for all points x in the relative interior of X�

Proof� Let x be a point in the relative interior of X 	 i�e�	 Ax � � and � � x � c� Letting
x� � �����x for a su�ciently small � � �	 we see that Ax� � � and � � x� � c	 i�e�	 x� � X �
Therefore g�x� � e�x� � x� � �ex � ��

The following corollary is a direct consequence of Lemma ����

Corollary ���� XM j �X�

��� Extension of Gap Function

The domain of g	 denoted by dom g	 is given by dom g � fx � Rn j g�x� � ��g� Since
g�v� � �� if there is no point y � X such that y � v	 no information is available about
how far the point v is from the domain of g� In this subsection we extend the gap function
g to Rn� The gap function g�x� of ������ is given by the optimal value of the problem

�PG�x��

�������
max
y

ey � ex

s�t� Ay � �� � � y � c�
y � x�

whose dual problem is

�DG�x��

�������
min
�����

�c� �x� ex

s�t� �A��� � � e�
��� � ��

Note that �DG�x�� is always feasible	 e�g� take � � � � � and � � e� Therefore	 �PG�x�� is
infeasible if and only if �DG�x�� is unbounded� Adding the upper bound constraints � � 
�
to �DG�x�� yields the following problem

�DG�x��

�������
min
�����

�c� �x� ex

s�t� �A��� � � e�
� � �� � � � � 
��
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where 
� � � will be speci�ed in the following theorem� The dual problem of �DG�x�� is

�PG�x��

�������
max
y�t

ey � ex� 
�t

s�t� Ay � �� � � y � c�
y � t � x� t � ��

Then we de�ne the extended gap function 
g � Rn � R as


g�x� � max f ey � 
�t j y � X� y � t � x� t � � g � ex� ������

Theorem ����

�i� The domain of 
g is Rn�

�ii� If 
� � ne then 
g � g on the domain of g�

Proof� �i� For any x � Rn	 �DG�x�� has a feasible solution and the objective function
is bounded� By the duality theorem of linear programming there is an optimal value of
�PG�x��	 and hence 
g�x� � �� for any x � Rn�
�ii� Let � and 
� denote the feasible sets of �DG�x�� and �DG�x��	 respectively	 i�e�	

� � f ������� � Rm��n j �A��� � � e� ��� � � g� and

� � f ������� � Rm��n j �A��� � � e� � � �� � � � � 
� g�

By the theory of linear programming	 if every vertex v of � satis�es v � 
� then we have

g�x� � g�x� for all x in the domain of g� Replacing � by �� � �� with ����� � � and
introducing a slack variable vector � � �	 � is rewritten as

� �

������
�����

�
BBBB�
�����

�����

��

��

��

�
CCCCA

�
A� �A� I �I �I

	
�
BBBB�
�����

�����

��

��

��

�
CCCCA � ��

�
BBBB�
�����

�����

��

��

��

�
CCCCA � �


�����
�����
�

Let v be a vertex of �� Then it is a basic solution of the system de�ning �	 i�e�	 v �
�wB �wN � � �B������ for some nonsingular n 	 n submatrix B of �A� �A� I �I �I��
Since the incidence matrix A is totally unimodular	 i�e�	 each subdeterminant of A is ��	 �	
or ��	 so is �A� �A� I �I �I�� Therefore the matrix B�� is composed of ��	 � and ��	
and hence B��� � n�� This completes the proof�

Theorem ��� yields an equivalent form of �mmF �� Namely	 �xing 
� � ne we can reformulate
the problem �mmF � as

�mmF �

����� minx dx

s�t� x � Xnint 
G�

where 
G � fx � Rn j �
g�x� � � g�

��� Local Search
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For v � XM �XV 	 we de�ne the set of all e�cient vertices linked to v by

NM �v� � fv� � XM �XV j �v�v�� is an edge of X g ������

� fv� � XV j �v�v�� is an edge of X and � 
g�v�� � � g�

When we �nd a feasible solution w � XM 	 we apply the Local Search procedure starting
with w �LS�w� for short� for further improvement�
The procedure is described as follows�


�� LS�w� procedure ��


h�i �initialization� If w �� XV then solve min fdx j x � F g	 where F is the face of X
containing w in its relative interior	 to obtain a vertex v� � XM � XV 	 otherwise set
v� �� w� Set k �� ��

hki �iteration k� Solve min fdv j v � NM �v
k� g to obtain a solution v�� If dv� � dvk then

stop	 vk is the local optimal vertex of �mmF �� Otherwise set vk�� �� v�	 k �� k � �
and go to hki�

Remark ���� If w � XM 	 the face F of X containing w in its relative interior is contained
in XM by Theorem ����

��� Cut and Split Method for �mmF �

We can directly apply the CS method to �mmF � since it satis�es the assumptions of
������	 i�e�	

X j Rn� and � � XV � int 
G� ������

To make the algorithm more e�cient we combine the LS�w� procedure with the CS method	
namely we apply the LS�w� procedure to obtain a tighter upper bound every time we �nd
a feasible solution w � XM �
The CS method for �mmF � is described as follows�


�� CS method for �mmF � ��


h�i �initialization� Find an initial feasible vertex w� � XM �XV of �mmF �� If NM �w
�� � �

then stop� We see that w� is the unique optimal solution of �mmF �� Otherwise	 apply
the LS�w�� procedure to obtain a local optimal vertex 
x � XM �XV � Set K� �� R

n
�	

S �� fK�g	 R �� S	 � �� � and k �� ��

hki �iteration k� For each K � S	 solve �K �� min fdx j x � X �K� lK�x� � � g to obtain
a solution �K 	 where lK�x� � � is the concavity cut for Kn 
G�

hk�i �update� Set L �� fK � S j �K � XM g� If L �� � then apply the LS��K� proce�
dure to obtain a local optimal vertex vK for eachK � L� Solve min fdvK j K � Lg
to obtain the cone K�� If dvK

�

� d
x	 set 
x �� vK
�

�

hk�i �termination� Set R� �� fK � R j �K � d
x g� If R� � � or d
x� � � � then stop	
since 
x solves �mmF ��
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hk�i �subdivision� Solve min f�K j K � R� g to obtain the cone K��� If �K�� � � then
set � �� �K�� � Let S�� be the partition of K�� obtained by the ��subdivision
on K�� for some direction � � K��	 or the bisection� Set S �� S��	 R �� S�� �
�R�nfK��g�	 k �� k � � and go to hki�

Remark ���� In Step k� the direction � � K�� is obtained as follows� Suppose that K��

is generated by the directions u�� � � � �un such that ui � � 
G	 initially ui � 	�ei with
	� � max f	 j �
g�	ei� � � g for each i � �� � � � � n� The function lK�� � Rn � R de�ning
the concavity cut lK���x� � � for K��n 
G is given by lK���x� � eU��x � �	 where U �
�u�� � � � �un�� Here we solve


 � max f lK���y� j y � X �K�� g� ������

to obtain a solution y�� Since K�� is in R�	 i�e�	 �K�� � d
x	 we see that 
 � �� If 
 � �
then we perform ��subdivision on K�� with � � y�� If 
 � � then we discard K�� from R�

and go back to Step k�� In this case there is no point v � XV �K�� such that v �� ui for
each i � �� � � � � n� Then we can discard K�� from further consideration	 because at least
one vertex of X solves �mmF ��

Every time we obtain an optimal solution y� of ������ with 
 � �	 we can perform
y��subdivision on K��� This assertion follows from the following theorem�

Theorem ���� Let K�� be a cone generated by the directions u�� � � � �un such that ui � � 
G
for each i � �� � � � � n� and y� be an optimal solution of ������ with 
 � �� Then y� �� 	ui

for any i � �� � � � � n and for any 	 � ��

Proof� Assume that y� lies on an extreme ray of K��	 i�e�	 y� � 	uj for some 	 � � and
uj � Since � � 
 � lK���y�� � eU���	uj�� � � 	� �	 we have 	 � �� By the choice of uj 	
we have 
g��� � ��uj� � � for any � � �� Therefore we have 
g�y�� � �� On the other hand	
y� � X �K�� j K	 which implies 
g�y�� � �� This is a contradiction�

Furthermore the following assertion is also available in this subdivision rule�

Theorem ���� Let K be the cone generated by the directions u�� � � � �un and U � �u�� � � � �
un�� If ui � XM for each i � �� � � � � n then some uj solves minfdx j x � X �K� lK�x� �
� g�

Proof� Let � be an optimal solution of minfdx j x � X �K� lK�x� � � g� Since � � K	
there are nonnegative numbers ��� � � � � �n such that � �

Pn

i�� �iu
i� Also we see that

� � lK��� � eU���
Pn

i�� �iu
i� � � �

Pn

i�� �i � �	 and hence
Pn

i�� �i � �� Note that
dx � � for all x � X by the assumption that a given network has no t�s�path� Let uj attain
minfdui j i � �� � � � � n g� Then duj �

Pn

i�� �idu
i � d�	 in other words	 uj � XM solves

min fdx j x � X �K� lK�x� � � g�

We see that the set fx � K�� j lK���x� � � g does not contain a vertex of X when 
 of
������ is zero� Suppose that an oracle is available that provides a vertex of X in fx � K�� j
lK���x� � � g whenever there are some	 and take the vertex as the direction � in Step k��
Then	 owing to the �niteness of XV 	 the ��subdivision is repeated at most jXV j times	 and
hence the CS method terminates after �nitely many iterations� However	 the oracle is costly
and the authors estimate it NP �complete to check whether XV � fx � K�� j lK���x� � � g
is not empty� See Freund�Orlin �����
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We illustrate the CS method for �mmF � in Figure �	 in which we use a two�dimensional
general polyhedronX � fx � R� j Bx � z� x � � g instead of X � fx � Rn j Ax � �� � �
x � c g since the latter is unsuitable for illustration� We �rst obtain a local optimal vertex

x � XM �XV and set K� �� R

n
� �See �a��� We determine the concavity cut lK�

�x� � � for
K�n 
G and obtain a point �K� �See �b��� The value d�K� is a lower bound with respect to
K�� Since �

K� �� XM and d�K� � d
x	 we split the cone K� into K� and K� �See �c��� In
the next iteration	 points �K� and �K� are obtained �See �d��� We see that �K� � XM 	 and
hence apply the LS��K�� procedure to obtain a better point vK� and update the incumbent

x to vK� � The cone K� is discarded	 since d�

K� � d
x� Meanwhile K� is split into K� and
K� since �

K� �� XM and d�K� � d
x �See �e��� We obtain points �K� and �K� in the next
iteration �See �f�� and continue the algorithm�

� Conclusion and Further Works

Computational experiment should be carried out to verify the e�ciency of the algorithm we
proposed in this paper� In many problems formulated as �PE� the criterion matrix C has
quite a small number p of rows� Some sophisticated algorithms for �PE� take advantage of
this property� However	 in �mmF � the number p is equal to the number of arcs	 i�e�	 p � n�
Therefore it is likely that a primitive method surpasses some sophisticated algorithms� The
comparative studies of several algorithms for �mmF � are signi�cant and required for further
works�
If we can reduce the number of variables in �mmF �	 we can make the CS method more

e�ciently� The dimension of X � fx � Rn j Ax � �� � � x � c g is much smaller than
the number of variables in many cases� This property seems to be useful	 however	 there is
still some di�culties to overcome �See Appendix B��

Appendix A

The Proof of Theorem ���

Proof� �
� Assume that 
x � D is not an e�cient point for �MC�� There exists y � D
such that Cy � Cx and Cy �� Cx� Then	 
x is not an optimal solution of �SC���� for any
� � Rp��� ��� Suppose 
x � D is an e�cient point for �MC�� Let L �x � diagfl�� � � � � lng	
where

li �



� if 
xi � �

� otherwise
for i � �� � � � n� ������

If there exists a vector u � Rn satis�es the system

Cu � �� Cu �� �� L �xu � �� Bu � �� ������

setting x � 
x � �u for a su�ciently small � � �	 we see x � D satis�es Cx � C 
x and
Cx �� C 
x� This contradicts that 
x is an e�cient point for �MC�� Then	 there is no
vector u � Rn satis�es the system ������� Applying the Tucker�s alternative theorem �See
Mangasarian �����	 there are vectors � � Rp	 � � Rn and � � Rm such that

�C � �L �x � �B � �� � � �� � � �� ������
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Figure �� An example of the CS method for �mmF �
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For any x � Rn	 we see that

�C�
x� x� � �L �x�
x� x� � �B�
x� x� � �� ������

Therefore for any x � D	 we have �L �x�
x � x� � � and �B�
x � x� � �	 and hence
�C 
x � �Cx� It remains to proof the assertion that there exists M � � such that we
can replace Rp�� with � of ������ By the theory of the parametric linear program	 DE

is the union of �nitely many faces F�� � � � � FK of D such that Fk is the optimal face of
�SC��k�� for some �k � Rp��� Let 	k � ��minf
ki j i � �� � � � � p g for k � �� � � � �K and

M � maxf	k��
k�� j k � �� � � � �K g� Then 
�

k
� �M��k���k � � and F k remains the

optimal face of �SC�
�
k
�� for each k � �� � � � �K�

Appendix B

An idea to reduce the number of variables

After explaining a possible way to reduce the number of variables of �mmF � we demonstrate
that it does not work well due to the high degeneracy of the problem�

An idea to reduce the variables is a combination of primal and dual representations of the
feasible region X � fx � Rn j Ax � �� � � x � c g� First choose a vertex v� � XV � int 
G
and enumerate all	 say q adjacent vertices v�� � � � �vq � XV linked to v

�� Then X can be
rewritten as

X �



x � Rn

���� x � v� �

qX
i��

�i�v
i � v���� � x � c� �i � � for all i � �� � � � � q

�
�

We de�ne XR � f� � Rq j � � v� � V � � c� � � � g	 where V � �v� � v�� � � � �vq � v�� �
Rn�q	 and XR

M � f� � XR j �
gR��� � � g	 where


gR��� � maxf eV � � net j � � XR� V � � t � V �� t � � g � eV ��

Then the problem �mmF � is equivalent to

�mmFR�

�����
min
�

d�v� � V ��

s�t� � � XR
M �

If q � n	 �mmFR� is worth considering	 however	 q can be much larger than n in spite of the
low dimensionality of X � Take the network in Figure � with unit capacity for all arcs	 i�e�	
c � e	 and take the origin � as v� � XV � int 
G� Then we see that the unit �ow conveyed
along a simple path from source to sink is a vertex of X linked to the origin� This means
that q is as many as the simple paths from source to sink	 which amounts to �� � �� in this
example while n � �� and dimX � ���

Acknowledgments

The authors thank to anonymous referees for many valuable comments and suggestions�



��
 Y� YAMAMOTO AND D� ZENKE

s t

Figure �� The case where q is larger than n

References

��� L�T�H� An and P�D� Tao and L�D� Muu	 Numerical solution for optimization over the
e�cient set by d�c� optimization algorithms	 Oper� Res� Lett� �� ������ ��������

��� L�T�H� An and P�D� Tao and L�D� Muu	 Simplicially�constrained dc optimization over
the e�cient and weakly sets	 J� Optim� Theory Appl� ��� ������ ��������

��� L�T�H� An and P�D� Tao and N�V� Thoai	 Combination between global and local meth�
ods for solving an optimization problem over the e�cient set	 European J� Oper� Res�

��� ������ ��������

��� H�P� Benson	 Optimization over the E�cient Set	 J� Math� Anal� Appl� �� ������ ����
����

��� H�P� Benson	 An all�linear programming relaxation algorithm for optimizing over the
e�cient set	 J� Global� Optim� � ������ �������

��� H�P� Benson	 A �nite	 nonadjacent extreme�point search algorithm for optimization
over the e�cient set	 J� Optim� Theory Appl� �� ������ ������

��� H�P� Benson	 A geometrical analysis of the e�cient outcome set in multiple objective
convex programs with linear criterion functions	 J� Global� Optim� � ������ ��������

��� S� Bolintineanu	 Minimization of a quasi�concave function over an e�cient set	 Math�

Program� �� ������ �������

��� J�P� Dauer and T�A� Fosnaugh	 Optimization over the e�cient set	 J� Global� Optim� �
������ ��������

���� J�G� Ecker and I�A� Kouada	 Finding e�cient points for linear multiple objective pro�
grams	 Math� Program� � ������ ��������

���� J�G� Ecker and I�A� Kouada	 Finding all e�cient extreme points for multiple objective
linear programs	 Math� Program� �� ������ ��������

���� J�G� Ecker and J� H� Song	 Optimizing a linear function over an e�cient set	 J� Optim�

Theory Appl� �� ������ ��������

���� R�M� Freund and J�B� Orlin	 On the Complexity of Four Polyhedral Set Containment
Problems	 Math� Program� �� ������ ��������



CUT AND SPLIT METHOD FOR MINIMUM MAXIMAL FLOW PROBLEM ���

���� M�R� Garay and D�S� Johnson	 Computers and Intractability� A Guide to the Theory

of NP�Completeness	 Freeman	 San Francisco	 �����

���� J� Gotoh and N�V� Thoai and Y� Yamamoto	 Global optimization method for solving
the minimum maximal �ow problem	 Optim� Methods Softw� �� ������ ��������

���� R� Horst and H� Tuy	 Global Optimization	 Springer�Verlag	 Berlin	 �����

���� Y�D� Hu and E�J� Sun	 Connectedness of the e�cient set in strictly quasiconcave vector
maximization	 J� Optim� Theory Appl� �� ������ ��������

���� M� Iri	 An essay in the theory of uncontrollable �ows and congestion	 Department of
Information and System Engineering	 Chuo University	 TRISE	 �����	 �����

���� M� Iri	 Theory of uncontrollable �ows � a new type of network��ow theory as a model
for the ��st century of multiple values	 Comput� Math� Appl� �� ������ ��������

���� J� F�ul�op	 A cutting plane algorithm for linear optimization over the e�cient set	 Eco�
nomics and Mathematical Systems	 Lecture Notes ���	 ����	 pp� ��������

���� O�L� Mangasarian	 Nonlinear Programming	 MacGraw�Hill	 New York	 �����

���� L�D� Muu and L�T� Luc	 Global optimization approach to optimization over the e�cient
set	 Economics and Mathematical System	 Lecture Notes ���	 ����	 pp� ��������

���� L�D� Muu and J� Shi	 D�c� optimization methods for solving minimum maximal network
�ow problem�	 Research Institute for Mathematical Sciences	 Kyoto University	 Lecture
Notes ����	 Captivation of Convexity � Fascination of Nonconvexity	 ����	 pp� ������

���� P�H� Naccache	 Connectedness of the set of nondominated outcomes in multicriteria
optimization	 J� Optim� Theory Appl� �� ������ ��������

���� J� Philip	 Algorithms for the vector maximization problem	 Math� Program� � ������
��������

���� T�Q� Phong and H�Q� Tuyen	 Bisection search algorithm for optimizing over the e�cient
set	 Vietnam J� Math� �� ������ ��������

���� Y� Sawaragi and H� Nakayama and T� Tanino	 Theory of Multiobjective Optimization	
Monographs and Textbooks ���	 Academic Press	 Orlando	 �����

���� S� Sayin	 Optimizing over the e�cient set using a top�down search of faces	 Oper� Res�
�� ������ ������

���� J� Shi and Y� Yamamoto	 A global optimization method for minimum maximal �ow
problem	 Acta� Math� Vietnam� �� ������ ��������

���� M� Shigeno and I� Takahashi and Y� Yamamoto	 Minimum maximal �ow problem � an
Optimization over the e�cient set �	 J� Global Optim� �� ������ ��������

���� R�E� Steuer	 Multiple Criteria Optimization� Theory� Computation� and Application	
John Wiley  Sons	 New York	 �����

���� P�T� Thach and H� Konno and D� Yokota	 Dual Approach to minimization on the set
of pareto�optimal solutions	 J� Optim� Theory Appl� �� ������ ��������



��� Y� YAMAMOTO AND D� ZENKE

���� N�V� Thoai� Conical algorithm in global optimization for optimizing over e�cient sets�
J� Global Optim� �� �	


� �	����
�

���� H�Tuy� D�c� optimization� theory� methods and algorithms� in Handbook of Global Op�

timization � R� Horst and P� M� Pardalos �eds��� Kluwer Academic Publishers� Nether�
lands� ����� pp� ����	�
�

���� H� Tuy� Convex Analysis and Global Optimization� Kluwer� Dordrecht� �����

��
� D�J� White� Optimality and E�ciency� John Wiley � Sons� Chichester� ���	�

���� Y� Yamamoto� Optimization over the e�cient set� overview� J� Global Optim� 		 �	

	�
	�������

Manuscript received � September ����

revised �� February ����

accepted for publication � March ����

Yoshitsugu Yamamoto

Graduate School of Systems and Information Engineering� University of Tsukuba� Tsukuba�

Ibaraki ��������� Japan

E�mail address� yamamoto�sk�tsukuba�ac�jp

Daisuke Zenke

Graduate School of Systems and Information Engineering� University of Tsukuba� Tsukuba�

Ibaraki ��������� Japan

E�mail address� dzenke�sk�tsukuba�ac�jp


