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� Introduction

One of the classes of ��� optimization problems is the maximization of the sum of ratios of
linear ��� functions�

max
x�Bn

f�x� �

mX
j��

aj� �
Pn

i�� ajixi
bj� �

Pn

i�� bjixi
� ���

where B
n � f�� �gn� This problem is referred to as hyperbolic �fractional� ��� programming

problem	 or multiple�ratio fractional �hyperbolic� ��� programming problem 
�	 �
� Usually
it is assumed that for all j and x � B

n the denominators in ��� are positive	 i�e� bj� �Pn

i�� bjixi � ��
A special class of problem ��� is the so�called single�ratio hyperbolic ��� programming

problem�

max
x�Bn

f�x� �
a� �

Pn

i�� aixi
b� �

Pn

i�� bixi
� ���
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Applications of constrained and unconstrained versions of the problems ��� and ��� arise
in numerous areas including but not limited to scheduling 
��
	 query optimization in data
bases and information retrieval 
�
	 and p�choice facility location 
��
�

Problem ��� can be generalized if instead of linear ��� functions we consider multi�linear
polynomials�

max
x�Bn

f�x� �

P
S�A aS

Q
i�S xiP

T�B bT
Q
j�T xj

� ���

where A� B are families of subsets of f�� �� � � � � ng�
It is easy to observe that after simple manipulations we can always reduce problem ��� to

��� and the degrees of polynomials in ��� are upper bounded by the number of ratios in ����
Note also that introducing a new binary variable for each product

Q
i�S xi and

Q
j�T xj 	

problem ��� can be reformulated as an equivalent constrained single�ratio hyperbolic ���
programming problem� Therefore	 any multiple�ratio hyperbolic ��� programming problem
��� can be reduced to a constrained single�ratio problem ����

Problem ��� has very interesting applications in graph theory 
��
� Consider an undi�
rected graph G � �V�E�� The density d�G� of the graph G is de�ned as the maximum ratio
of the number of edges eH to the number of nodes nH over all subgraphs H � G	 i�e�

d�G� � max
H�G

eH
nH

� ���

where eH and nH are the number of edges and nodes in the subgraph H � Obviously	 the
problem of �nding d�G� can be formulated as the following hyperbolic ��� programming
problem�

d�G� �
�

�
max

x�BnG � x���
�

nGX
i��

nGX
j��

aijxixj��

nGX
j��

xj � ���

where aij are the elements of the adjacency matrix of G and nG is the number of nodes in
G� Similar formulation can also be given for the arboricity ��G� de�ned as the minimum
number of edge�disjont forests into which G can be decomposed� More detailed description
of these problems along with polynomial time algorithms for speci�c classes of ��� can be
found in 
��
�

Algorithms for solving constrained and unconstrained versions of problems ������� include
linearization techniques 
��	 ��	 ��
	 branch and bound methods 
��	 ��
	 network��ow 
��

and approximation 
�
 approaches� Optimization of sums�of�ratios problems over convex sets
is considered in 
�	 ��	 ��	 ��
� Extensive reviews on fractional programming can be found
in 
��	 ��	 ��
�

The remainder of this paper is organized as follows� In Section � we consider the compu�
tational complexity of hyperbolic ��� programming problems� To the authors� knowledge no
results on complexity of multiple�ratio hyperbolic ��� programming problems have been re�
ported until recent work 
��
� In Section � the cardinality constrained problem is discussed�
Section � is devoted to linearization techniques� In Section � we present a GRASP�based
heuristic for solving the cardinality constrained multiple�ratio hyperbolic ��� programming
problems� Finally	 Section � concludes the discussion�

� Complexity Issues

Constrained versions of problems ��� and ���	 where we solve the problem subject to some
linear ��� constraints	 are clearly NP �hard since ��� programming is a special class of
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constrained hyperbolic ��� programming if bji � � and bj� � � for j � �� � � � �m and
i � �� � � � � n�

Next we discuss complexity issues of unconstrained single� and multiple�ratio hyperbolic
��� programming problems ��� and ����

It is well�known that there exists a polynomial time algorithm for solving an uncon�
strained single�ratio hyperbolic ��� programming problem ���	 see Ref� 
�
	 if the following
condition holds�

b� �

nX
i��

bixi � � for all x � B
n � ���

Note that if the term b� �
Pn

i�� bixi can take the value zero	 then problem ��� may not
have a �nite optimum� In the case where

b� �

nX
i��

bixi �� �� for all x � B
n ���

holds	 but the term b� �
Pn

i�� bixi can take both negative and positive values	 single�ratio
problem ��� is known to be NP �hard 
�
� Moreover	 �nding an approximate solution within
any positive multiple of the �negative� optimal value is NP �hard 
�
� It is also easy to
observe that checking condition ��� is NP �hard since SUBSET SUM can be reduced to it�
Multiple�ratio problem ��� remains NP �hard if aj� �

Pn

i�� ajixi � �	 bj� �
Pn

i�� bjixi � �
for all x � B

n and for all j � �� � � � �m 
��
�
For multiple�ratio problem conditions ��� and ��� correspond to

bj� �
nX
i��

bjixi � � for all x � B
n and j � �� � � � �m� ���

and

bj� �

nX
i��

bjixi �� �� for all x � B
n and j � �� � � � �m� ���

Some other aspects of complexity of unconstrained single� and multiple�ratio hyperbolic
��� programming problems ��� and ��� are addressed in 
��
� It is shown that

�a� checking uniqueness of the solution for both problems ��� and ��� is a NP �complete
problem �we assume that only condition ��� holds��

�b� �nding the global solution for single�ratio problem ��� is NP �hard even if it is known
that the respective global solution is unique�

�c� multiple�ratio problem ��� remains NP �hard even if it is known that the respective
global solution is unique�

�d� multiple�ratio problem ��� is PLS�complete	 where PLS stands for the class of poly�
nomial time local search problems 
��
�

�e� multiple�ratio problem ��� is not ��approximable in polynomial time for some constant
� � ��

Last three results remain valid if condition ��� holds�
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��� Improved Inapproximability Results for Multiple�Ratio Problem

For combinatorial optimization problems	 where f is the corresponding objective function	
an ��approximate minimal solution	 or ��minimizer	 � � � is usually de�ned as an x such
that

f�x� � � � Optimum�

The proof of the next result is based on the SET COVER problem known to be
NP �hard 
�
� The input is a ground set E � fe�� e�� � � � � eng of elements with subsets
S � fS�� S�� � � � � Smg	 where Si � E for each i � �� � � � �m� The goal is to choose the
smallest collection S � S of sets whose union is E� We let m � jSj and n � jEj�

Theorem � 	
� If there is some � � � such that a polynomial time algorithm can approxi�
mate set cover within ��� �� lnn� then NP � TIME�nO�log logn��� This result holds even if
we restrict ourselves to set cover instances with m � n�

In other words	 Theorem � states that ���o���� lnn is a threshold below which set cover
cannot be approximated e�ciently	 unless NP can be solved by a slightly superpolynomial
time algorithm �for more details	 please	 see 
�	 ��
��

For problem ��� we assume that condition ��� is satis�ed� Using the aforementioned
result by Feige the following theorem can be proved�

Theorem � If there is some � � � such that a polynomial time algorithm can approximate
minimization of a multiple�ratio hyperbolic ��� function within ��� �� lnm� where m is the
number of binary variables in the objective function� then NP � TIME�mO�log logm���

Proof� We reduce SET COVER problem to a minimization of a multiple�ratio hyperbolic
��� function�

We are given a ground set E � fe�� � � � � eng	 and collection S � fS�� � � � � Smg of subsets
of E	 where m � jSj	 n � jEj and m � n� With each subset Si we associate a binary
variable xi� With each element ek � E we associate the following ��� function�

gk�x� � ��
X

i�ek�Si

xi
� �
P

j ��i� ek�Sj
xj
�

If the set Si is selected then we have xi � �	 otherwise xi � �� Note that for any S � S
of subsets of E	 if the element ek � �Si�S Si then the corresponding function gk�x� � �	
otherwise gk�x� � ��

With an instance of SET COVER problem we associate the following unconstrained
multiple�ratio hyperbolic ��� programming problem

min
x�Bm

f�x� �

mX
i��

xi �M

nX
i��

gi�x�� ����

where M is a constant number such that M � m lnm� It is easy to see that for any x � B
m

f�x� � � and if the set S � S associated with x covers E then f�x� � m	 otherwise
f�x� � m lnm� � �by the selection of M��

Suppose next that there exists a polynomial time algorithm that can approximate ����
within �� � �� lnm� Let x� � �x��� � � � � x

�
m� be an approximate solution obtained by this

algorithm and S� be a collection of sets from S associated with x�� Since by our assumption
x� is an approximate solution within ��� �� lnm we have that

f�x�� � ��� �� lnm �Optimum � ��� �� lnm �m � m lnm�
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and	 therefore	 S� covers E� It means that we obtain an approximate solution to SET
COVER problem	 which can not be guaranteed unless NP � TIME�mO�log logm���

��� Complexity of Problems with the Fixed Number of Ratios

The results proved above are valid for problems	 where we do not �x the number of ratios�
Another interesting question will be to consider the complexity of problem ��� with the
�xed number of ratios in the objective function� Why is it important� First of all	 in
many real�life problems	 which can be solved using formulation ���	 the number of ratios
m and the number of variables n correspond to di�erent parameters of the initial problem�
For example	 in p�choice facility location problem �see	 
��
� n is the number of possible
facility locations and m is the number of customer locations� Therefore	 if we know the
complexity of problem ��� with the �xed number of ratios we may estimate the complexity
of our initial problem	 where the parameter of the problem	 which correspond to the number
of ratios in ��� is �xed or small� Another interesting issue arising here is the following� We
know that if condition ��� is satis�ed then for m � � we have a classical case which can be
solved in polynomial time� In other words	 the sign of the denominator is �the borderline
between polynomial and NP �hard classes� of single�ratio problem ��� 
�
� As we will see in
the theorem stated below the number of ratios �m � �	 or m � �� will be the borderline
between between polynomial and NP �hard classes for problem ���	 where condition ��� is
satis�ed�

Theorem � If the number of ratios m in ��� is a 
xed number and condition ��� is satis
ed�
then for m � � problem ��� remains NP �hard�

Proof� In order to prove the needed result it is enough to show that problem ��� subject to
condition ��� remains NP �hard for m � �� We use the classical SUBSET SUM problem�
Given a set of positive integers S � fs�� s�� � � � � sng and a positive integer K	 does there
exist a vector x � B

n 	 such that

nX
i��

sixi � K� ����

This problem is known to be NP �complete 
�
�
Let M be a large constant such that M �

Pn

i�� si � K� With the instance of the
SUBSET SUM problem we associate the following hyperbolic ��� programming problem�

max
x�Bn

f�x� � �
�

M � �
Pn

i�� sixi �K�
�

�

M � �
Pn

i�� sixi �K�
� ����

Condition ��� is satis�ed by the selection of M � After simple manipulations ���� can be
rewritten as

max
x�Bn

f�x� � �
�M

M� � �
Pn

i�� sixi �K��
� ����

It is easy to verify that the maximum of ���� is � �
M

if and only if ���� has a solution�

If we replace
Pn

i�� sixi�K by
Pn

i�� sixi�Kxn���K in ���� and consider the following
problem

max
x�Bn��

f�x� � �
�M

M� � �
Pn

i�� sixi �Kxn�� �K��
� ����
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then the following theorem can be established�

Theorem � If condition ��� holds then the problem of checking if ��� has a unique solution
is NP �hard� This result remains valid if the number of ratios m in ��� is a 
xed number
such that m � ��

Proof� It is easy to see that x � ��� � � � � �� ��	 where xi � � for i � �� � � � � n and xn�� � �
is a solution of problem ����� Therefore	 the SUBSET SUM problem ���� is reduced to
checking if ���� has a unique solution or not�

In 
��
 it was shown that if all coe�cients in the objective function are integers then the
multiple�ratio problem ��� with m ratios can be reduced in polynomial time to the problem
with m� � ratios and unique global solution� Therefore	 we can state the following result�

Theorem � If the number of ratios m in ��� is a 
xed number and condition ��� is satis
ed�
then for m � � problem ��� is NP �hard even if it is known that the respective global solution
is unique�

��� Complexity of Local Search

For any point x � B
n its adjacent points �or neighbors� can be de�ned as

xk � �x�� � � � � xk��� �� xk� xk��� � � � � xn�� k � �� � � � � n�

A point x � B
n is locally optimal if it does not have a neighbor whose function value is

strictly better than f�x�� For the maximization problem it means that a point x � B
n is a

discrete local maximizer �dlm� if f�x� � f�xk� for all k � �� � � � � n�
In 
��
 it was proved that unconstrained multiple�ratio hyperbolic ��� programming

problem is PLS�complete� This result was shown to remain valid if aj� �
Pn

i�� ajixi � �	
bj� �

Pn

i�� bjixi � � for all x � B
n and for all j � �� � � � �m� Next we discuss complexity of

�nding a dlm for problem ����
Consider again the SUBSET SUM problem with the following input S � fs�� � � � � sng

and K� Given the instances of S and K	 we say that the subset eS � fsk�� � � � � skmg � S is
a local minimum if and only if

j
X
si�eS

si �Kj � j
X
si�eS

si �K � s�j

for all s� � S � eS	 and
j
X
si�eS

si �Kj � j
X
si�eS

si �K � s��j

for all s�� � eS� In other words	 eS is the closest to the solution among its neighborhood sets�
The following lemma was proved in 
��
�

Lemma � �Pardalos�Jha� Given a set of integers S � fs�� � � � � sng and an integer K�

the problem of 
nding a local minima eS � fsk�� � � � � skmg � S such that sn� sn�� �� eS is
NP �hard�

This lemma allows us to consider complexity of �nding dlm for problem ��� with two
coordinates �xed�
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Theorem � Given an instance of unconstrained multiple�ratio hyperbolic ��� programming
problem ���� the problem of �nding a dlm x� � �x��� � � � � x

�

n� such that x�n�� � x�n � �� is
NP �hard� This result remains valid if condition �	� holds� and
or the number of ratios m
in ��� is a �xed number such that m � ��

Proof�

Let S � fs�� � � � � sng and K be an instance of the SUBSET SUM problem� Consider
the hyperbolic ��� programming problem de�ned in ��	�� If x� is a dlm of ��	� with

x�n�� � x�n � �
 then the subset eS � fsj � x�j � �g is a local minimum for the SUBSET
SUM problem�

Similar results for quadratic ��� programming problems were proved in ��
��

��� Complexity of Global Veri�cation

For an optimization problem P 
 where we maximize some function f � � � R
 the global
veri�cation decision problem is de�ned as� Given an instance of P and a feasible solution
w � �
 does there exist a feasible solution w� � � such that f�w�� � f�w��

The global veri�cation problem is NP �complete forMAX�SAT
MAX�k�SAT �k � ��

Vertex Cover ���
 the Travelling Salesman Problem ����� For more information on
global veri�cation and related class of PGS problems �polynomial time global search� we
can refer to �����

Theorem � Given an instance of unconstrained multiple�ratio hyperbolic ��� programming
problem ��� the related global veri�cation decision problem is NP �hard� This result remains
valid if condition �	� holds� and
or the number of ratios m in ��� is a �xed number such
that m � ��

Proof�

We use a reduction from the SUBSET SUM problem� Let M be a large constant such
that M � 	�

Pn

i�� si�K�� With the instance of SUBSET SUM problem we associate the
following hyperbolic ��� programming problem�

max
x�Bn��

f�x� � �
�M

M� � ���
Pn

i�� sixi �Kxn��� � �� xn����
� ����

If xn�� � � then

f�x� � �
�M

M� � ��
Pn

i�� sixi � ���
� ����

Obviously
 the maximum value of f�x� will be ��M��M� � �� if we have x� � �� x� �
�� � � � � xn � �� If xn�� � � then

f�x� � �
�M

M� � ��
Pn

i�� sixi �K��
� ����

It is easy to observe that the SUBSET SUM problem has a solution if and only if
max

x�Bn��
f�x� � ���M � Otherwise
 x � ��� � � � � �� � B

n�� is the global solution of ����
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and max
x�Bn��

f�x� � ��M��M� � ��� Therefore
 the SUBSET SUM problem is reduced to

checking if x � ��� � � � � �� � B
n�� is the global solution of problem �����

A similar result can also be proved for the single�ratio problem ��� applying the reduction
described in ���� �see Lemma ���

Although the above considered complexity results characterize worst�case instances
 they
provide some insight into the problem di�culty and indicate that for solving large scale
problems we need to use some heuristics approaches�

� Cardinality Constrained Problem

The cardinality constrained hyperbolic ��� programming problem is of the form�

max
x�Bn

f�x� �

mX
j��

aj� �
Pn

i�� ajixi
bj� �

Pn

i�� bjixi
� s�t�

nX
i��

xi � p� ��
�

where constraint
Pn

i�� xi � p is usually referred to as a cardinality
 or knapsack constraint�
Problems of this type appear in scheduling common carriers ���� and p�choice facility

location �����

Let us recall the following de�nitions� We say that problem P is �polynomially reducible�
to problem P� if given an instance I�P � of problem P 
 we can in polynomial time obtain an
instance I�P�� of problem P� such that solving I�P�� will solve I�P �� Two problems P� and
P� are called �equivalent� if P� is �polynomially reducible� to P� and P� is �polynomially
reducible� to P��

For quadratic ��� programming problem
 which is probably the most known classical
nonlinear ��� programming problem
 it can be easily proved that cardinality constrained
version of the problem is �equivalent� to the unconstrained one �see
 for example
 ������
Next we show a similar result for our problem
 i�e� if we require only condition ��� to be
satis�ed
 the problems ��� and ��
� are also �equivalent��

Proposition � Problem ��� is �polynomially reducible� to problem ��	��

Proof� In order to optimize ��� we can solve n � � problems ��
� for each p � �� � � � � n�
The optimum for problem ��� will be the maximum from the obtained results�

This result implies that any algorithm for solving cardinality constrained hyperbolic
program ��
� can be used as a procedure for solving unconstrained hyperbolic programs ����
Therefore
 negative results on inapproximability of the problem ��� are also valid for the
problem ��
��

Proposition � Problem ��	� is �polynomially reducible� to problem ����

Proof� Without loss of generality we may assume that all coe�cients aji and bji in the
objective function of ��
� are integers�

Reduction �� Next de�ne the following problem with m� � ratios�
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max
x�Bn

g�x� �
mX
j��

aj� �
Pn

i�� ajixi
bj� �

Pn

i�� bjixi
�M �

Pn

i�� xi � p

��
Pn

i�� xi � p� � �
� ����

where M � �
Pm

j��

Pn

i�� jajij� It is easy to check that if
Pn

i�� xi �� p then

Pn

i�� xi � p

��
Pn

i�� xi � p� � �
�

�

	
� ����

otherwise
 this additional ratio is equal to �� By the selection of M and ���� it is
obvious that if

Pn

i�� xi �� p then g�x� � �
Pm

j��

Pn

i�� jajij� Otherwise
 g�x� �

�
Pm

j��

Pn

i�� jajij� Therefore
 problem ���� is maximized i

Pn

i�� xi � p
 and
max f�x� � max g�x�� This reduction implies that problem ��
� with m ratios can be
reduced to problem ��� with m� � ratios�

Reduction �� Next de�ne the following problem with m ratios�

max
x�Bn

g�x� �
mX
j��

aj� �
Pn

i�� ajixi � �MjBj�
Pn

i�� xi � p�

bj� �
Pn

i�� bjixi � �Bj�p�
Pn

i�� xi�
� ����

where Mj �
Pn

i�� jajij and Bj �
Pn

i�� jbjij� It is easy to check that if
Pn

i�� xi �� p
then each ratio is negative and g�x� � �

Pm

j��

Pn

i�� jajij� Therefore
 problem ���� is

maximized i

Pn

i�� xi � p
 and max f�x� � max g�x�� Problem ��
� with m ratios
can be reduced to problem ��� with the same number of ratios�

From Proposition � and Proposition � the following theorem follows�

Theorem � Problems ��� and ��	� are �equivalent��

� Linearization Techniques

In this section we discuss linear mixed ��� reformulations of multiple�ratio hyperbolic ���
programming problems� We also assume that condition ��� is satis�ed�

Li	s and Wu	s approaches and their modi�cations� Wu�s linearization technique
����
 which is an extension of Li�s approach ����
 is based on a very simple idea�

Theorem 
 ���� A polynomial mixed ��� term z � xy� where x is a ��� variable� and y
is a continuous variable taking any positive value� can be represented by the following linear
inequalities� ��� y � z � K �Kx� ��� z � y� ��� z � Kx� ��� z � �� where K is a large
number greater than y�

This result can be easily generalized for a general y
 which is bounded by some lower and
upper bounds �see ������

Corollary � A polynomial mixed ��� term z � xy� where x is a ��� variable� and y is a
continuous variable� can be represented by the following linear inequalities� ��� z � Ux� ���
z � y � L�x � ��� ��� z � y � U�x � ��� ��� z � Lx� where U and L are upper and lower
bounds of variable y� i�e� L � y � U �
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Let

yj � ���bj� �
nX
i��

bjixi�� ����

It is assumed that condition ��� is satis�ed� Then problem ��� becomes�

max
x�Bn �y�Rm

f�x�y� �

mX
j��

�aj�yj �

nX
i��

ajixiyj�� ��	�

s�t� bj�yj �

nX
i��

bjixiyj � �� j � �� � � � �m� ����

where objective function ��	� is obtained replacing each term ���bj��
Pn

i�� bjixi� in ��� by
yj 
 and condition ���� is equivalent to ���� since ��� is satis�ed�

Nonlinear terms xiyj in ��	������ can be linearized introducing new variable zij � xiyj
and applying Theorem 
 �if condition �
� is satis�ed�
 or Corollary � �in general case��

Another possible reformulation can be constructed applying the following equality�

yj �
aj� �

Pn

i�� ajixi
bj� �

Pn

i�� bjixi
�

In this case problem ��� is reformulated as�

max
x�Bn �y�Rm

f�x�y� �

mX
j��

yj � ����

s�t� bj�yj �

nX
i��

bjixiyj � aj� �

nX
i��

ajixi� j � �� � � � �m� ����

Nonlinear terms xiyj in ���� should be linearized using Corollary ��
The number of new variables zij in both formulations is m�mn�
In more details formulations ��	������ and ���������
 their modi�cations and some other

aspects of linearization techniques �estimation of bounds on the fractional terms
 additional
constraints for tighter relaxations� are discussed in ���
 ��
 ����

New modi�cation� The following theorem can be formulated as a generalization of
Theorem 
�

Theorem �� A polynomial mixed ��� term z � y�c�x� � c�x��� where x�� x� are ���
variables� c� and c� are some positive constant numbers and y is a continuous variable
taking any positive value� can be represented by the following linear inequalities� ��� z � ��
��� z � K�c�x� � c�x��� ��� z � c�y� c�y� ��� z � c�y�Kc�x�� ��� z � c�y�Kc�x�� ���
z � c�y�Kc����x��� ��� z � c�y�Kc����x��� �	� z � c�y�c�y�Kc����x���Kc����x���
where K is a large number greater than y�

Proof�

We need to check the following four variants� ��� x� � � and x� � �� ��� x� � � and
x� � �� �	� x� � � and x� � �� ��� x� � � and x� � ��
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� If x� � � and x� � � then term z must be equal to �� Conditions ��� and ��� force
z � �� Conditions �	����� are satis�ed since K
 y
 c�
 and c� are nonnegative� In ���
we have that c�y � Kc��� � x�� � c�y �Kc� � c��y � K� � �� Since z � � ��� is
obviously satis�ed� Similarly
 conditions ��� and �
� are also valid�

� If x� � � and x� � � then term z must be equal to c�x�� Conditions ��� and ��� force
z � c�y�� It is easy to check that the rest of the inequalities are satis�ed�

� The last two variants can be checked similarly�

Let

yj �
aj� �

Pn

i�� ajixi
bj� �

Pn

i�� bjixi
�Mj �

whereMj is a constant large enough such that yj � �� The obtained reformulation is similar
to ����������

max
x�Bn �y�Rm

f�x�y� �
mX
j��

yj � ����

s�t� bj�yj �

nX
i��

bjixiyj � aj� �

nX
i��

ajixi �Mj�bj� �

nX
i��

bjixi�� j � �� � � � �m� ��
�

Nonlinear terms xiyj should be linearized using the approach described in Theorem ���
The advantage of the proposed modi�cation �we have � binary variables corresponding
to each new variable
 see Theorem ��� is that the number of new variables is at most
m�m�bn��c��� � m�mn�� while the number of constraints remains the same� Note also
that we can formulate theorems similar to Theorem ��
 where z � y�c�x� � c�x� � c�x��

z � y�c�x� � c�x� � c�x� � c�x��
 etc� Applying these reformulations we obtain new linear
mixed ��� formulations
 but in this case more constraints should be generated �actually the
number of constraints grows exponentially��

Example� Let us illustrate the proposed linearization with the following example� Sup�
pose we need to linearize the following problem�

min
x�Bn

� � x�

 � x� � �x� � 	x� � �x�

����

Let y � ���x����
�x���x��	x���x��� Obviously
 � � y � � and the above formulation
then becomes�

min y�
s�t� 
y � yx� � �yx� � 	yx� � �yx� � � � x��

x�� x� � f�� �g
�	��

Applying a standard technique we need to introduce � new variables zi for each term
zi � yxi �i � �� � � � � �� plus �� additional inequalities� In a new approach we need only �
variables zi such that z� � y�x� � �x�� and z� � y�	x� � �x��
 and the same number of
inequalities�
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� GRASP�Based Heuristic

The complexity results considered in Section � of this paper indicate that hyperbolic ���
programming problem is a di�cult combinatorial optimization problem
 and
 therefore
 in
order to obtain a good quality solution in a reasonable amount of time we need to use
some heuristic approaches� In this section we propose a metaheuristic algorithm for solving
the cardinality constrained multiple�ratio hyperbolic ��� programming problem ��
�� The
algorithm we present is based on aGreedy Randomized Adaptive Search Procedure �GRASP��
To the authors� best knowledge no results on applying GRASP�based heuristic approaches
for the considered problem have been reported yet� Although the algorithm described below
is rather simple we were able to obtain good results�

GRASP is a sampling procedure
 proposed by Feo and Resende ���
 which tries to create
good solutions with high probability� The main tools to make this possible are the construc�
tion and the improvement phases� In the construction phase
 GRASP creates a complete
solution by iteratively adding components of a solution with the help of a greedy function

used to perform the selection� In the case of the hyperbolic function problem
 a solution is
composed by a set of ��� variables� Thus
 a solution is created by de�ning for each individual
variable a value in f�� �g�

The improvement phase then takes the incumbent solution and performs local perturba�
tions in order to get a local optimal solution
 with respect to some prede�ned neighborhood�
Di�erent local search algorithms can be de�ned according to the neighborhood chosen� The
general GRASP procedure can be described as in Algorithm ��

initialize variables�
while termination criterion not satis�ed do

�� Construction phase ��
s	 

while solution s not feasible do

Order available components according to greedy function g
Select one �say y� of the best � components �� � is a parameter ��
Add component to solution s� s	 s � fyg

end

�� Improvement phase ��
while local search criteria not satis�ed do

Perform local perturbation on s
if solution s improved then

Keep changes
end

end

Save best solution
end

Algorithm �� GRASP

Problem Formulation� More speci�cally the problem we consider in this section is of
the form�

max
x�Bn

f�x� �

mX
j��

aj� �
Pn

i�� ajixi
bj� �

Pn

i�� bjixi
� �	��
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s�t�
nX
i��

xi � p� �	��

bj� �

nX
i��

bjixi � � for j � �� � � � �m �		�

The reason for adding the last constraint is the following� In many of the cases
 where
we consider multiple�ratio hyperbolic ��� programming problems
 condition �
� is either
satis�ed
 or enforced by adding the set of constraints �		� to the problem formulation �for
example
 see ���
 �����

Construction Phase� The construction phase of our GRASP consists of de�ning an
initial assignment of the values � or � to each one of the variables� The component �variable�
that will be assigned at each iteration is chosen according to the amount of its contribution
to the solution� This means that the greedy approach used
 tries to maximize the partial ob�
jective function corresponding to the values already assigned� The partial objective function
f � can be described in the following way

f ��x� �

mX
j��

�P
i�S� ajixiP
i�S� bjixi

�

P
i�S ajixiP
i�S bjixi

�
� �	��

where S is the original set of selected indices and S� is the new set of indices after the
de�nition of the value of one additional variable in solution x� The GRASP algorithm

input� coe�cients aji
 bji for j � �� � � � �m and i � �� � � � � n and a constant p
output� a vector x for the hyperbolic function
 with x � f�� �gn

�� initialize solution x ��
x	 ��� � � � � ��
S 	 
�  S 	 

for i	 � to n do

�� create a restricted candidate list l ��
L	 f�� � � � � ng n �S �  S�
Order L according to function f � as described in equation �	��
RCL	 �rst � elements of L
Select random index i � RCL
xi 	 �
if there is any denominator � � then

set xi 	 � and  S 	  S � fig
else

S 	 S � fig
if
Pn

i�� xi � p then return x
end

end

Algorithm �� Construction phase

uses a list of candidate components
 also known as the restricted candidate list �RCL�� In
our case
 the RCL is composed of the � best indices
 with values de�ned by equation �	���
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Therefore
 during the construction phase we sort the candidate variables in decreasing order
according to their marginal contribution �f ��x�� to the objective function�

The implementation details of the construction phase are presented in Algorithm ��
During the procedure
 two sets of indices are maintained�

� the set S of indices of variables that have been selected and assigned the value ��

� the set  S of indices of variables that have been de�ned as infeasible �one of the de�
nominators is negative� for the current solution �and therefore will have value ���

Variables are included in S whenever they are selected from the RCL
 and receive a value ��
On the other hand
 if a variable is found to be infeasible for the current solution
 its index
is included in  S� Parameter � is a random variable
 uniformly distributed between � and
the size of the list for each iteration of the Algorithm ��

Note that due to the nature of the random choices made in the construction phase
 it is
possible that a particular sequence of chosen variables lead to an infeasible solution� This
is handled in the algorithm by simply discarding the infeasible solution and re�starting the
construction phase�

Handling Constraints in GRASP� An important part of solving the hyperbolic func�
tion problem is handling the feasibility of generated solutions� A method to handle the
linear constraints is to guarantee from the beginning that only feasible solutions are gener�
ated� This can be made possible by carefully checking each candidate solution
 and making
sure that all the constraints are satis�ed� In our algorithm
 a feasibility checking function is
applied each time a new solution is considered for the problem and
 therefore
 we avoid prob�
lems created by infeasible solutions� During the construction phase
 when solving knapsack
instances of the problem
 we only test if the current solution has denominators greater than
zero
 since a partial solution with

Pn

i�� xi � p can become feasible in the next iterations�

input� coe�cients aji
 bji for j � �� � � � �m and i � �� � � � � n and a constant p� the
current solution x � f�� �gn

output� a local maximum x for the hyperbolic function f 
 with x � f�� �gn

k 	 �
while k � N do

�� perturb solution ��
Select two random indexes i and j
 such that i �� j and xi �� xj
x� 	 x� x�i 	 �� x�i� x

�

j 	 �� x�j
c	 f�x��
�� save perturbed solution if necessary ��
if c � f�x� and x� is feasible then

xi 	 �� xi
xj 	 �� xj
k 	 �

end

k 	 k � �
end

Algorithm 	� Improvement phase

Improvement Phase� The improvement phase of GRASP has the objective of �nding a
local optimal solution according to a local neighborhood� The neighborhood of our problem
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is de�ned by perturbations on the incumbent solution� The perturbation consists of selecting
two variables xi and xj such that xi �� xj and !ipping their values to zero or one while
keeping

Pn

i�� xi � p� The variables are selected randomly
 and after a change of values
in the selected variables is performed
 the resulting solution is tested for feasibility �the
denominators must remain positive�� If feasibility is achieved
 then the solution is accepted
if its cost is better than the previous one� Otherwise
 a new random perturbation of the
solution is done� This phase ends after N iterations without improvement
 where N is a
parameter of the algorithm� In the computational experiments reported below N � �����

The formal procedure is described in Algorithm 	�

Computational Results� The algorithm described above was implemented using the
C language and compiled with the gcc compiler� The tests were performed in a machine
with the Intel Pentium � CPU at ���GHz� The operating system used was Windows XP�

Test instances were constructed using the following idea� All coe�cients aji and bji are
integers randomly generated from the interval �����
���� �see Table ��
 or ��
���� �see Table
���

Since all coe�cients aji and bji are integers
 constraints �		� are replaced by equivalent
constraints of the form�

bj� �
nX
i��

bjixi � � for j � �� � � � �m �	��

In the �nd class of the test problems instead of maximization we considered minimization
problem�

Tables � and � summarize results found with the proposed algorithm� These tables
are organized as follows� The �rst four columns give information about the instances� the
number of variables �n�
 the number of ratios �m�
 the number of elements in the knapsack
constraint �p�
 and the random seed used by the generator �which is publicly available�� The
next four columns present the results of the exact algorithm used
 in comparison to GRASP�

For the exact algorithm Wu�s linearization ��	������ was used� Since all generated co�
e�cients are integers all fractional terms can be upper bounded by K�� �see Theorem

��

The integer program solver was CPLEX ��� ��
��
In both cases the CPU time �in seconds� and the value of the best solution found are

reported� The time reported for GRASP is for the iteration where the best solution was
found by the algorithm�

The termination criterion for GRASP is the following� The algorithm is set up to run
while a �xed number of iterations is reached without any improvement� In most cases the
best solution is found with just a few iterations
 as can be seen from the small time needed
to �nd the optimum solution�

� Concluding Remarks

In this paper
 we have discussed multiple�ratio hyperbolic ��� �fractional ���� programming
problems� We have investigated some theoretical aspects of these problems including com�
plexity issues
 cardinality constrained cases and linear mixed ��� reformulations� Although
the considered complexity results indicate that the multiple�ratio hyperbolic ��� program�
ming problem is extremely di�cult
 the proposed simple GRASP�based heuristic for solving
cardinality constrained problems has proved to perform very well�
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instance exact GRASP
n m p seed time�s� value time�s� value
�� �� �� ��� ���		 
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 ���	� 	�
��� 
��� 	�
���
�� �� �� �	
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�� �� �� 
�	 �
�	� 	
���� 	���� 	
����
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��� ������ ���� ������
�� �� �� ��� ���� 	�
��	 ���� 	�
��	
�� �� �� ��
 ���� 	����� ���� 	�����
�� �� �� �
� �����
 ��
��	 ����
 ��
��	
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 ����� 	�
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���
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	 �		���
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� ���� ����
�
�� �� �� �	� �����
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����
 ������ 
����
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����
�� �� �� �
� ����	� 	
	��� ���� 	
	���
�� � �� �
� ���� ��
��� ���� ��
���
�� � �� ��	 ���
 
����� ���	 
�����
�� � �� ��� ��	� ��	��� ���� ��	���
�� � �� ��� ���� 
����	 ���� 
����	
�� � �� ��� ���� �	���� ���� �	����
�� � �� �	� ��	� 
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�	� 	��
 �
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Table �� Results to instances with aji� bji � ������ �����
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Table �� Results to instances with aji� bji � ��� �����
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