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Introduction

One of the classes of 0—1 optimization problems is the maximization of the sum of ratios of
linear 0—1 functions:

m n
a0 + QT
max f(X) — j0 szl gLt

n )
Xl = bjo + iz biii

(1)

where B® = {0, 1}". This problem is referred to as hyperbolic (fractional) 0-1 programming
problem, or multiple-ratio fractional (hyperbolic) 01 programming problem [2, 8]. Usually
it is assumed that for all j and z € B" the denominators in (1) are positive, i.e. bjo +
E?:l bﬂa:l > 0.
A special class of problem (1) is the so-called single-ratio hyperbolic 0-1 programming
problem:
L ao+ Y G
max f(x) = 3 ST bt (2)
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Applications of constrained and unconstrained versions of the problems (1) and (2) arise
in numerous areas including but not limited to scheduling [22], query optimization in data
bases and information retrieval [8], and p-choice facility location [26].

Problem (2) can be generalized if instead of linear 0-1 functions we consider multi-linear
polynomials:

_ > sea s [lics @i
ma‘i( f(x) - b )
x€B ZTGB T HjeT Lj

where A, B are families of subsets of {1,2,...,n}.

It is easy to observe that after simple manipulations we can always reduce problem (1) to
(3) and the degrees of polynomials in (3) are upper bounded by the number of ratios in (1).
Note also that introducing a new binary variable for each product [[;.¢2; and HJET zj,
problem (3) can be reformulated as an equivalent constrained single-ratio hyperbolic 0-1
programming problem. Therefore, any multiple-ratio hyperbolic 0-1 programming problem
(1) can be reduced to a constrained single-ratio problem (2).

Problem (3) has very interesting applications in graph theory [19]. Consider an undi-
rected graph G = (V, E). The density d(G) of the graph G is defined as the maximum ratio
of the number of edges eg to the number of nodes ng over all subgraphs H C G, i.e.

(3)

d(G) = max <L, (4)

where ey and ng are the number of edges and nodes in the subgraph H. Obviously, the
problem of finding d(G) can be formulated as the following hyperbolic 0-1 programming
problem:

1 ng nag nag
d(G) = 3 xeﬁgéatxxio(z;z:laiﬁﬂj)/ £ Ty (5)
=1 j= J=

where a;; are the elements of the adjacency matrix of G and ng is the number of nodes in
G. Similar formulation can also be given for the arboricity I'(G) defined as the minimum
number of edge-disjont forests into which G can be decomposed. More detailed description
of these problems along with polynomial time algorithms for specific classes of (3) can be
found in [19].

Algorithms for solving constrained and unconstrained versions of problems (1)-(3) include
linearization techniques [15, 26, 27], branch and bound methods [22, 26], network-flow [19]
and approximation [9] approaches. Optimization of sums-of-ratios problems over convex sets
is considered in [6, 13, 14, 21]. Extensive reviews on fractional programming can be found
in [23, 24, 25].

The remainder of this paper is organized as follows. In Section 2 we consider the compu-
tational complexity of hyperbolic 0-1 programming problems. To the authors’ knowledge no
results on complexity of multiple-ratio hyperbolic 0—1 programming problems have been re-
ported until recent work [20]. In Section 3 the cardinality constrained problem is discussed.
Section 4 is devoted to linearization techniques. In Section 5 we present a GRASP-based
heuristic for solving the cardinality constrained multiple-ratio hyperbolic 0-1 programming
problems. Finally, Section 6 concludes the discussion.

Complexity Issues

Constrained versions of problems (1) and (2), where we solve the problem subject to some
linear 0—1 constraints, are clearly N P-hard since 0-1 programming is a special class of
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constrained hyperbolic 0-1 programming if b;; = 0 and bjo = 1 for j = 1,...,m and
1=1,...,n.

Next we discuss complexity issues of unconstrained single- and multiple-ratio hyperbolic
0-1 programming problems (1) and (2).

It is well-known that there exists a polynomial time algorithm for solving an uncon-
strained single-ratio hyperbolic 0-1 programming problem (2), see Ref. [8], if the following
condition holds:

bo + > biz; > 0 for all x € B". (6)

i=1

Note that if the term by + Y., biz; can take the value zero, then problem (2) may not
have a finite optimum. In the case where

by + Z b;z; # 0, for all x € B (7)

i=1

holds, but the term by + Y., biz; can take both negative and positive values, single-ratio
problem (2) is known to be N P-hard [8]. Moreover, finding an approximate solution within
any positive multiple of the (negative) optimal value is N P-hard [8]. It is also easy to
observe that checking condition (7) is N P-hard since SUBSET SUM can be reduced to it.
Multiple-ratio problem (1) remains N P-hard if ajo + Y., ajiz; > 0, bjo + >y bjizi > 0
for all x € B” and for all j =1,...,m [20].

For multiple-ratio problem conditions (6) and (7) correspond to

bjo+2bji:ri>0f0rallx€ﬁ" and j =1,...,m, (8)
i=1
and
bjo+ Y bjizi #0, forall x € B” and j =1,... ,m. (9)
i=1

Some other aspects of complexity of unconstrained single- and multiple-ratio hyperbolic
0-1 programming problems (1) and (2) are addressed in [20]. It is shown that

(a) checking uniqueness of the solution for both problems (1) and (2) is a N P-complete
problem (we assume that only condition (9) holds);

(b) finding the global solution for single-ratio problem (2) is N P-hard even if it is known
that the respective global solution is unique;

(c) multiple-ratio problem (1) remains N P-hard even if it is known that the respective
global solution is unique;

(d) multiple-ratio problem (1) is PLS-complete, where PLS stands for the class of poly-
nomial time local search problems [12];

(e) multiple-ratio problem (1) is not e-approximable in polynomial time for some constant
e > 0.

Last three results remain valid if condition (8) holds.



330 O.A. PROKOPYEV, C.N. MENESES, C.A.S. OLIVEIRA AND P.M. PARDALOS

Improved Inapproximability Results for Multiple-Ratio Problem

For combinatorial optimization problems, where f is the corresponding objective function,
an e-approzrimate minimal solution, or e-minimizer, € > 1 is usually defined as an x such
that

f(x) <e- Optimum.

The proof of the next result is based on the SET COVER problem known to be
NP-hard [7]. The input is a ground set E = {ej,ea,...,e,} of elements with subsets
S = {51,52,...,Sn}, where S; C E for each i = 1,...,m. The goal is to choose the
smallest collection S C S of sets whose union is E. We let m = |S| and n = |E]|.

Theorem 1 [/] If there is some € > 0 such that a polynomial time algorithm can approzi-
mate set cover within (1 —¢)lnn, then NP C TIM E(n©U°81°8 ™) This result holds even if
we restrict ourselves to set cover instances with m < n.

In other words, Theorem 1 states that (1—0(1)) lnn is a threshold below which set cover
cannot, be approximated efficiently, unless NP can be solved by a slightly superpolynomial
time algorithm (for more details, please, see [4, 16]).

For problem (1) we assume that condition (8) is satisfied. Using the aforementioned
result by Feige the following theorem can be proved:

Theorem 2 If there is some € > 0 such that a polynomial time algorithm can approzimate
minimization of a multiple-ratio hyperbolic 01 function within (1 — €)lnm, where m is the
number of binary variables in the objective function, then NP C TIM E(mC(oglogm)),

Proof. We reduce SET COVER problem to a minimization of a multiple-ratio hyperbolic
0-1 function.

We are given a ground set £ = {ey, ... ,e,}, and collection S = {Sy,...,Sn,} of subsets
of E, where m = |S|, n = |E| and m < n. With each subset S; we associate a binary
variable z;. With each element e, € E we associate the following 0—1 function:

x)=1- Ti .
9+(x) izgejsi L+ 32540 enes, Ti
If the set S; is selected then we have z; = 1, otherwise x; = 0. Note that for any ScCsS
of subsets of E, if the element e, € U S.€3 S; then the corresponding function gi(x) = 0,
otherwise g (x) = 1.
With an instance of SET COVER problem we associate the following unconstrained
multiple-ratio hyperbolic 0-1 programming problem

m n
Jnin f(x) = ;w +M ;gz(X), (10)
where M is a constant number such that M > mlnm. It is easy to see that for any x € B™
f(x) > 0 and if the set S C S associated with x covers E then f(x) < m, otherwise
f(x) >mlnm+ 1 (by the selection of M).

Suppose next that there exists a polynomial time algorithm that can approximate (10)
within (1 — €)lnm. Let x* = (z},...,z},) be an approximate solution obtained by this
algorithm and S* be a collection of sets from S associated with x*. Since by our assumption
x* is an approximate solution within (1 — €) Inm we have that

f(x") < (l—¢€)lnm- Optimum < (1 —¢)lnm-m <mlnm,
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and, therefore, S* covers E. It means that we obtain an approximate solution to SET

COVER problem, which can not be guaranteed unless NP C TTM E(mCUoglogm)),
O

@ Complexity of Problems with the Fixed Number of Ratios

The results proved above are valid for problems, where we do not fix the number of ratios.
Another interesting question will be to consider the complexity of problem (1) with the
fixed number of ratios in the objective function. Why is it important? First of all, in
many real-life problems, which can be solved using formulation (1), the number of ratios
m and the number of variables n correspond to different parameters of the initial problem.
For example, in p-choice facility location problem (see, [26]) n is the number of possible
facility locations and m is the number of customer locations. Therefore, if we know the
complexity of problem (1) with the fixed number of ratios we may estimate the complexity
of our initial problem, where the parameter of the problem, which correspond to the number
of ratios in (1) is fixed or small. Another interesting issue arising here is the following. We
know that if condition (8) is satisfied then for m = 1 we have a classical case which can be
solved in polynomial time. In other words, the sign of the denominator is “the borderline
between polynomial and N P-hard classes” of single-ratio problem (2) [8]. As we will see in
the theorem stated below the number of ratios (m = 1, or m > 2) will be the borderline
between between polynomial and N P-hard classes for problem (1), where condition (8) is
satisfied.

Theorem 3 If the number of ratios m in (1) is a fixzed number and condition (8) is satisfied,
then for m > 2 problem (1) remains N P-hard.

Proof. In order to prove the needed result it is enough to show that problem (1) subject to
condition (8) remains N P-hard for m = 2. We use the classical SUBSET SUM problem:
Given a set of positive integers S = {s1, s2,...,8,} and a positive integer K, does there
exist a vector x € B", such that

Zsil’i =K? (11)
i=1

This problem is known to be N P-complete [7].
Let M be a large constant such that M > "  s; + K. With the instance of the
SUBSET SUM problem we associate the following hyperbolic 0-1 programming problem:
max f(x) ! !
X = - — .
xeB” M — (Z?:l S;L; — K) M + (E?:l Sil; — K)
Condition (8) is satisfied by the selection of M. After simple manipulations (12) can be
rewritten as

(12)

2M
=— . 1
i) =3 (Xt siwi — K)? (13)
It is easy to verify that the maximum of (13) is —- if and only if (11) has a solution.
(]

If we replace Y1 | s;z;— K by > i | s;#;+ Kzp41 — K in (13) and consider the following
problem
f) = 2M
x€EBn+1 M2 — (Z?:l Sixi + K$n+1 — K)2 ’

(14)
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then the following theorem can be established.

Theorem 4 If condition (8) holds then the problem of checking if (1) has a unique solution
is NP-hard. This result remains valid if the number of ratios m in (1) is a fized number
such that m > 2.

Proof. Tt is easy to see that x = (0,...,0,1), where z; =0fori=1,... ;n and z,41 =1
is a solution of problem (14). Therefore, the SUBSET SUM problem (11) is reduced to
checking if (14) has a unique solution or not. -

In [20] it was shown that if all coefficients in the objective function are integers then the
multiple-ratio problem (1) with m ratios can be reduced in polynomial time to the problem
with m + 1 ratios and unique global solution. Therefore, we can state the following result:

Theorem 5 If the number of ratios m in (1) is a fixred number and condition (8) is satisfied,
then for m > 3 problem (1) is N P-hard even if it is known that the respective global solution
18 unique.

Complexity of Local Search

For any point z € B™ its adjacent points (or neighbors) can be defined as
X" = (z1,... 25 1,1 — T, Tpg1,...,T0), kK=1,...,0.

A point x € B" is locally optimal if it does not have a neighbor whose function value is
strictly better than f(x). For the maximization problem it means that a point x € B" is a
discrete local mazimizer (dlm) if f(x) > f(x*) for all k = 1,... ,n.

In [20] it was proved that unconstrained multiple-ratio hyperbolic 0-1 programming
problem is PLS-complete. This result was shown to remain valid if ajo + Y., aj;z; > 0,
bjo + >y bjiz; > 0 for all x € B" and for all j =1,... ,m. Next we discuss complexity of
finding a dlm for problem (1).

Consider again the SUBSET SUM problem with the following input S = {s1,...,s,}
and K. Given the instances of S and K, we say that the subset S = {Sk1y--. ySkm} C S'is
a local minimum if and only if

|Zsi—K|§|Zsi—K+s'|

sz'E§ sieg

forall s' € S — S, and

|Zsi—K|§|Zsi—K—s”

sieg Si€§
for all s” € S. In other words, S is the closest to the solution among its neighborhood sets.

The following lemma was proved in [18].

Lemma 1 (Pardalos-Jha) Given a set of integers S = {s1,...,s,} and an integer K,

the problem of finding a local minima S = {Sk1,... ,Skm}t C S such that sp, Sn—1 ¢ S is
NP-hard.

This lemma allows us to consider complexity of finding dlm for problem (1) with two
coordinates fixed.
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Theorem 6 Given an instance of unconstrained multiple-ratio hyperbolic 0—1 programming
problem (1), the problem of finding a dlm x* = (x7,... ,x%) such that v%_, = % =0, is

NP-hard. This result remains valid if condition (8) holds, and/or the number of ratios m
in (1) is a fized number such that m > 2.

Proof.

Let S = {s1,...,s,} and K be an instance of the SUBSET SUM problem. Consider
the hyperbolic 0-1 programming problem defined in (13). If z* is a dlm of (13) with
z¥ | =z =0, then the subset S = {s; : x} = 1} is a local minimum for the SUBSET
SUM problem. -

Similar results for quadratic 0-1 programming problems were proved in [18].

Complexity of Global Verification

For an optimization problem P, where we maximize some function f : O — R, the global
verification decision problem is defined as: Given an instance of P and a feasible solution
w € , does there exist a feasible solution w' €  such that f(w') > f(w)?

The global verification problem is N P-complete for MAX-SAT, MAX-k-SAT (k > 2),
Vertex Cover [1], the Travelling Salesman Problem [17]. For more information on
global verification and related class of PGS problems (polynomial time global search) we
can refer to [11].

Theorem 7 Given an instance of unconstrained multiple-ratio hyperbolic 0—1 programming
problem (1) the related global verification decision problem is N P-hard. This result remains
valid if condition (8) holds, and/or the number of ratios m in (1) is a fivzed number such
that m > 2.

Proof.

We use a reduction from the SUBSET SUM problem. Let M be a large constant such
that M > 3(>""_, s; + K). With the instance of SUBSET SUM problem we associate the
following hyperbolic 0-1 programming problem:

N f( ) 2M
max X) = — .
M= 2T, st — Kann) +1— 2001)?

(15)

If Tn+l = 0 then

2M
M2 — (230 siw +1)%

Fx) =~ (16)

Obviously, the maximum value of f(x) will be —2M/(M? — 1) if we have z; = 0,75 =
0,...,2, =0. If z,4; = 1 then

2M
]\4'2 — 4(2?:1 S;T; — K)2 )

fx) = - (17)

It is easy to observe that the SUBSET SUM problem has a solution if and only if
max f(x) = —2/M. Otherwise, x = (0,...,0) € B"™! is the global solution of (15)

x€Br+1
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and max, f(x) = —2M/(M? — 1). Therefore, the SUBSET SUM problem is reduced to
xechB™

checking if x = (0,...,0) € B*™! is the global solution of problem (15).
o

A similar result can also be proved for the single-ratio problem (2) applying the reduction
described in [20] (see Lemma 4).

Although the above considered complexity results characterize worst-case instances, they
provide some insight into the problem difficulty and indicate that for solving large scale
problems we need to use some heuristics approaches.

Cardinality Constrained Problem

The cardinality constrained hyperbolic 0—1 programming problem is of the form:

foo = Yo TR i 5 (18)
max f(x) = = , s.t. T =P,
x€Bn e bjo + Ei:l bﬂa:l i—1 b

where constraint Y ., z; = p is usually referred to as a cardinality, or knapsack constraint.

Problems of this type appear in scheduling common carriers [22] and p-choice facility
location [26].

Let us recall the following definitions. We say that problem P is “polynomially reducible”
to problem P if given an instance I(P) of problem P, we can in polynomial time obtain an
instance I(Py) of problem P; such that solving I(P;) will solve I(P). Two problems P; and
P, are called “equivalent” if P; is “polynomially reducible” to P and P» is “polynomially
reducible” to P;.

For quadratic 0—1 programming problem, which is probably the most known classical
nonlinear 0—1 programming problem, it can be easily proved that cardinality constrained
version of the problem is “equivalent” to the unconstrained one (see, for example, [10]).
Next we show a similar result for our problem, i.e. if we require only condition (9) to be
satisfied, the problems (1) and (18) are also “equivalent”.

Proposition 1 Problem (1) is “polynomially reducible” to problem (18).

Proof. In order to optimize (1) we can solve n + 1 problems (18) for each p = 0,... ,n.
The optimum for problem (1) will be the maximum from the obtained results.

O

This result implies that any algorithm for solving cardinality constrained hyperbolic

program (18) can be used as a procedure for solving unconstrained hyperbolic programs (1).

Therefore, negative results on inapproximability of the problem (1) are also valid for the
problem (18).

Proposition 2 Problem (18) is “polynomially reducible” to problem (1).

Proof. Without loss of generality we may assume that all coefficients a;; and bj; in the
objective function of (18) are integers.

Reduction 1. Next define the following problem with m + 1 ratios:
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i @jo + Diy Gi%i o Dig T =P (19)
bjo + iy bjiti 2 L wi—p)+ U

max g(x) =
Jj=1

where M > 637", > laji|. It is easy to check that if 331, ; # p then

Z?:l T; — P
23 @i —p) +1

otherwise, this additional ratio is equal to 0. By the selection of M and (20) it is
obvious that if Y7 x; # p then g(x) < =37, 371 laji|. Otherwise, g(x) >
— i Yico laji|l.- Therefore, problem (19) is maximized iff >>;", z; = p, and
max f(x) = max g(x). This reduction implies that problem (18) with m ratios can be
reduced to problem (1) with m + 1 ratios.

1
> - 20
>3, (20)

Reduction 2. Next define the following problem with m ratios:

" ag0 + S0 agi + AMB (0 @i —
max g(x) = Z ajo + D iy ajiTi +4M;B; (31, i — p) (21)

xeBn = bjO + Z?:l bjimi + 2BJ (p — E?:l 1’2) ’
where M; > Y7 laj;| and B > > |bji|. It is easy to check that if >0 o # p
then each ratio is negative and g(x) < — 377", >°I_; |aji|. Therefore, problem (21) is
maximized iff Y ., z; = p, and max f(x) = max g(x). Problem (18) with m ratios
can be reduced to problem (1) with the same number of ratios.

O
From Proposition 1 and Proposition 2 the following theorem follows:

Theorem 8 Problems (1) and (18) are “equivalent”.

Linearization Techniques

In this section we discuss linear mixed 0—1 reformulations of multiple-ratio hyperbolic 0-1
programming problems. We also assume that condition (9) is satisfied.

Li’s and Wu’s approaches and their modifications. Wu’s linearization technique
[27], which is an extension of Li’s approach [15], is based on a very simple idea:

Theorem 9 [27] A polynomial mized 0-1 term z = zy, where © is a 0-1 variable, and y
is a continuous variable taking any positive value, can be represented by the following linear
inequalities: (1) y — 2z < K — Kz; (2) z <y; (3) 2 < Kz; ({) z > 0, where K is a large
number greater than y.

This result can be easily generalized for a general y, which is bounded by some lower and
upper bounds (see [26]):

Corollary 1 A polynomial mized 0-1 term z = xy, where x is a 0-1 variable, and y is a
continuous variable, can be represented by the following linear inequalities: (1) z < Ux; (2)
z<y+Lxz—-1); (3) z>y+U(xr—1); (4) 2 > Lz, where U and L are upper and lower
bounds of variable y, i.e. L <y <U.
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Let
y; = 1/(bjo + Y _ bjim:). (22)
=1

It is assumed that condition (9) is satisfied. Then problem (1) becomes:

max  f(x,y) = Z(ajoyj + Zajiﬂ?iyj)a (23)
xeB” ,yeR™ = P}
s.t. bjoy; + ijixiyj =1,5=1,...,m, (24)

i=1

where objective function (23) is obtained replacing each term 1/(bjo + > i, bjiz;) in (1) by
y;, and condition (24) is equivalent to (22) since (9) is satisfied.
Nonlinear terms z;y; in (23)-(24) can be linearized introducing new variable z;; = z;y;
and applying Theorem 9 (if condition (8) is satisfied), or Corollary 1 (in general case).
Another possible reformulation can be constructed applying the following equality:

n
g = 0t D1 @i
J n :
b]'() + Ei:l b]lml

In this case problem (1) is reformulated as:

m
B SO0 =2 s )
j=
s.t. bjoy; + Z bjitiy; = ajo + Zajimi, J=1...,m. (26)
i=1 i=1

Nonlinear terms z;y; in (26) should be linearized using Corollary 1.

The number of new variables z;; in both formulations is m + mn.

In more details formulations (23)-(24) and (25)-(26), their modifications and some other
aspects of linearization techniques (estimation of bounds on the fractional terms, additional
constraints for tighter relaxations) are discussed in [15, 26, 27].

New modification. The following theorem can be formulated as a generalization of
Theorem 9:

Theorem 10 A polynomial mized 0-1 term z = y(cix1 + cox2), where z1, Ty are 0-1
variables, c¢1 and cy are some positive constant numbers and y s a continuous variable
taking any positive value, can be represented by the following linear inequalities: (1) z > 0,
(2) z < K(c1m1 +caxz), (3) z<ciy+cay, (4) z <cry+ Keawxs, (5) 2 < coy + Keyxy, (6)
z2>cay—Kei(1—m1), (7) 2 > coy—Kcea(1—x2), (8) 2 > cry+eoy—Ker(1—x1) — Keo(1—19),
where K is a large number greater than y.

Proof.
We need to check the following four variants: (1) z; = 0 and 22 = 0; (2) z; = 1 and
22 =0; (3) zy =0and z2 = 1; (4) z; =1 and z» = 1.
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e If zy = 0 and x> = 0 then term z must be equal to 0. Conditions (1) and (2) force
z = 0. Conditions (3)-(5) are satisfied since K, y, ¢1, and ¢» are nonnegative. In (6)
we have that c;y — Key(1 —21) = cry — Kep = e1(y — K) < 0. Since z = 0 (6) is
obviously satisfied. Similarly, conditions (7) and (8) are also valid.

o If ;1 =1 and 25 = 0 then term z must be equal to ¢;z;. Conditions (4) and (6) force
z = c1y1. It is easy to check that the rest of the inequalities are satisfied.

e The last two variants can be checked similarly.

Let
Y = ajo + 2?21 Qji%;
T bjo + 20 biti
where M; is a constant large enough such that y; > 0. The obtained reformulation is similar
to (25)-(26):

+ M;

xEB? ,yeR™

max_ f(x,y) = > _uj, (27)
j=1

s.t. bjgyj + Z bjil‘iyj = ajo + Z aj;T; + Mj(bjo + Z b]‘il’i), j=1...,m. (28)

i=1 i=1 i=1

Nonlinear terms z;y; should be linearized using the approach described in Theorem 10.
The advantage of the proposed modification (we have 2 binary variables corresponding
to each new variable, see Theorem 10) is that the number of new variables is at most
m+m(|n/2| +1) ~ m+mn/2 while the number of constraints remains the same. Note also
that we can formulate theorems similar to Theorem 10, where z = y(c1x1 + c2x2 + c3x3),
z =y(c1w1 + c2xa + c3x3 + caxyq), etc. Applying these reformulations we obtain new linear
mixed 0-1 formulations, but in this case more constraints should be generated (actually the
number of constraints grows exponentially).

Example. Let us illustrate the proposed linearization with the following example. Sup-
pose we need to linearize the following problem:

. 14z
min
x€B* 8 + 11 + 229 — 323 — 4y

(29)

Let y = (1+21)/(8+ 21 + 222 —3x3 —4x4). Obviously, 0 < y <1 and the above formulation
then becomes:

min y,
s.t. 8y +wymwy + 2yre — 3yrs —4dyry = 1+ 11, (30)
x1, x2 € {0,1}

Applying a standard technique we need to introduce 4 new variables z; for each term
z; = yx; (i =1,...,4) plus 16 additional inequalities. In a new approach we need only 2
variables z; such that z; = y(z; + 2x2) and 22 = y(3z3 + 4z4), and the same number of
inequalities.
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GRASP-Based Heuristic

The complexity results considered in Section 2 of this paper indicate that hyperbolic 0-1
programming problem is a difficult combinatorial optimization problem, and, therefore, in
order to obtain a good quality solution in a reasonable amount of time we need to use
some heuristic approaches. In this section we propose a metaheuristic algorithm for solving
the cardinality constrained multiple-ratio hyperbolic 0-1 programming problem (18). The
algorithm we present is based on a Greedy Randomized Adaptive Search Procedure (GRASP).
To the authors’ best knowledge no results on applying GRASP-based heuristic approaches
for the considered problem have been reported yet. Although the algorithm described below
is rather simple we were able to obtain good results.

GRASP is a sampling procedure, proposed by Feo and Resende [5], which tries to create
good solutions with high probability. The main tools to make this possible are the construc-
tion and the improvement phases. In the construction phase, GRASP creates a complete
solution by iteratively adding components of a solution with the help of a greedy function,
used to perform the selection. In the case of the hyperbolic function problem, a solution is
composed by a set of 0—1 variables. Thus, a solution is created by defining for each individual
variable a value in {0, 1}.

The improvement phase then takes the incumbent solution and performs local perturba-
tions in order to get a local optimal solution, with respect to some predefined neighborhood.
Different local search algorithms can be defined according to the neighborhood chosen. The
general GRASP procedure can be described as in Algorithm 1.

initialize variables;
while termination criterion not satisfied do
/* Construction phase */
s« 0
while solution s not feasible do
Order available components according to greedy function g
Select one (say y) of the best « components /* « is a parameter */
Add component to solution s: s + sU {y}
end
/* Improvement phase */
while local search criteria not satisfied do
Perform local perturbation on s
if solution s improved then
Keep changes

end
end

Save best solution
end

Algorithm 1: GRASP

Problem Formulation. More specifically the problem we consider in this section is of
the form:
St L o (31)
bjo + 221y bjiwi

max f(x) =
Jj=1
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s.t. Z T = p, (32)
=1

bjo+ Y bjizi >0 forj=1,...,m  (33)

i=1

The reason for adding the last constraint is the following. In many of the cases, where
we consider multiple-ratio hyperbolic 0-1 programming problems, condition (8) is either
satisfied, or enforced by adding the set of constraints (33) to the problem formulation (for
example, see [26, 27]).

Construction Phase. The construction phase of our GRASP consists of defining an
initial assignment of the values 0 or 1 to each one of the variables. The component (variable)
that will be assigned at each iteration is chosen according to the amount of its contribution
to the solution. This means that the greedy approach used, tries to maximize the partial ob-
jective function corresponding to the values already assigned. The partial objective function
f' can be described in the following way

m

dies QjiTi D icq Ajil
f(z) = ( i Py , (34)
2 dies biiTi Yies bjimi

j=1

where S is the original set of selected indices and S’ is the new set of indices after the
definition of the value of one additional variable in solution x. The GRASP algorithm

input: coefficients a;;, bj; for j =1,... ,m and i =0,... ,n and a constant p
output: a vector z for the hyperbolic function, with = € {0,1}"
/* initialize solution z */
z + (0,...,0)
S 0; S« 0
for 1 + 1 ton do
/* create a restricted candidate list [ */
L+ {1,...,n}\(SUS)
Order L according to function f’ as described in equation (34)
RCL ¢ first a elements of L
Select random index 7 € RCL
T+ 1
if there is any denominator < 0 then
set 7; + 0 and S < SU {i}
else
S+ Su{i}
if > x; =p then return z

end
end

Algorithm 2: Construction phase

uses a list of candidate components, also known as the restricted candidate list (RCL). In
our case, the RCL is composed of the a best indices, with values defined by equation (34).
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Therefore, during the construction phase we sort the candidate variables in decreasing order
according to their marginal contribution (f'(z)) to the objective function.

The implementation details of the construction phase are presented in Algorithm 2.
During the procedure, two sets of indices are maintained:

o the set S of indices of variables that have been selected and assigned the value 1;

e the set S of indices of variables that have been defined as infeasible (one of the de-
nominators is negative) for the current solution (and therefore will have value 0).

Variables are included in S whenever they are selected from the RCL, and receive a value 1.
On the other hand, if a variable is found to be infeasible for the current solution, its index
is included in S. Parameter « is a random variable, uniformly distributed between 1 and
the size of the list for each iteration of the Algorithm 2.

Note that due to the nature of the random choices made in the construction phase, it is
possible that a particular sequence of chosen variables lead to an infeasible solution. This
is handled in the algorithm by simply discarding the infeasible solution and re-starting the
construction phase.

Handling Constraints in GRASP. An important part of solving the hyperbolic func-
tion problem is handling the feasibility of generated solutions. A method to handle the
linear constraints is to guarantee from the beginning that only feasible solutions are gener-
ated. This can be made possible by carefully checking each candidate solution, and making
sure that all the constraints are satisfied. In our algorithm, a feasibility checking function is
applied each time a new solution is considered for the problem and, therefore, we avoid prob-
lems created by infeasible solutions. During the construction phase, when solving knapsack
instances of the problem, we only test if the current solution has denominators greater than
zero, since a partial solution with " | z; < p can become feasible in the next iterations.

input: coefficients aj;, bj; for j = 1,...,m and ¢« = 0,... ,n and a constant p; the
current solution z € {0, 1}"
output: a local maximum z for the hyperbolic function f, with z € {0,1}"
k<« 0
while £k < N do

/* perturb solution */

Select two random indexes ¢ and j, such that ¢ # j and x; # =;

R e Rl S A R B

¢ f(a')

/* save perturbed solution if necessary */

if ¢ > f(z) and z' is feasible then

T+ 1—ux;

:L’j(—].—l‘j

k<0
end
k+—k+1

end

Algorithm 3: Improvement phase

Improvement Phase. The improvement phase of GRASP has the objective of finding a
local optimal solution according to a local neighborhood. The neighborhood of our problem
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is defined by perturbations on the incumbent solution. The perturbation consists of selecting
two variables x; and x; such that z; # z; and flipping their values to zero or one while
keeping Y I, #; = p. The variables are selected randomly, and after a change of values
in the selected variables is performed, the resulting solution is tested for feasibility (the
denominators must remain positive). If feasibility is achieved, then the solution is accepted
if its cost is better than the previous one. Otherwise, a new random perturbation of the
solution is done. This phase ends after N iterations without improvement, where N is a
parameter of the algorithm. In the computational experiments reported below N = 1000.
The formal procedure is described in Algorithm 3.

Computational Results. The algorithm described above was implemented using the
C language and compiled with the gcc compiler. The tests were performed in a machine
with the Intel Pentium 4 CPU at 2.7GHz. The operating system used was Windows XP.

Test instances were constructed using the following idea. All coefficients aj; and bj;; are
integers randomly generated from the interval [-100,100] (see Table 1), or [1,100] (see Table
2).

Since all coefficients aj; and bj; are integers, constraints (33) are replaced by equivalent
constraints of the form:

bj0+2bjimi21 forj=1,....m (35)

i=1

In the 2nd class of the test problems instead of maximization we considered minimization
problem.

Tables 1 and 2 summarize results found with the proposed algorithm. These tables
are organized as follows. The first four columns give information about the instances: the
number of variables (n), the number of ratios (m), the number of elements in the knapsack
constraint (p), and the random seed used by the generator (which is publicly available). The
next four columns present the results of the exact algorithm used, in comparison to GRASP.

For the exact algorithm Wu’s linearization (23)-(24) was used. Since all generated co-
efficients are integers all fractional terms can be upper bounded by K=1 (see Theorem
9).

The integer program solver was CPLEX 9.0 [28].

In both cases the CPU time (in seconds) and the value of the best solution found are
reported. The time reported for GRASP is for the iteration where the best solution was
found by the algorithm.

The termination criterion for GRASP is the following. The algorithm is set up to run
while a fixed number of iterations is reached without any improvement. In most cases the
best solution is found with just a few iterations, as can be seen from the small time needed
to find the optimum solution.

@ Concluding Remarks

In this paper, we have discussed multiple-ratio hyperbolic 0-1 (fractional 0-1) programming
problems. We have investigated some theoretical aspects of these problems including com-
plexity issues, cardinality constrained cases and linear mixed 0-1 reformulations. Although
the considered complexity results indicate that the multiple-ratio hyperbolic 0-1 program-
ming problem is extremely difficult, the proposed simple GRASP-based heuristic for solving
cardinality constrained problems has proved to perform very well.
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instance exact GRASP

n m p seed time(s) value time(s) value
20 10 10 535 39.44 617.84 1.75 617.84
20 10 10 756 18.42  416.88 6.27  416.88
20 10 10 846 69.83 518.64 1.17 518.64
20 10 10 856 34.75  453.62 0.08 453.62
20 10 15 136 9.95 770.33 4.68 770.33
20 10 15 674 26.48  469.98 47.07  469.98
20 10 15 756 6.80  335.93 0.80  335.93
20 10 15 757 7.30 416.94 0.91 416.94
20 10 15 876 8.27  477.25 0.01  477.25
25 10 10 565 700.26  726.54 37.56  726.54
25 10 10 754 129.58  747.55 1.50  747.55
25 10 10 755 185.66  431.41 0.27 431.41
25 10 10 756 22.33  476.70 1.81 476.70
25 10 10 855 100.53  744.20 0.64 744.20
25 10 15 733 507.39  797.60 1.31  797.60
25 10 15 743 1782.69  680.96 108.73  680.96
25 10 15 744 99.05 872.78 3.45  872.78
25 10 15 754 109.08  855.28 0.88 763.12
25 10 15 865 201.45  464.25 1.80 464.25
25 2 10 565 0.78 536.21 0.03 536.21
25 2 10 754 0.86  620.37 1.24  620.37
25 2 10 755 0.42  194.37 0.25 194.37
25 2 10 T 0.23 609.14 2.23  609.14
25 2 15 733 0.30 745.90 0.91 745.90
25 2 15 743 0.48 605.95 0.80  605.95
25 2 15 744 1.25 866.42 4.36  866.42
25 2 15 754 0.36  675.47 0.69 675.47
25 2 15 865 0.33  308.12 0.14 308.12

Table 1: Results to instances with aj;,b;; € [—100,100].
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instance exact GRASP

n m p seed time(s)  value time(s)  value
40 2 10 5653 1.53 0.24 0.00 0.24
40 2 10 7567 0.83 0.25 0.00 0.25
40 2 10 8464 0.42 0.19 0.02 0.19
40 2 10 8767 0.28 0.16 0.00 0.16
40 2 15 1667 6.34 0.30 0.02 0.30
40 2 15 6643 2.17 0.33 0.02 0.33
40 2 15 7545 20.73 0.36 0.05 0.36
40 2 15 7546 4.73 0.33 0.00 0.33
40 2 15 8754 10.41 0.35 0.02 0.35
40 2 20 7435 102.88 0.40 0.00 0.40
40 2 20 7534 9.36 0.47 0.00 0.47
40 2 20 8434 579.66 0.50 0.02 0.50
40 2 20 8534 2.69 0.38 0.02 0.38
40 2 25 5443 47.38 0.61 0.02 0.61
40 2 25 6443 176.28 0.69 0.02 0.69
40 2 25 8444 6.42 0.63 0.02 0.63
40 2 25 8544 21.56 0.65 0.03 0.65
45 2 10 5674 0.92 0.19 0.03 0.19
45 2 10 7573 0.70 0.19 0.03 0.19
45 2 10 7574 0.27 0.16 0.02 0.16
45 2 10 7575 1.26 0.20 0.00 0.20
45 2 10 8564 5.84 0.28 0.02 0.28
45 2 15 7395 16.28 0.34 0.03 0.34
45 2 15 7493 2.30 0.29 0.02 0.29
45 2 15 7494 21.58 0.40 0.06 0.40
45 2 15 7594 53.48 0.36 0.02 0.36
45 2 15 8694 2.25 0.30 0.06 0.30
45 2 20 4393 308.30 0.39 0.02 0.39
45 2 20 5575 90.23 0.40 0.01 0.40
45 2 20 6686 51.20 0.40 0.02 0.40
45 2 20 7463 23.81 0.40 0.02 0.40
45 2 20 7767 11.42 0.38 0.00 0.38
45 2 25 7453 445.05 0.52 0.02 0.52
45 2 25 7456 302.45 0.57 0.03 0.57
45 2 25 7643 31.95 0.48 0.03 0.48
45 2 25 7653 683.17 0.52 0.03 0.52
45 2 25 7656 517.70 0.50 0.02 0.50

Table 2: Results to instances with aj;, b;; € [1,100].

343
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