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Abstract: In this paper we extend the concept of non-discrimi- nating prices to a problem with a hierarchical
structure in which the sublevel holds linear constraints and the central level holds a reverse convex constraint.
The objective is a linear function to be minimized. In the study of the relationship between prices and
characteristics of optimal solutions we prove that the existence of an optimal non-discriminating price is
equivalent to the convexity of the set of optimal solutions. On the basis of this optimal price one can
linearize the problem, provided that an optimal solution to the dual is known.
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Introduction

It is well known that the Simplex Method using multipliers for linear programs can be
interpreted as a pricing mechanism, and this pricing mechanism is especially efficient for
practical problems in the presence of certain hierarchical structures (Refs. [2, 3]). The
simplex multipliers obtained by pricing out the constraints at the central level can be used
to define a price function which coordinates the activities at the sublevel. So far there
have been great research attempts to extend this result to more general applications (e.g.,
Refs. [1, 4, 5, 6, 12, 13, 15]). Indeed, the Lagrange multiplier methods have been deeply
developed for nonlinear programs. For quite general problems the class of nondecreasing
functions is involved to define price functions (cf. [6, 13]), however there is a difficulty about
the trade-off between the simplicity of price functions and the existence of the optimal one.
Behind this kind of difficulty is the duality gap between the optimal values in a primal-
dual pair for nonconvex problems if we stick to convex duality. In the streamline of these
researches this paper presents an alternative price concept to a special problem in which the
central level holds a constraint given by the complement of a convex set. More concretely,
the constraint at the central level is of the form

glx) > 0,

where = (z1,2,... ,2,) is a vector of activities in R™ and g is a convex function defined
on R™. Let ' and z" be vectors of activities. If we call a compromise between z' and 2" a

Copyright © 2005 Yokohama Publishers  http://www.ybook.co.jp



348 P.T. THACH

"0

vector z such that x = p'z’'+p" 2", ¢/ > 0, i’ > 0, and p'+p” = 1, then the constraint given
above assures that any compromise between infeasible vectors =’ and 2z’ is also infeasible.
Applications to this type of constraint can be found in the literature (cf. Refs. [2], [7] - [12],
[14]). The problem under our consideration is as follows

Minimize cz,
subject to  g(x) > 0, (1)
Az > a,

where A is a m X n-matrix, a € R™, c € R", ¢ # 0, x € R", g is a convex function defined
on R™ such that g(0) < 0 and cz denotes the inner product of vectors ¢ and z. Throughout
this paper we assume that this problem is solvable, i.e., there is a feasible solution at which
the objective function achieves its minimum value.

In order to extend the price concept to the nonlinear constraint in the above problem let

us define
flz) = cr if Az > a,
= 400 otherwise.

The problem is then considered as minimizing f(z) on the domain {z € R"| g(z) > 0}:

Minimize flx), @)
subject to  g(z) > 0.

Using a vector y = (y1,¥2,... ,yn) in the dual space of the activity space as a vector of
prices we can represent the constraint in (2) as follows

yr>1, ye,

where
QO ={yeR"yx <1 Va: g(z) <0}

Thus, a vector x = (1, %2, ... ,%,) is feasible to the constraint g(x) > 0 if and only if there
is y €  such that yx > 1. In particular, if y € Q then every vector x such that yz > 1 is
feasible to the constraint at the central level. A vector y of prices is called feasible if y € Q.

For a given feasible vector 7 of prices let us consider the following criterion on the vector
T of activities and a multiplier §:

(D) f(@) —6@FT —1) = min.{f(z) —d(Fz -1}
(C) yT—1>0,6 >0, 6(FT —1) = 0.

The first criterion is a decomposition principle which tells us that T is an optimal solution
at the sublevel according to the vector 7 of prices. The second is the complementarity for
the constraint at the central level using vector § of prices. In [12] a concept of optimal
price vector was used for the case in which (D) and (C) give a sufficient criterion for the
optimality of activity vector T. Namely a feasible vector 7 of prices is called optimal if any
feasible vector T of activities satisfying (D) and (C) is optimal to (2). Since by dualization
an optimal vector of prices is an optimal solution to a dual program which is a quasiconcave
minimization over a convex set, cutting-plane methods can be used to find optimal vectors
of prices (cf. [12]). In this paper we are interested in the question if there exists an optimal
vector ¥ of prices such that the criterion of (D) and (C) is both sufficient and necessary for
the optimality. In section 2 we provide a condition for the existence of such a vector 7 and
its dual interpretation. Concluding remarks are given in section 3.
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Optimal Non-Discriminating Prices

Before stating a definition of optimal non-discriminating prices let us consider the following
example.

Example 1. In a working plan of two factories, z; (i = 1,2) denotes the activity of factory
i, and ¢; (i = 1,2) denotes the operating cost for each one unit of activity i. Both ¢;
and ¢y have a positive value. We assume that the two factories share 10 units of common
resource and each one activity unit of either factory 1 or factory 2 consumes one unit of
resource. Besides these data, the power of the working plan is measured by the square norm
of activities

p($1,.7:2) = 'T% + CU%,
and the constraint for the working plan power is
p(z1,22) > 100.

The problem is to minimize the total operating cost under the constraint for the working
plan power, the constraint of common resource and the constraint of nonnegative activities:

Minimize c1xry + C222,
subject to 2% + z3 > 100,
1 +x2 <10, z1 >0, z5 > 0.

There are only two feasible solution to this program:
' = (10,0), 2* = (0,10).

The solution z! is favoured by factory 1, while 22 is favoured by factory 2. Assume that
c1 = ca. Then, both 2! and 22 are optimal, and it can be checked that there are only two
optimal vectors of prices:

yl = (0.1,0), y2 = (0,0.1).

With the price y! the criterion of (D) and (C) detects the optimal solution z! but fails to
detect the optimal solution z2. Similarly, the price y? detects x> but fails to detect z'.
Since ¢; = ¢», the two factories share the same production technology. Therefore, the price
y* discriminates x? (which is favourable to factory 2), while y? discriminates z' (which
is favourable to factory 1). Behind this discriminating phenomenon is the fact that the
criterion of (D) and (C) is only sufficient for optimality but not necessary.

Now we give a definition of non-discriminating prices. An optimal vector 7 € Q of prices
is called non-discriminating if the criterion of (D) and (C) is necessary and sufficient for the
optimality of Z, or in the other words, T solves (2) if and only if there is § such that Z and
0 satisfy the criterion of (D) and (C).

Since (D) and (C) together are a necessary and sufficient condition for optimality of
min{cz|Az < a,yz > 1}, the set of vectors T satisfying (D) and (C) is convex. Therefore,
it follows from the definition that if there is an optimal non-discriminating vector of prices
then the set of optimal solutions to (2) is convex. The inverse direction is also true and will
be proved in the subsequent theorem.

In the space of price vectors let us consider a dual problem of (2):

Minimize fe(y),
subject to  y € Q,

(3)
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where f¢ is a quasi-conjugation of f which is defined at any y # 0 as follows

fy) = inf{f(z)] yz > 1},

(cf. Ref. [11]). The quasi-conjugation f€ is quasiconcave on R". By the duality relationship
(Ref. [11]), the dual problem (3) is solvable and

min(2) = min(3).
Denote by a the above finite optimal value. If y solves the dual (3), then the following set
S(y) = {z|Az > a,cx = o and yz > 1}

is nonempty and any = € S(y) is optimal to the primal (2) (Ref. [11]).

An optimal solution 7 of (3) is called comprehensive if the set S(7) includes the set S(y)
for any optimal solution y of (3), or in the other words one has the following deduction for
any optimal solution y of (3)

Ax > a
yr > 1 = gz > 1. (4)
cr=a

It is obvious that if problem (3) has a unique optimal solution ¥ then ¥ is a comprehensive
optimal solution.

Theorem 1. The following three conditions are equivalent.
(i) The set of optimal solutions to the primal problem (2) is convex;
(ii) There is a comprehensive optimal solution to the dual problem (3);
(iii) There is an optimal non-discriminating vector of prices.

Furthermore, y is a comprehensive optimal solution to (3) if and only if it is an optimal
non-discriminating vector of prices.

Proof. (i) = (ii): Suppose that the set X of optimal solutions to (2) is convex. Since X has
no common solution with the open convex set {# € R"| g(z) < 0}, by separation theorem
there is ¥ € {2 such that

gr > 1 VreX. (5)
Let T € X, then
f(y) = min{cx| Az >a, gz > 1}
< a@ (by (5))
= q,

which implies that ¥ is an optimal solution to (3). Let y be any optimal solution of (3).
Then,

a = [y
= min{ex| Az > a, yz > 1}. (6)
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Let T be a solution such that AT > a, yz > 1, and c¥ = a. Then, T solves the linear
program (6), and therefore T solves (2), i.e., T € X. It follows from (5) that y T > 1. So, ¥
satisfies condition (4) of comprehensiveness.

(ii) < (iii): Let ¥ be a comprehensive optimal solution of (3). It has been known that
for any optimal solution z’ to (2) there is an optimal solution y' to (3) such that y'z’ > 1
(Ref. [11]). Since 7 is a comprehensive optimal solution, this implies gz’ > 1. Thus, 7 is a
comprehensive optimal solution of (3) if and only if 2’ > 1 for any optimal solution z’ to
(2). So, the set X of optimal solutions to (2) coincides with the set of optimal solutions to
the following linear program

min{cz| Az > a, gz > 1},

for which conditions (D) and (C) give an optimal criterion. Therefore 7 is an optimal
non-discriminating vector of prices if and only if 7 is a comprehensive optimal solution to

(3)-

The proof of “(iii) = (i)” is straightforward. O

In several applications problem 1 has a discrete structure, i.e., it has a finite number
of feasible solutions (e.g., example 1). Then the number of its optimal solutions is finite.
Therefore, it is straightforward from Theorem 1 that there is an optimal non-discriminating
vector of prices if and only if the problem with a discrete structure yields a unique optimal
solution.

Example 2. We reconsider the problem in example 1 where the operating cost ¢; is less than
the operating cost cy. In this case, ! = (10,0) is the unique optimal solution. Therefore
the optimal price y' = (0.1, 0) is non-discriminating because with y* the criterion of (D) and
(C) is necessay and sufficient for the optimality. In an economic interpretation the price y!
is favourable to factory 1, but it is non-discriminating because the production technology of
factory 1 is more efficient than that of factory 2 (¢; < c2).

Before closing this section we discuss the comprehensiveness under the restricted as-
sumption that @ = (ay,as,... ,a,) > 0. This assumption could be satisfied in production
problems with positive lower-bound constraints of activities and constraints of positive de-
mands.

As before we call y a compromise between vectors y',y%,...,y° (y' € R™) if there is a

representation
s
y =Yy
i=1
where p; > 0,7=1,2,...,s and ).;_, u; = 1. In the above representation if y; > 0 then
the compromise y is said proper to y*.

Theorem 2. Assume that a; > 0, ¢ = 1,2,...,m. Setc = éc, and A, = %Ai, 1=
1,2,...,m where A; is the i-th row of the matriz A. Then

(i) If ¢ € Q then ¢’ is a comprehensive optimal solution to (3);
(ii) In general, § € Q is a comprehensive optimal solution to (3) if and only if for any

optimal solution y to (8) there is a compromise between ¢’ and Y, proper to §, which
is also a compromise between AL, i =1,2,... ,m, and y.
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Proof. Let y be an optimal solution to (3). Then
a = fy)
= min{cz| Az > a, yx > 1}.
Suppose that T solves the above linear program:
AT >a, yT>1, cT=a. (7)

Since a; > 0, i = 1,2,...,m, the open half line {6Z| § > 1} is entirely contained in the
interior of the domain {z € R"| Az > a, yxz > 1}:

AT = HAT > a
ydxr = 6Oy > 1 V> 1.

If a <0, we see ¢(0T) = fa < « for § > 1, which is a contradiction. Suppose that o = 0.
Take some # > 1 and a small neighborhood of % that is contained in the interior of the
domain. By the linearity of the objective function, we could find a point with a negative
objective function value in the neighborhood. This is again a contradiction. Therefore,

a =cx > 0.
We assume now that ¢’ (= L¢) belongs to Q2. Then,

fe()

min{cz| Az > a, 'z > 1}
= min{cz| Az > a, cx > a}
¢ (from (7))

Q.

IN

Thus, ¢ is optimal to (3). To see the comprehensiveness of ¢’ we take any optimal solution
y of (3) and confirm that
f(y) = min{cz| Az > a, yz > 1}
= a.
This implies

Azr >a

yr > 1 }:> cT > Q.

Since ¢’ = L¢, one then obtains

Ar >a

!
yr > 1 }:> cx > 1.

In particular, ¢’ satisfies condition (4) of comprehensiveness. We thus completed the proof
for the first part of the theorem.

Let 5 € Q be a solution such that for any optimal solution y to (3) there is a compromise
between ¢’ and g, proper to 7, which is also a compromise between A}, i =1,2,...,m, and

'8
WY+ pcd = 3 pt AL+ ey,
_ i=1
WA pt =1, p >0, p° >0,
Souftpt =1, pt>0,i=1,2,...,m, p¥ >0.
=1
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The first equation in the above display is equivalent to

Wy = Y pi AL+ pty - ped,

i=1
or to the following representation of 7:
- f: /1'24 ! :“’_y R
= LAl _
Pt 'uy 'uy Yy
Since
A
l:l/lg Z 07 v = 17 27 ) m7
Y .
% Z 07 F Z 07
moooA v c
— o B g
1 = Z.;lﬂ_'_u_ v

the above representation of 7 is equivalent to the following deduction

Az >1,i=1,2,...,m
yr > 1 = gz > 1.
dr <1

Since A} = L A4;, ¢ = Lc and y solves (3), this deduction reduces to the definition (4) of
the comprehensiveness for y. O

Concluding Remarks

In the previous section we studied conditions for an optimal vector of prices which are non-
discriminating in the sense that they set up an equal pricing value over the set X of optimal
solutions to (2). As we have shown, these conditions are equivalent to the convexity of
X. Under this convexity property we can linearlize the problem, provided that an optimal
vector of non-discriminating prices is available, or equivalently, an comprehensive optimal
solution to the dual (3) is known. Indeed, for a given comprehensive optimal solution ¥ to
the dual (3) we can solve the problem (2) by solving the criterion of (D) and (C) that is
just a linear program. If X is nonconvex, we have also shown that there does not exist an
optimal non-discriminating vector of prices. The concept of prices developed in this case
leads to optimal prices which set up unequal pricing values on X. For computational issues
we can, in principle, extend the well known pricing mechanism in linear programs to obtain
a decomposition algorithm for problem (2), in which the sublevel solves linear programs and
the central level solves relaxed dual problems of (3) (Ref. [12]). The interaction between
the central level and the sublevel is carried out by the set of prices and the set of activities
corresponding to these given prices. If the working dimension of (3) is limited, then this
interaction can be practical from computational point of view (Ref. [8]).
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