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Abstract� Existing methods of polynomial optimization actually compute an approximate optimal solution

of a linear or convex relaxation of the original problem� Such an approximate optimal solution is not

guaranteed to be close to the actual optimal solution� nor even to be feasible� To overcome these limitations�

a robust solution approach is proposed for polynomial optimization which consists in seeking the best

nonisolated feasible solution rather than the best feasible solution as usually required�
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� Introduction

The problem of minimizing or maximizing a multivariate polynomial under polynomial con�
straints is encountered in a multitude of applications� production planning� location� and
distribution �see ����� engineering design �see ����� risk management� water treatment and
distribution �see �	
��� chemical process design� pooling and blending �see ����� structural de�
sign� signal processing� robust stability analysis� design of chips� �see �
��� etc� In its general
form� this problem can be formulated as �

minfp��x�j pk�x� � 
 �k � 	� � � � �m�� a � x � bg� �P�

where a� b � Rn� and p��x�� p��x�� � � � � pm�x�� are polynomials� i�e��

pk�x� �
X

��Ak

ck�x
�� x� �� x��� x��� � � �x�nn � c� � R� �	�

with � � ���� � � � � �n� being an n�vector of nonnegative integers� Since the set of polynomi�
als on �a� b� is dense in the space C�a� b� of continuous functions on �a� b� with the supnorm
topology� any continuous optimization problem can be� in principle� approximated as closely
as desired by a polynomial programming problem� Therefore� polynomial programming in�
cludes an extremely wide class of optimization problems� It is also a very di�cult problem
because many special cases of it such as the nonconvex quadratic optimization problem are
known to be NP�hard�
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Several methods for polynomial programming have been proposed in the last �fteen
years� The earliest method is due to Shor and Stetsenko �		� �see also �	
�� who were the
�rst to point out the connection of polynomial optimization with Hilbert�s 	�th problem�
Speci�cally� by reducing polynomial programming to quadratic optimization �at the ex�
pense of introducing additional variables�� and using Lagrangian relaxation for estimating
lower bounds� it was shown in �		� that the question of when these bounds are exact is
connected with the representability of nonnegative polynomials as sums of squares of poly�
nomial functions� It was also observed in �		� that bounds by Lagrange relaxation can be
improved� sometimes drastically� by using additional constraints implied by already existing
ones� In the RLT method �Reformulation�Linearization Technique� by Sherali�Adams �	
��
after adding all these implied constraints to the original problem� every monomial like x� is
replaced with y�� thus transforming any polynomial in x into an a�ne function of �x� y�� The
problem then becomes a linear problem in �x� y� with the additional nonconvex constraints
y� � x� ��� By omitting these nonconvex constraints� a linear relaxation of the problem is
obtained whose optimal value yields a valid lower bound� Sherali and Adams proved that
if the implied constraints are suitably chosen� this bounding procedure can be combined
with an exhaustive rectangular partition process to produce a convergent branch and bound
algorithm� Another method of particular interest was developed in the last few years by
Lasserre ���� Using a recent result of Putinar ��� in real algebraic geometry on representation
of positive polynomials� Lasserre shows that the global optimal value of problem �P� can be
approximated with arbitrary accuracy by solving a suitable SDP �semide�nite program� in
the variables x� y� with y� � x� ���

On the other hand� since any polynomial on a compact convex set can be shown to
be representable as a d�c� function �di�erence of convex functions�� it is natural that d�c�
methods of optimization have been applied for solving polynomial programs� Floudas ���
developed a primal�dual relaxed algorithm called GOP for biconvex programming and ex�
tended it to a wider class of polynomial optimization problems� Maranas and Floudas ���
employed an exponential variable transformation to reduce a generalized geometric program
to a d�c� optimization problem� Finally� by noting that any polynomial on Rn� can be easily
written as a d�m� function �di�erence of monotone functions�� a method for solving frac�
tional polynomial programming problems �including �P� as a special case� based on d�m�
optimization was recently proposed by Tuy� Thach and Konno �	���

A common di�culty of all the above mentioned methods� except perhaps the last one
�	��� is that they are very sensitive to the highest degree of the polynomials involved� Even
for problems of small size but with polynomials of high degree they require a huge number
of additional variables� This is particularly inconvenient when dealing with signomial pro�
gramming �i�e� problem �P� where the exponents ��� � � � � �n may be nonnegative rational�
or with discrete constraints� But the most important� though less obvious� drawback of
these methods is that they often provide only an approximate optimal value but not an
approximate minimizer� For example� in the RLT or Lasserre�s method� the problem �P� is
reformulated as a linear program LP or a SDP in the variables x� y where y � �y��� y� � x��
such that an optimal solution ��x� �y� of this LP or SDP yields an approximate optimal value
of �P�� The trouble is that most often we do not have �x� � �y� ��� so that �x is infeasible to
�P�� possibly with a signi�cant error� Moreover� in certain cases� as will be shown in Section

 and Section � �Example 	�� the approximate optimal value computed by these methods
may be far away from the true optimal value�

Thus� despite their signi�cant interest� these methods may not be satisfactory for the
user who would prefer a good� robust� feasible solution� within an acceptable tolerance� to a
solution with a better objective function value but not acceptable from the feasibility point
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of view or di�cult to implement because of its instability� In fact� in nonconvex global
optimization� so far robustness of solution methods has never been a matter of concern�
despite the importance of this issue for practical implementation�

In an attempt to overcome these limitations� a general robust approach to nonconvex
optimization was developed in �	��� Since polynomial programming is a special case of
nonconvex optimization� this approach is naturally applicable to polynomial programming�
In the present paper we will suggest a robust solution method for polynomial optimization
based on the same general approach as in �	�� but more easily implementable� as it requires
less preliminary transformations and less additional variables�

After the Introduction� we show in Section 
 the inadequacy of the concept of approx�
imate optimal solution as widely used in nonconvex global optimization� In Section � the
polynomial programming problem is reformulated as a monotonic optimization problem in
the form studied in a series of recent papers �	��� �	��� �	��� �	��� In Section � the concept
of essential optimality is introduced as a substitute for the concept of approximate optimal
solution and a conceptual algorithm is proposed for �nding an essential optimal solution� In
Section �� a procedure is developed for incumbent transcending� which is the core of the con�
ceptual algorithm� In Section � this incumbent procedure is incorporated into the conceptual
algorithm� to produce an implementable algorithm� Section � discusses problems where the
feasible set is described by a mixed system of inequality and equality constraints� Finally�
Section � presents some numerical examples to illustrate the basic ideas of our approach and
to show how this approach works in practice�

Although we freely use ideas and methods from monotonic optimization� no familiarity
with results in this �eld is assumed�

� Inadequacy of Approximate Optimality

For a polynomial optimization problem �in particular� a quadratically constrained quadratic
optimization problem�� since the constraint set is generally nonconvex� �nding a feasible
solution is almost as di�cult as solving the problem itself� Therefore� with rare exceptions�
solution methods so far developed for problem �P� only compute either an approximate
optimal solution �as in the standard approach�� or an approximate optimal value �as in the
RLT or Lasserre�s approach��

In the standard approach� an approximate optimal solution of �P� is obtained by solving
some relaxed problem� Typically� for a given tolerance � � 
� the relaxed problem is taken
to be

minfp��x�j pk�x� � � � 
� k � 	� � � � �m� a � x � bg� �P����

Furthermore� in �nitely many steps� one can only guarantee an ��optimal solution of the
problem �P����� i�e�� a feasible solution �x to �P���� such that p���x� � min�P������ �such an
�x is referred to as an ��� ���optimal solution of �P��� Although this has become a common
practice in nonconvex global optimization� the pitfall is that an approximate optimal solution
may quite often be infeasible and give an objective function value very far from the true
optimal value�

Such a situation may occur when the problem has an isolated optimal solution� or there is
an almost feasible but infeasible point where the objective function has a value substantially
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Fig� �� Inadequate �	approximate optimal solution

inferior to the optimal value of the problem� Consider for example the problem

Minimize x�� � x��

s�t� �x� � ����x� � 
�� �� � �	
��

�x� � ��� � ��x� � �� � 



 � x� � �� 
 � x� � �

It is easily veri�ed that this problem is regular� i�e� its optimal value is equal to the in�mum
of the objective function value over the interior of the feasible set� The point �
� ��
��
is infeasible but almost feasible and the value of the objective function at this point is
substantially inferior to the optimal value of the problem �Fig 	�� With tolerances �� �
	
��� � � 
�
	� an ���� ���approximate optimal solution is �x���� � �	�������� ��
�


���
close to the almost feasible solution �
� ��
��� but quite far from the actual optimal solution�
On the other hand� for �� � 	
��� � � 
�
	 an ���� ���approximate optimal solution is
�x���� � ����	�	��� 	���

���� very close to the true optimal solution�

Thus� even for problems without isolated feasible solutions the ��relaxation approach may
give an incorrect approximate optimal solution if � is not su�ciently small� The trouble is
that in practice we often do not know what exactly means �su�ciently small�� i�e� we do
not know how small the tolerance should be to guarantee a correct approximate optimal
solution�

In Lasserre�s approach� a sequence of SDP relaxations of �P� is constructed in the follow�
ing way� For each �xed l � 	� 
� � � � � an appropriate �nite set Al of n�vectors with nonneg�
ative integral components together with a set of additional variables y � �y�� � R

jAl j and
a SDPl in the variables �x� y� are de�ned such that the problem �P� is equivalent to SDPl

with the additional nonconvex constraints

y� � x�� � � Al� �
�

Then SDPl is a relaxation of �P�� since it is obtained from a problem equivalent to �P� by
omitting the nonconvex constraints �
�� Therefore� if �l is the optimal value of SDPl� then
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�l � min �P� and the sequence Al� l � 	� 
� � � � � can be chosen so that

�l � min �P� �l � ���� ���

Thus� for l satisfying �l � min �P�� �� the value �l yields an approximate optimal value of
�P� with tolerance �� The trouble� however� is that� for a given � � 
 we do not know how
large l should be taken� Moreover� if ��x� �y� is an optimal solution of the relaxed problem
SDPl then� generally max��Al

j�y� � �x�j � 
� and so� even for � small� �x may be infeasible
to �P�� with a notable error�

In the RLT method� for each l � 	� 
� � � � � a linear program LPl in the variables �x� y� is
de�ned such that �P� is equivalent to LPl with the additional constraints �
�� So LPl is a
linear relaxation of �P� with optimal value �l � min�P� and though ��� does not generally
hold� with a suitable choice of Al this bound �l can be incorporated into a branch and
bound algorithm to generate a sequence f�x�k�� y�k��g such that max��Al

j�y�k�����x�k���j �

 �k � ��� and �x � limk��� x�k� is an optimal solution of �P�� Again the trouble is that
in most cases x�k� may be infeasible to �P�� with a notable error even if max��Al

jy� � x�j
is small� A more detailed discussion on this point will be given in Section � for a particular
implementation of the RLT approach on a speci�c quadratic problem�

� Monotonic Reformulation

A function f � Rn � R is said to be increasing on a box �a� b� �� fx � Rn j a � x � bg 	 R
n

if f�x�� � f�x� for all x�� x satisfying a � x� � x � b� It is said to be a d�m� function on
�a� b� if f�x� � f��x� � f��x�� where f�� f� are increasing on �a� b��

Clearly a polynomial of n variables with positive coe�cients is increasing on the orthant
R
n
� � Since every polynomial can be written as a di�erence of two polynomials with positive

coe�cients� X

�

c�x
� �
X

c���

c�x
� � �
X

c���

��c��x
��

it follows that any polynomial of n variables is a d�m� function on Rn� �
It can be proved �see �	��� that the set DM�a� b� of all d�m� functions on a box �a� b� forms

a linear space� which is a lattice with respect to the operations

�g� 
 g���x� � maxfg��x�� g��x�g� �g� � g���x� � minfg��x�� g��x�g�

By induction it follows that if g��x�� � � � � gm�x� are d�m� functions on �a� b� then so are the
functions

maxfg��x�� � � � � gm�x�g� minfg��x�� � � � � gm�x�g�

As immediate consequence of this property any �nite system of d�m� inequalities�

gj�x� � 
 j � 	� � � � �m

is equivalent to a single one g�x� �� minj	����� �m gj�x� � 
� In particular� a system of
polynomial constraints

pj�x� � 
 j � 	� � � � �m

on Rn� can be replaced by a single d�m� constraint

g�x� �� min
j	����� �m

pj�x� � 
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on Rn
�� If p��x� � p���x�� p���x� where p���x�� p���x� are polynomials with positive coe��

cients� then the problem �P� can be written as

minimize p���x� � t� p���b��

s�t� pj�x� � 
 j � 	� � � � �m�

p���x� � t� p���b� � 
�

a � x � b� 
 � t � p���b�� p���a��

where the function �x� t� �� p���x� � t� p���b� is a polynomial with positive coe�cients�
It then follows that by introducing an additional variable if necessary� and changing the

notation� we can convert any polynomial programming problem �P� into the form

minff�x�j g�x� � 
� x � �a� b�g� �Q�

where f�x� is an increasing polynomial �polynomial with positive coe�cients�� while

g�x� � min
j	����� �m

fuj�x� � vj�x�g� ���

and uj�x�� vj�x� are increasing polynomials�
In turn g�x� � u�x� � v�x� where u�x�� v�x� are increasing functions �not necessarily

polynomials� and the constraint x � �a� b�� g�x� � 
 is equivalent to

v�x� � t� u�b� � 
 � u�x� � t� u�b�� 
 � t � u�b�� v�a��

Therefore� using more additional variables� a problem �Q� can be further converted into a
monotonic optimization problem in the canonical form

minfF �z�j G�z� � 	 � H�z�� z � �r� s� 	 R
l
�g� �CMO�

where F�G�H are increasing functions �which may no longer be polynomials�� The robust
solution method developed in �	�� for polynomial programming supposes that the polynomial
optimization problem has been preliminarily converted to this canonical form� Although the
fact that all functions in �CMO� are increasing is an advantage� for our purpose in the sequel
the form �Q� seems to be more convenient� since it requires almost no transformation and
no additional variable� while preserving polynomiality of all functions involved�

� Essential Optimal Solution

From now on we assume that the original polynomial programming problem �P� has been
converted to the form �Q��

As we argued in Section 
� an algorithm giving only an ��approximate optimal solution
may not be quite correct� Furthermore� an isolated optimal solution even if computable is
often di�cult to implement practically because of its instability under small perturbations of
the constraints� Therefore� from a practical point of view only nonisolated feasible solutions
should be considered� This motivates the following de�nitions�

A nonisolated feasible solution x� of �Q� is called an essential optimal solution if f�x�� �
f�x� for all nonisolated feasible solutions x of �Q�� i�e� if

f�x�� � minff�x�j x � S�g�
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where S� denotes the set of all nonisolated feasible solutions of �Q�� Assume

fx � �a� b�j g�x� � 
g 
� �� ���

For � � 
� an x � �a� b� satisfying g�x� � � is called an ��essential feasible solution� and a
nonisolated feasible solution �x of �Q� is called an essential ��optimal solution if it satis�es

f��x�� � � infff�x�j g�x� � �� x � �a� b�g� ���

Clearly for � � 
 a nonisolated feasible solution which is essentially ��optimal is optimal�

As a basic step towards �nding an essential ��optimal solution� let us consider the fol�
lowing subproblem of incumbent transcending�

��� Given a real number � � f�a� �the incumbent value�� �nd a nonisolated feasible
solution �x of �Q� such that f��x� � �� or else establish that none such �x exists�

Since f�x� is increasing� if � � f�b� then clearly an answer to the subproblem ��� would
give a nonisolated feasible solution or else identify essential infeasibility of the problem �a
problem is called essentially infeasible if it has no nonisolated feasible solution�� If �x is the
best nonisolated feasible solution currently available and � � f��x� � �� then an answer to
��� would give a new nonisolated feasible solution �x with f��x� � f��x�� �� or else identify �x
as an essential ��optimal solution�

A �nite procedure for solving the subproblem ��� for a given � is referred to as a procedure
��� ��� If such a procedure is available for every � then an essential ��optimal solution of �Q�
can be found using the following algorithm�

Conceptual SIT �Successive Incumbent Transcending� Algorithm�

Step �� If no nonisolated feasible solution for �Q� is known� let � � f�b�� otherwise� let �x
be the best nonisolated feasible solution available� � � f��x�� ��

Step �� Call Procedure ��� ��� If this procedure returns a nonisolated feasible solution �x
such that f��x� � �� go to Step 
� If it gives evidence that no nonisolated feasible
solution x exists such that f�x� � �� go to Step ��

Step �� Reset �x� �x and return to Step 
�

Step 	� Terminate� if � � f�b�� the problem �Q� is essentially infeasible� otherwise� �x is
an essential ��optimal solution�

　
Clearly the key to the implementation of this conceptual algorithm is the availability of
a procedure ��� ��� for any given � � f�a�� In the next section we shall discuss such a
procedure�

� Procedure ��� ��

Observe that if g�a� � 
 and � � f�a� then a solves the subproblem ���� Therefore� we shall
assume that

g�a� � 
� f�a� � �� ���

It turns out that� under this assumption� the subproblem ��� can be solved by solving
the problem

maxfg�x�j f�x� � �� x � �a� b�g� �Q�	��

More precisely�
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Proposition �� Under assumption 
��


�i� Any feasible solution x� of �Q�	�� such that g�x�� � 
 is a nonisolated feasible solution
of �P� with f�x�� � �� In particular� if max �Q

�
	�� � 
 then the optimal solution �x

of �Q�	�� is a nonisolated feasible solution of �P� with f��x� � ��

�ii� If max �Q
�
	�� � � for � � f��x� � �� and �x is a nonisolated feasible solution of �P��

then it is an essential ��optimal solution of �P�� If max �Q
�
	�� � � for � � f�b�� then

the problem �P� is ��essentially infeasible�

Proof� �i� In view of assumption ���� x� 
� a� Since f�a� � �� and x� 
� a� every x in the line
segment joining a to x� and su�ciently close to x� satis�es f�x� � f�x�� � �� g�x� � 
� i�e�
is a feasible solution of �P�� Therefore� x� is a nonisolated feasible solution of �P� satisfying
f�x�� � ��

�ii� If max�Q
�
	�� � � then

� � supfg�x�j f�x� � �� x � �a� b�g�

so for every x � �a� b� satisfying g�x� � �� we must have f�x� � � � f��x�� �� in other words�

infff�x�j g�x� � �� x � �a� b�g � f��x�� ��

This means that� if �x is a nonisolated feasible solution� then it is an essential ��optimal
solution� and if � � f�b�� then fx � �a� b�j g�x� � �g � �� i�e� the problem is ��essentially
infeasible�

BRB Algorithm for solving �Q�	��

As the name �BRB� Branch�Reduce�and�Bound� indicates� this algorithm proceeds ac�
cording to the standard branch and bound scheme with three basic operations� branching�
reducing �the partition sets� and bounding�

�Branching consists in a successive rectangular partition of the initial boxM� � �a� b� fol�
lowing an exhaustive subdivision rule� i�e� such that any in�nite nested sequence of partition
sets generated through the algorithm shrinks to a singleton� A commonly used exhaustive
subdivision rule is the standard bisection�

�Reducing consists in applying valid cuts to reduce the size of the current partition set
M � �p� q� 	 �a� b�� The box �p�� q�� obtained from M as a result of the cuts is referred to as
a valid reduction of M �

�Bounding consists in estimating an upper bound 
�M� for the objective function value
g�x� over the feasible portion contained in the valid reduction �p�� q�� of a given partition set
M � �p� q��

��� Valid Reduction

At a given stage of the BRB algorithm for �Q�	��� let �p� q� 	 �a� b� be a box generated
during the partitioning procedure and still of interest� The search for a nonisolated feasible
solution of �Q� in �p� q� such that f�x� � � can then be restricted to the set B� � �p� q�� where

B� �� fxj f�x�� � � 
� g�x� � 
g� ���

Since g�x� � minj	����� �mfuj�x��vj�x�g with uj�x�� vj�x� being increasing polynomials �see
����� we can also write

B� � fxjf�x� � �� uj�x� � vj�x� � 
 j � 	� � � � �mg�
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The reduction operation aims at replacing the box �p� q� with a smaller box �p�� q�� 	 �p� q�
without losing any point x � B� � �p� q�� i�e� such that

B� � �p�� q�� � B� � �p� q��

The box �p�� q�� satisfying this condition is referred to as a valid reduction of �p� q� and denoted
by red�p� q��

In the sequel� ei denotes the i�th unit vector� i�e� a vector with 	 at the i�th position and

 everywhere else�

Lemma �� �i� If f�p� � � or minjfuj�q��vj�p�g � 
� then B���p� q� � �� i�e� red�p� q� � ��
�ii� If f�p� � �� and minjfuj�q� � vj�p�g � 
� then red�p� q� � �p�� q�� with

p� � q �
nX

i	�

�i�qi � pi�e
i� q� � p� �

nX

i	�


i�qi � p�i�e
i ���

where� for i � 	� � � � � n�

�i � supf�j 
 � � � 	� uj�q � ��qi � pi�e
i� � vj�p�� j � 	� � � � �mg �	
�


i � supf
j 
 � 
 � 	� vj�p
� � 
�qi � p�i�e

i� � uj�q�� j � 	� � � � �m�

f�p� � 
�qi � p�i�e
i� � �g� �		�

Proof� �i� If f�p� � � then f�x� � f�p� � �� for every x � �p� q�� if minjfuj�q�� vj�p�g � 
�
then minjfuj�x� � vj�x�g � minjfuj�q� � vj�p�g � 
� for every x � �p� q�� In both cases�
B� � �p� q� � ��

�ii� Let x � �p� q� satisfy uj�x� � vj�x� �j � 	� � � � �m� If x 
� p� then there is i such
that xi � p�i � qi � �i�qi � pi�� i�e� xi � qi � ��qi � pi� with � � �i� In view of �	
��
this implies that for some j � uj�q � �qi � xi�e

i� � uj�q � ��qi � pi�e
i� � vj�p�� and hence

uj�x� � uj�q��qi�xi�ei� � vj�p� � vj�x� �because p � x � q��qi�xi�ei while vj���� uj��� are
increasing�� Since this con�icts with uj�x�� vj�x� � 
� we must have x � p�� i�e� x � �p�� q��
Similarly� if x 
� q� then there is i such that xi � q�i � p�i�
i�qi�p�i�� i�e� xi � p�i�
�qi�p�i�
with 
 � 
i and from �		� it follows that either f�p� � 
�qi � p�i�e

i� � �� �which implies
that f�x� � ��� or for some j � vj�p

� � �xi � p�i�e
i� � vj�p

� � 
�qi � p�i�e
i� � uj�q�� �which

implies that vj�x� � vj�p
� � �xi � p�i�e

i� � uj�q� � uj�x� because p
� � �xi � p�i�e

i � x � q
while vj���� u��� are increasing�� Since in either case this con�icts with x � B� � we must have
x � �p�� q��� Therefore� fx � �p� q�j f�x� � �� u�x�� v�x� � 
g 	 �p�� q���

Remark �� It can easily be veri�ed that the box �p�� q�� � red�p� q� still satis�es

f�p�� � �� min
j
fuj�q

��� vj�p
��g � 
�

��� Valid Bounds

Given a box M �� �p� q�� which is supposed to have been reduced� we want to compute an
upper bound 
�M� for

maxfg�x�j f�x� � �� x � �p� q�g�

Since g�x� � minj	����� �mfuj�x� � vj�x�g and uj�x�� vj�x� are increasing� an obvious upper
bound is


�M� � min
j	����� �m

�uj�q�� vj�p��� �	
�
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Though very simple� this bound su�ces to ensure convergence of the algorithm� as we will
see shortly� However� for a better performance of the procedure� tighter bounds can be
computed using� for instance� the following

Lemma �� �i� If g�p� � 
 and f�p� � � then p is a nonisolated feasible solution with
f�p� � ��

�ii� If f�q� � � and x�M� � p � ��q � p� with � � maxf�j f�p � ��q � p�� � �g�
zi � q � �xi�M� � qi�e

i� i � 	� � � � � n� then an upper bound of g�x� over all x � �p� q�
satisfying f�x� � � is


�M� � max
i	����� �n

min
j	����� �m

fuj�z
i�� vj�p�g�

Proof� �i� Obvious�

�ii� Let Mi � �p� zi� � fxj p � x � zig � fx � �p� q�j pi � xi � xi�M�g� From the
de�nition of x�M� it is clear that f�z� � f�x�M�� � � for all z � p� ��q � p� with � � ��
Since for every x � x�M� there exists z � p���q�p� with � � �� such that x � z� it follows
that f�x� � f�z� � � for all x � x�M�� So fx � �p� q�j f�x� � �g 	 �p� q� n fxj x � x�M�g�
On the other hand� noting that fxj x � x�M�g � �ni	�fxj xi � xi�M�g� we can write
�p� q� n �ni	�fxj xi � xi�M�g � �i	����� �nfx � �p� q�j pi � xi � xi�M�g � �i	����� �nMi�
Since 
�Mi� � minj	����� �m�uj�z

i� � vj�p�� � maxfg�x�j x � Mig it follows that 
�M� �
maxf
�Mi�j i � 	� � � � � ng � maxfg�x�j x � �i	����� �nMig � maxfg�x�j x � B� � �p� q�g�

Remark �� Each box �p� zi� can be reduced by the method presented above� If �p�
i
� q�

i
� �

red�p� zi�� i � 	� � � � � n� then without much extra e�ort� we can have a more re�ned upper
bound� namely


�M� � max
i	����� �n

f min
j	����� �m

�uj�q
�i�� vj�p

�i��g�

The points zi constructed as in �ii� determine a set Z �� �ni	��p� z
i� containing fx �

�p� q�j f�x� � �g� In monotonic optimization such a set Z is called a polyblock with ver�
tex set zi� i � 	� � � � � n �	��� The above procedure thus amounts to constructing a polyblock
Z � fx � �p� q�j f�x� � �g � which is possible because f�x� is increasing� To have a tighter
bound� one can even construct a sequence of polyblocks Z� � Z�� � � � � approximating the set
B� � �p� q� more and more closely� For the details of this construction the interested reader
is referred to �	��� By using polyblock approximation one could compute a bound as tight
as we wish� since� however� the computation cost increases rapidly with the quality of the
bound� a trade�o� must be made� so practically just one approximating polyblock as in the
above Lemma is used�

Remark �� In many cases� e�cient bounds can also be computed by exploiting� additional
structure such as partial convexity� aside from monotonicity properties �see �	����

For example� assuming� without loss of generality� that p � R
n
�� � i�e� pi � 
� i �

	� � � � � n� and using the transformation ti � logxi� i � 	� � � � � n� one can write each mono�
mial x� as expht� �i� and each polynomial pk�x� �

P
��Ak

ck�x
� as a function �k�t� �P

��Ak
ck� expht� �i� Since� as can easily be seen� expht� �i with � � R

m
� is an increasing

convex function of t� each polynomial in x becomes a d�c� function of t and the subproblem
over �p� q� becomes a d�c� optimization problem under d�c� constraints� Here each d�c� func�
tion is a di�erence of two increasing convex functions of t on the box �exp p� exp q�� where
exp p denotes the vector �exp p�� � � � � exp pn�� A bound over �p� q� can then be computed by
exploiting simultaneously the d�c� and d�m� structures�



ROBUST POLYNOMIAL OPTIMIZATION ���

� A Robust Algorithm

Incorporating the above BRB procedure for �Q���x� into the SIT scheme yields the following
robust algorithm for solving �Q��

SIT Algorithm for �Q�

Step �� If no feasible solution is known� let � � f�b� � otherwise� let �x be the best
nonisolated feasible solution available� � � f��x� � �� Let P� � fM�g�M� �
�a� b��R� � �� Set k � 	


Step �� For each box M � Pk �

� Compute its valid reduction redM �

� Delete M if redM � ��

� Replace M by redM if redM �� ��

� If redM � �p�� q�� then compute an upper bound ��M� for g�x� over the feasible
solutions in redM� ���M� must satisfy ��M� � minj������ �m�uj�q

�� � vj�p
���� see

�	���
 Delete M if ��M� � 
�

Step �� Let P �k be the collection of boxes that results from Pk after completion of Step
	
 Let R�k � Rk � P �k�

Step �� If R�k � � then terminate� �x is an essential ��optimal solution of �Q� if � �
f��x�� �� or the problem �Q� is essentially infeasible if � � f�b�


Step �� If R�k �� �� let �pk� qk� �� Mk � argmaxf��M�j M � R�kg� �k � ��Mk��

Step �� If �k � � then terminate� �x is an essential ��optimal solution of �Q� if � � f��x����
or the problem �Q� is ��essentially infeasible if � � f�b��

Step �� If �k � �� compute �k � maxf�j f�pk � ��qk � pk��� � � 
g and let

xk � pk � �k�q
k � pk��

�
 a� If g�xk� 	 
 then xk is a new nonisolated feasible solution of �Q� with
f�xk� � � � if g�pk� � 
� compute the point �xk where the line segment
joining pk to xk meets the surface g�x� � 
� and reset �x � �xk� otherwise�
reset �x� pk� Go to Step �


�
 b� If g�xk� � 
� go to Step �� with �x unchanged


Step �� Divide Mk into two subboxes by the standard bisection �or any bisection con�
sistent with the bounding M �	 ��M��� Let Pk�� be the collection of these two
subboxes of Mk� Rk�� � R�k n fMkg� Increment k� and return to Step 	


Proposition �� The above algorithm terminates after 	nitely many steps
 yielding either an
essential ��optimal solution of �Q

 or an evidence that the problem is essentially infeasible�

Proof
 Since any feasible solution x with f�x� � � � f��x� � � must lie in some box
M � R�k the event R�k � � implies that no such solution exists� hence the conclusion in
Step �
 If Step � occurs� so that �k � �� then max�Q���� � �� hence the conclusion in Step
� �see Proposition 	�
 Thus the conclusions in Step � and Step � are correct
 It remains to
show that either Step � �R�k � �� or Step � ��k � �� must occur for su�ciently large k� To
this end� observe that in Step �� since f�pk� � � �Remark 	�� the point xk exists and satis�es
f�xk� � �� so if g�xk� 	 
� then by Proposition 	� xk is a nonisolated feasible solution with
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f�xk� � f��x� � �� justifying Step �
 a� Suppose now that the algorithm is in�nite
 Since
each occurrence of Step �a decreases the current best value at least by � 	 
 while f�x� is
bounded below it follows that Step �
 a� cannot occur in�nitely often
 Consequently� for all
k su�ciently large� �x is unchanged� and g�xk� � 
� while �k � �� But� as k 	 �
� we have�
by exhaustiveness of the subdivision� diamMk 	 
� i
e
 kqk � pkk 	 
� Denote by �x the
common limit of qk and pk as k 	 �
� Since

� � �k � min
j������ �m

�uj�q
k�� vj�p

k���

it follows that
� � lim

k���
�k � min

j������ �m
�uj��x�� vj��x�� � g��x��

But by continuity� g��x� � limk��� g�xk� � 
� a contradiction
 Therefore� the algorithm
must be �nite


Remark �� The SIT Algorithm works its way to the optimum through a sequence of bet�
ter and better nonisolated solutions
 If for some reason the algorithm has to be stopped
prematurely� some reasonably good feasible solution may have been already obtained
 This
is one of its advantages over most existing algorithms� which may be useless when stopped
prematurely


Remark �� For regular problems �i
e
 problems with no isolated feasible solutions�� an
essential optimal solution is obviously an optimal solution in the usual sense
 From the
computational complexity point of view the present SIT algorithm does not di�er much
from the monotonic branch�reduce�and�bound algorithm developed in �	��


� Extension

I
 As can easily be checked� the above method can be applied� without any modi�cation�
to solve signomial programming �generalized geometric programming� problems� i
e
 prob�
lems of the form �P� where each vector � � ���� � � � � �n� may involve rational nonintegral
components �so � � Rn� ��

II
 So far we assumed ���� so that the feasible set has a nonempty interior
 We now
extend the method to the case when there are equality constraints� e
g


hl�x� � 
� l � 	� � � � � s � �	��

�so that assumption ��� fails�

First� if some of these constraints are linear� they can be used to eliminate certain

variables
 Therefore� without loss of generality we can assume that all the constraints �	��
are nonlinear
 Since� however� in the most general case one cannot expect to compute a
solution of a nonlinear system of equations in �nitely many steps� one should be content
with an approximate system

�
 � hl�x� � 
� l � 	� � � � � s �

where 
 	 
 is the tolerance
 In other words� a set of constraints of the form

gj�x� � 
 j � 	� � � � �m

hl�x� � 
 l � 	� � � � � s
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should be replaced by the approximate system

gj�x� � 
 j � 	� � � � �m

hl�x� � 
 � 
 l � 	� � � � � s

�hl�x� � 
 � 
 l � 	� � � � � s�

The method presented in the previous sections can then be applied to the resulting approx�
imate problem
 With g�x� � minj������ �m gj�x�� h�x� � maxl������ �s jhl�x�j� the required
assumption is� instead of ���� fx � �a� b�j g�x� 	 
��h�x� � 
 	 
g �� ��

III
 Recently� solution methods have been developed for discrete �in particular� integer�
monotonic optimization �	��
 It turns out that� using an appropriate modi�cation of the
concept of essential feasible solution� the present approach could be without much di�culty
extended to the class of polynomial optimization problems on a discrete set
 We hope to be
able to discuss the details of this extension in a subsequent paper


� Illustrative Examples

To illustrate the basic ideas discussed above� we present some numerical examples which
have been worked out with the help of N
T
 Hoai Phuong
 The �rst example is meant to
show that using the concept of approximate optimal solution� one may be led to accept as
optimal solution an infeasible solution with objective function value quite far from the actual
optimum
 The two next examples illustrate the practicability of the proposed robust method
on generalized polynomial programming �signomial programming�� i
e
 on problems of the
form �P� but with nonnegative rational exponents
 Solving these problems by other existing
methods� such as RLT or SDP relaxation� would require the introduction of a considerable
number of additional variables and consequently� an increase in size of the problems


Example �� The following quadratically constrained quadratic optimization problem �Q�
is studied in �	��

min
x

z�x� �� �	�������
�x�� � x�� � x�� � x�� � x���

�	���	
���x�x�� � x�x�� � x�x�� � x�x�� � x�x���

s�t� �
 � z�x� � ��
�

������xi � 	

xj � �
���x�i � ����xixj � 
 i � 	� �� �� �� �� j � i� �� ���

�x�x�� � x�x�� � x�x�� � x�x�� � 
� ����

�
x� � �
x	 � x�x�� � x�x�� � x�x�� � x	x�� � 
�

�
x	 � �
x
 � x�x�� � x�x�� � x	x�� � x
x�� � �

�

��
x
 � �
x�� � x�x�� � x�x�� � x	x�� � x
x�� � 
�

�
x� � �
x�� � x�x�� � x�x�� � x�x�� � x��x�� � 
�

�
x� � x�x�� � x�x�� � ��
� �x� � �x� � 	�
x� � x� � x� � x� � x�� x� � x�� x	 � x
 � x�� � x��

 � x�� � x�� � �
� �

	 � x� � 	�
	 � x� � ��
����	��� 	 � x� � ���	������� 	
�� � x�� � 	

�
	 � x� � �� 	 � x	 � �� 	 � x�� � �
�
��� � x� � �� 	 � x
 � �� �
 � x�� � 	

�
��� � x� � �� 	 � x�� � �� �
 � x�� � 	

�
� � x� � 	
� �	 � x�� � 	

� 	
�� � x�� � �
�
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The RLT method for solving this problem consists basically in the following
 With the
help of the additional variables y � �yij� where

yij � xixj �i� j � 	� � � � � 	�� i � j� �	��

the problem is reformulated as an equivalent problem �Q�� in xi �i � 	� � � � � 	��� yij �i� j �
	� � � � � 	�� i � j�� This problem �Q�� is a linear program �LQ� with the additional noncon�
vex constraints �	��� while the linear program �LQ� is derived from the original problem
�Q� �augmented with implied constraints according to the RLT scheme� by replacing each
polynomial

X

�i�j
�M

cijxixj �
X

i�N

cix
�
i �
X

i

dixi �	��

with its linearization
X

�i�j
�M

cijyij �
X

i�N

ciyii �
X

i

dixi � �	��

Then a feasible solution �x� y� to �LQ� satisfying

jyij � xixj j � �r �i� j � 	� � � � � 	�� i � j� �	��

is said to be an �r�approximate solution
 In other words� if we denote by �Q���r�� the problem
obtained from �Q�� by replacing the constraints �	�� with �	��� then an �r�approximate
solution is merely a feasible solution of �Q���r��
 An �r�approximate solution �x�� y�� is said
to be ��r� �z��optimal if it is an �z�optimal solution of the problem �Q���r��
 Then x� is said
to be an ��r� �z��optimal solution of the original problem �Q�


In �	�� by using a well devised branch and cut algorithm to solve the problem �Q��� the
following ��r� �z��optimal solution is found for �r � �z � 	
�� �

x� � ���
����� ��	�	� �� �� �� 	� 	�
�
��� 	��
����

	��
���� 	��
���� �
��
��� ��
����� �������� �
� �
� 
�

with objective function value z�x�� � 	�������
As argued in Section �� since �x�� y�� satis�es �	�� but not �	��� x� may not satisfy many

constraints of �Q�
 In fact� it can be checked e
g
 that the constraints ��� for i � 	� �� �� �
and the constraint ���� are violated� so x� is infeasible to the original problem �Q�� and even
infeasible to the approximate problem � �Q� obtained from �Q� by replacing the only equality
constraint h�x� �� �
x� � �
x	 � x�x�� � x�x�� � x�x�� � x	x�� � 
 with jh�x�j � 
�


	
�see Section �
II� note that h�x�� � 
�


��� 	 
�


	��

It can further be shown that z�x�� is far above the optimal value of � �Q�� For this we �x
the variables x� � x� � x� � �� x� � 	� x�� � x�� � �
� x�� � 
 and solve the subproblem
� �Q���� for � � z�x�� � 	������� This yields a feasible solution �x to � �Q�

�x � ���
������ ��������� �� �� �� 	� 	� 	�	������

	�	������ 	�	������ �
� 
� 	� �
� �
� 
�

with objective function value z��x� � 	����	���	 much inferior to z�x�� � 	������� Thus the
��r� �z��optimal solution x� found in �	� is infeasible to � �Q� and gives an objective function
value far above the optimal value of � �Q��

This example illustrates the weakness of the RLT as well as Lasserre�s method and also
demonstrates the usefulness of the incumbent transcending approach �Procedure ��� ����
which can help to check whether a given solution can be improved
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Example �� �n���

Minimize �� � x�x���x�x�x�x� � �x�x� � ����� subject to

����x�x� � �x�x�x����x�x� � �x�x� � x��

��x�x� � �x�x�x����x�x� � �x�x�x� � x�x� � �x�x�x��
���

���x� � �x�x�x����x�x�x� � �x�x� � �x�x� � �x�x�x��
��� � ��
���	��	�

����x� � �x�x�x���x�x�x� � �x�x� � x�x��
�

���x�x�x����x� � �x�x�x� � �x��
� � �x�x�x� � x�x�x����x� � 	����

����x�x� � �x�x�x���x�x�x�x� � x�x� � �x�x�x� � �x��
� � ��������	
��	

����x�x�x����x� � �x�x� � x� � x��
�

���x�x�x� � �x�x�x���x�x� � �x�x� � �x� � x�x�x� � x�x��
� � ��	�


 � xi � � i � 	� �� �� ��

This problem would be di�cult to solve by the RLT or Lasserre�s method� since a very
large number of variables would have to be introduced


For � � 
�
	 the SIT Algorithm found the essential ��optimal solution

xessopt � ���������� 
�
�
	��� 
�
������ �����
���

with essential ��optimal value �
�
���� at iteration ���� and con�rmed its essential ��
optimality at iteration ���


The computation required �
��� sec
 on a PC Pentium IV �
��GHz� RAM ���Mb DDR�
and went through �� cycles of incumbent transcending� with intermediate results for the
�rst ten and last ten cycles as given in Table 	


�By cycle we mean a sequence of iterations required for transcending a given incumbent�
�x is the new incumbent found at the end of the cycle� and Iter indicates the iteration where
�x is found
�

Example �� �n���

Minimize ��x��x� � �x��x�x
�
�x� � �x��x�x����x

�
�x�x

�
�x� � �x��

���

� ���x��x
�
����x

�
�x� � �x�x��

���

subject to

����x�x� � �x��x�x
�
�x����x�x�x

�
� � � � �x�x

�
��

��� � ��������
���

���x�x
�
�x�x

�
����x�x�x�x

�
� � �x�x

�
�x� � x��x

�
��

��� � 	�����
��	����

 � xi � � i � 	� �� �� �� ��

With � � 
�
	 the essential ��optimal solution

�x � ���������� ��������� 
�	������ 	�	������ 
��������

with objective function value �����

����� was found at iteration ��		� and con�rmed at
iteration 	
	���
 The computational time was �	�
��� sec
 and the maximal number of
nodes of the branch and bound tree active at one iteration was ����
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Cycle �x f��x� Iter
	 ��
������� 	
��	�	�� �
������� 	
������� ���
�	
	�� ��
� ��
������� 	
��	�	�� �
������� 	
������� ��

������ �

� ��
������� 	
������� 	
����	�� �
������� 	
	
	����� ��
� ��
������� 	
�����	� 	
���
��� �
���
�	� 	


		�	�� ��
� ��
����
�� 

�����	� 	
����	�� 

��
���� ��
			�
� ��
� ��
������� 

��

��� 

����
	� �
	������ ��
�����	 ��
� ��
���
	�� 

������� 

������� �
	�
���� ��
�
���� ��
� ��
������� 

��

��� 

����
	� �
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Table 	

� Conclusion

Polynomial programming forms a class of very hard nonconvex optimization problems
 Most
solution approaches so far developed for this class consist in computing an approximate op�
timal solution� which is a global ��optimal solution to some relaxation of the given problem

In this paper we demonstrated how this approach may lead to incorrect results even for
regular problems� i
e
 problems having a feasible set S such that S � cl�int�S� To overcome
the di�culty we proposed a robust solution approach which consists in seeking an essen�
tial optimal solution rather than the optimal solution
 The resulting algorithm involves a
sequence of successive cycles in each of which a subroutine� based on monotonic optimiza�
tion� is employed for improving the current incumbent
 For regular problems an ��optimal
solution found by this approach is also ��optimal in the usual sense� but is always feasible�
in contrast to many existing methods which may only give the ��optimal value but not
necessarily a feasible solution achieving this objective function value
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