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� Introduction

In this paper� we develop a branch�and�bound algorithm for solving a class of concave
minimization problems to which many of problems with low rank nonconvexity ��� reduce�
The major feature of this class is that the variables involved in the objective function are
a small fraction of the whole variables� As a typical example� let us consider the linear
multiplicative program ���� �� 	� �
������ minimize

Qr

i���c
T

i y
 ci��
subject to By � b� y � ��

�����

where cTi y
 ci� � 
 for any feasible solution y� In general� the number r of a�ne functions
in the objective is assumed to be far less than the dimensionality of ������ If we introduce
a vector x � �x�� � � � � xr�

T of auxiliary variables� ����� reduces to a concave minimization
problem in our target class�������

minimize
Pr

i�� log�xi�
subject to �xi 
 cTi y � �ci�� i � �� � � � � r

By � b� �x�y� � ��
�����
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Another example is the production�transportation problem ��� ��� ��� ���� This is a kind of
network �ow problem and minimizes the sum of concave production and linear transporta�
tion costs� If we move the transportation cost function to the set of constraints by means
of an auxiliary variable� the objective function is left with only the concave production cost
and auxiliary variable� For various other examples that can undergo similar transformations
to this class of problems� the readers are referred to the textbook on low�rank nonconvex
structures ����

If the objective function is separable into a sum of univariate functions like ������ prob�
lems of this class can be solved rather e�ciently using the rectangular branch�and�bound
algorithm ��� 	� ��� To deal with a wider range of problems� we do not assume the sepa�
rability in this paper� but tailor the simplicial branch�and�bound algorithm ��� to suit the
class and to facilitate application of some procedures for improving the e�ciency� In Sec�
tion �� after giving the problem settings� we will review the basic workings of the simplicial
branch�and�bound algorithm and explore di�culties in its implementation� In Section �� to
overcome those di�culties� we will modify the linear programming relaxed problem to be
solved in the bounding operation� by enlarging the feasible set� This modi�cation does not
a�ect the convergence property of the algorithm but naturally deteriorates the quality of the
lower bound on the optimal value� To prevent rapid growth of the branching tree� we will
propose the second bounding operation based on a Lagrangian relaxation in Section �� and
give a detailed description of the algorithm incorporating two bounding operations� Com�
putational results of comparison with the standard simplicial branch�and�bound algorithm
are reported in Section �� Lastly� we will discuss some remaining issues to be resolved in
the future� in Section ��

� Problem Settings and the Simplicial Algorithm

Let D � IRr be an open convex set and f � D � IR a concave function� The problem we
consider in this paper is a concave minimization over a polyhedral set����� minimize z � f�x�

subject to Ax
By � b� �x�y� � ��
�����

where A � IRm�r� B � IRm��n�r�� b � IRm and � � r � n� Let us denote the feasible set
and its projection onto the space of x� respectively by

S � f�x�y� � IRn j Ax
By � b� �x�y� � �g� X � fx � IRr j �y� �x�y� � Sg�

Using these notation� ����� can be embedded in IRr�

P

���� minimize z � f�x�
subject to x � X�

We assume that S is bounded and has a nonempty interior� The same is then true for the
projection X � and so we have v � maxf

Pr

j�� xj j x � Xg� We assume the domain D of f
large enough to include the set fx � IRr j 
 � xj � v� j � �� � � � � rg�

Unless the objective function is separable� the most often used solution method for
concave minimization is the simplicial branch�and�bound algorithm ��� �� ���� Let us run
through its basic workings on our problem P�
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Overview of the Standard Simplicial Algorithm

In the simplicial branch�and�bound algorithm� we �rst need to de�ne an r�simplex �� in�
cluding X � For the value v de�ned above� let v�i � vei for i � �� � � � � r� where ei � IRr is the
ith unit vector� Then �� is given by the convex hull of v��� � � � �v

�
r and v�r�� � �� Since X

is just a subset of ��� problem P is equivalent to the following with � � ���

P���

���� minimize z � f�x�
subject to x � X ���

Then� as we subdivide �� into smaller simplices �j � j � L� satisfying�
j�L

�j � ��� int��j� � int��k� � � if j 	� k�

we solve each subproblem P��j� of P���� with a feasible set X��j � where int� 
 � represents
the set of interior points� Since P��j� is of the same class as the initial P����� we cannot
solve it in a direct manner� Instead� the following recursive method of three steps is used�

Let L �� f�g and k �� �� Repeat Steps ��� until L � ��

Step �� Take an appropriate index jk out of L and let � �� �jk �

Step � �bounding operation�� Compute a lower bound zk on the optimal value
z��� of P���� If f�x�� � zk � � for the best feasible solution x� to P
obtained so far� discard � from further consideration�

Step � �branching operation�� Otherwise� divide the simplex � into two subsim�
plices ��k � ��k�� and add their indices to L� Let k �� k 
 ��

In this description� � � 
 is a given tolerance� and z��� is regarded as 
� if X � � � ��
When the set L comes to be empty� we have a globally ��optimal solution x� to problem
P� However� if the value of � is set to zero� the simplicial branch�and�bound algorithm does
not terminate in general� and generates an in�nite sequence of nested simplices f�k� j � �
�� �� � � �g such that

�k� � �k� � 
 
 
 � X �

�
��
���

�k�

�
	� ��

Even in the case where � � 
� to terminate the algorithm in �nite steps� we have to subdivide
�� in a way that makes ������

k� a singleton� The simplest subdivision rule to ensure this
exhaustiveness is bisection� We select the longest edge of � � conv�fv�� � � � �vr��g�� say
vp�vq � and divide it at a �xed ratio of � � �
� ����� where conv� 
 � is the convex hull� Letting
v � ��� ��vp 
 �vq� then ��k and ��k�� are given as follows

��k � conv�fvi j i 	� pg 
 fvg�� ��k�� � conv�fvi j i 	� qg 
 fvg��

If � � 
 and the bisection rule is adopted� we can obtain an ��optimal solution to P after a
�nite number of steps� using either of the usual selection rules at Step ��

Depth �rst� The set L is maintained as a list of stack� An index jk is taken from the top of
L� and �k� �k 
 � are put back to the top at Step ��

Best bound� The set L is maintained as a list of priority queue� An index jk of least zk is
taken out of L�
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Linear Programming Relaxation at Step �

The most time�consuming step in the simplicial branch�and�bound algorithm is Step ��
As is well known� the e�ciency of algorithms of this kind depends largely on this bounding
operation� At Step �� to compute a lower bound zk� we usually replace the objective function
f of P��� by its convex envelope g on � and solve a problem�

P���

���� minimize z � g�x�
subject to x � X ���

The convex envelope g is an a�ne function which agrees with f at r
� vertices of �� Since
� is given by the vertices� we can easily determine the value of g at any point x � � if we
have x as a convex combination of vi� i � �� � � � � r 
 ��

x �

r��X
i��

vi�i�

r��X
i��

�i � �� � � ���� � � � � �r���
T � �� �����

By the concavity of f � we immediately have

g�x� �

r��X
i��

f�vi��i � f�x�� �x � �� �����

Substituting ����� into P���� we see that P��� is equivalent to a linear program of n 
 �
variables� ������

minimize z � f T�

subject to AV� 
By � b

eT� � �� ���y� � ��
�����

where e � IRr�� is an all�ones vector and

f � �f�v��� � � � � f�vr����
T� V � �v�� � � � �vr���� �����

Obviously� ����� has an optimal solution ���y� if and only if X �� 	� �� Then we may set
zk to

z �

�
f T� if X �� 	� �

� otherwise�

Note that when X �� 	� �� we have a feasible solution x to the subproblem P���� and to
the target problem P� by letting x � V�� We can therefore update the incumbent x� with
x if necessary�

Certainly� the linearized subproblem P��� is far easier to solve than P���� However�
since the number of subproblems generated in the course of iterating Steps ��� is an ex�
ponential in r� in the worst case� we cannot obtain an optimal solution nor an ��optimal
solution to P within a practical amount of time if we solve each P��� from scratch� In
the rectangular and combinatorial branch�and�bound algorithms� one can solve linearized
subproblems successively using sensitivity analysis of the simplex method� or using special�
ized algorithms if the original problem has some favorable structure� Unfortunately� such a
procedure does not work well on P��� because

�a� each ����� associated with P��� has a di�erent constraint matrix� and

�b� no ����� inherits the structure of the original problem ������
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Due to �a�� we cannot utilize the optimal solution to P��jk�� � as the initial solution in
solving P��jk � through sensitivity analysis� because it might be neither feasible nor dual
feasible for ����� associated with P��jk �� Moreover� due to �b�� even if the original problem
����� has a network structure for instance� we cannot apply any network �ow algorithms to
each P���� To overcome these di�culties� we need to add some new twists to the relaxation
of each subproblem P��� at Step ��

� Modi�ed Linear Programming Relaxation

One way of sweeping away both di�culties �a� and �b� is to replace the constraint x � � in
P��� by a simple bounding constraint on x� Let

sj � minfvij j i � �� � � � � r 
 �g
tj � maxfvij j i � �� � � � � r 
 �g

�
j � �� � � � � r� �����

where vij denotes the jth component of vi� Also let

���� � fx � IRr j s � x � tg�

where s � �s�� � � � � sr�
T and t � �t�� � � � � tr�

T� Then we have � � ����� Instead of P����
we may solve the following to obtain a lower bound zk at Step ��

eP���

���� minimize z � g�x�
subject to x � X � �����

However� if we transform the variables x into � via ������ we would face the same di�culties as
�a� and �b�� Here� we try another way to draw an explicit linear programming representation

of eP����
Suppose that the convex envelope g of f is given by cTx 
 cr��� where c � IRr and

cr�� � IR� Since g agrees with f at r 
 � vertices of �� the following equations hold�

cTvi 
 cr�� � f�vi�� i � �� � � � � r 
 ��

Note that vi�s are a�nely independent if � is generated according to the bisection rule� By
adding an all�ones vector eT to V given in ����� as the �r
��st row� we have a nonsingular
matrix�

U �

�
V

eT

�
�

and for f in ����� we have
�cT� cr��� � f TU���

Thus� g is speci�ed as g�x� � cTx 
 cr��� and eP��� is represented explicitly as a linear
program� ���� minimize z � cTx

subject to Ax
By � b� s � x � t� y � ��
�����

If X � ���� 	� �� then ����� has an optimal solution �ex� ey�� The following can be an
alternative for the lower bound zk�

ez � � cTex
 cr�� if X � ���� 	� �

� otherwise�
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Lemma ��� Among ez� z and the optimal value z��� of P���� there is a relationship�

ez � z � z����

Proof� Immediately follows from ����� and the inclusion relation of the feasible sets ofeP��� and P����

It should be emphasized that each ����� has the same set of constraints as the original
������ except for the bounding constraint s � x � t� though associated with a di�erent
subproblem P���� The bounding constraint can be treated almost the same way as the
usual nonnegative constraint in the simplex and network 	ow algorithms 
�� ��� Therefore�
when ����� has some favorable structure� we can exploit it in solving each ������ In general


��� we can generate an optimal solution �exk� eyk� to ����� associated with eP��jk � from the

preceding �exk��� eyk��� in two steps� �i� restore the feasibility of �exk��� eyk��� for eP��jk � with
dual pivoting operations� and �ii� reestablish the optimality of the resulting feasible basic

solution with primal pivoting operations� Since �exk��� eyk��� violates only the bounding

constraint� step �i� requires a very few pivoting operations� If step �i� fails� both eP��jk � and
P��jk � are infeasible�

Convergence Property When Using eP���

Any optimal solution ex to eP��� obtained by solving ����� is obviously feasible for the target
problem P
 and hence we can update the incumbent x� with ex if necessary� However� ex
might be infeasible for P��� and can satisfy

f�ex� � ez� �����

unlike the optimal solution x of P���� If ����� holds� � contains no feasible solution better
than ex� because ez is a lower bound of f on X � �� and we can discard � from further
consideration� In addition to this� we can discard � if

f�ex� � f�vi�� i � �� � � � � r � �� �����

Recall that f is concave and achieves the minimum on � at some vertex� In other words�
the minimum of f�vi��s is another lower bound on the value z��� of P��� which minimizes
f on X �� � �� Let us de�ne the lower bound zk at Step � as

zk � maxf�z�minff�v��� � � � � f�vr���gg� �����

If neither ����� nor ����� holds� the simplicial branch�and�bound algorithmmight generate
an in�nite sequence of nested simplices f�k� j � � �� �� � � � g in � when � is zero� Even in

that case� we can show that zk� de�ned in ����� tends to f�exk�� as ���� because ���k��
shrinks to a single point as �k� does if the bisection rule is adopted� When � � �� it follows
from this property that f�x��� zk � � holds for some k � k� before �k� becomes a point�

Lemma ��� Suppose that f�k� j � � �� �� � � �g is an in�nite sequence of nested simplices

generated by bisection� Then we have

lim
���

�
f�exk��� zk�

�
� �� �����
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Proof� For the sequence f�k� j � � �� �� � � � g we can assume that

f�vk�� � zk� � f�exk��� �����

where vk� is a vertex of �k� minimizing f � Let fvg � ������
k� � Then we see from the

de�nition of ���k�� that ��������
k�� � fvg� Since both vk� and exk� belong to ���k��� we

have vk� � v and exk� � v as ���� Moreover� by the continuity of f we have

lim
���

f�vk�� � lim
���

f�exk�� � f�v��

which� together with ������ implies ������

Some Issues to Resolve in Relaxation eP���

Lemma ��� guarantees that the simplicial branch�and�bound still works if we use the relax�
ation eP��� instead of the usual P��� in the bounding operation of Step �� Before applying
it in practice� however� we need to resolve two issues�

First� eP��� requires one to compute the inverse of the �r � ��� �r � ���matrix U every
iteration to determine the objective function cTx of ������ This is the main reason why the
representation cTx � cr�� of g has been avoided in the past� However� this is not a big
challenge if we adopt the depth �rst rule at Step �� Because most U�s are di�erent from
their predecessors in only one column� we can update the inverse of the kth matrix Uk from
�Uk����� almost always in time O�r� using the rank�one update 
��� Suppose that Uk��

and Uk are the same except for the pth column� Let ukp � 
�vkp�
T� ��T denote the pth column

of Uk and let

w � �Uk�����ukp � E � I� �ep �w�eTp�wp�

where I denotes the identity matrix and wp is the pth component of w� Then we have

�Uk��� � E�Uk������ �����

Note that E is an eta matrix with nonzero o��diagonal elements in pth column� Since vkp is

a convex combination �� � ��vk��p � �vk��q of two vertices of �jk�� � we have wp � � � ��
wq � � and the other components of w equal to zeros� As a result� the pth column of E
has only two nonzero entries ����� �� and ������ �� in the p and qth rows� respectively�
We see from ����� that the inverse of Uk is yielded if we replace only the p and qth rows of
�Uk����� by their a�ne combinations�

The second issue is much more serious� As shown in Lemma ���� the lower bound ez
yielded by eP��� is inferior to z
 and the di�erence is not expected to be so small� Although
it is somewhat tightened to zk by f�vi��s in ������ the essential reason for introducing their
minimum is merely to guarantee convergence of the algorithm by Lemma ���� Therefore�
the branching tree when using eP��� might grow more rapidly than when using P���� To
prevent the rapid growth of the branching tree� we have to introduce a full�scale procedure
for tightening ez�
� Algorithm Using Two�Phase Bounding Operation

For ez yielded by eP���� let G � fx � IRr j g�x� � ezg� Since X � � is a subset of this half
space G� no feasible solution to P��� is lost if we add x � G to P��� as a constraint� The
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resulting problem is then equivalent to������
minimize z � f�x�
subject to Ax�By � b� �x�y� � �

x � �� cTx � ez � cr���
�����

In the preceding section� we have relaxed the objective function f and the constraint x � ��
Instead� we try relaxingAx�By � b here� by introducing a Lagrangian multiplier � � IRm�
Then we have

L��
��

���� minimize z � f�x� � �T�Ax�By� b�
subject to x � �� y � �� cTx � ez � cr���

by noting x � � for any x � �� If cTvi � ez�cr��� or f�vi� � ez equivalently� for each vertex
vi of �� then L��
�� is infeasible� In that case� the hyperplane �G � fx � IRr j g�x� � ezg
separates � and X 
 and we can discard � because P��� is infeasible�

Suppose that L��
�� has an optimal solution �x����y���� and denote the value f�x�����
�T�Ax��� �By���� b� by z���� As is well�known �see e�g� 
����� we have

z��� � z���� 	� � ��

However� to use L��
�� as a procedure for tightening ez� we need to �x the value of �
appropriately so that z��� � ez holds�

Lagrangian Relaxation L��
�� and its Solution

Since the structure of L��
�� is similar to P���� we can relax it into a linear program

as in the same way as we have obtained eP���� Let us replace f and � by g and �����
respectively� in L��
��� and further drop the constraint cTx � ez � cr��� Then we have

	��� � minf�cT � �TA�x� �TBy� �Tb j s � x � t� y � �g�

where s and t are de�ned in ������ The right�hand side can also be thought of as a Lagrangian

relaxation of ������ i�e�� problem eP���� As long as � satis�es �TB � �� the value 	��� is
�nite and coincides with


��� � maxfsT�� tT� � bT� j �� � � c�AT�� ����� � �g

by the duality theorem of linear programming� Therefore� we have

maxf	��� j �TB � ��� � �g � maxf
��� j �TB � ��� � �g�

Note that the right�hand side of this equation can be rewritten as������
maximize z � �bT�� sT�� tT�

subject to AT�� �� � � �c

BT� � �� ������� � ��

�����

which is the dual problem of ������ Let �e�� e�� e�� be an optimal solution to ������

Lemma ��� There is a relationship�

	��� � cr�� � ez� 	� � ��

where the equality holds if � � e��
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The dual optimal solution �e�� e�� e�� is generated as a byproduct in solving the primal

problem eP���� We adopt e� as the Lagrangian multiplier of L��
��� As is easily seen�
L��
�� can be decomposed into

Lx��
��

���� minimize zx � f�x� � �T�Ax� b�
subject to x � � �G�

Ly��
��

���� minimize zy � �TBy

subject to y � ��

When � � e�� the latter problem has an obvious optimal solution y�e�� � � because �e�� e�� e��
is an optimal solution to ����� and BTe� � � holds� Thus� for an optimal solution x�e�� to
Lx��
 e�� the optimal value of L��
 e�� is given by

z�e�� � f�x�e��� � e�T�Ax�e��� b��

Theorem ��� Among z�e��� ez and the value z��� of P���� there is a relationship�

ez � z�e�� � z���� �����

where the �rst inequality holds strictly if x�e�� 
� fv�� � � � �vr��g and f is strictly concave on

��

Proof� Since �e�� e�� e�� is an optimal solution to ����� and s � vi � t for each vi� we have

f�vi� � e�T�Avi � b� � cTvi � cr�� � e�T�Avi � b�

� e�Tvi � e�Tvi � e�Tb� cr��

� e�Ts� e�Tt� e�Tb� cr��

� 
�e�� � cr�� � 	�e�� � cr���

By the concavity of f and Lemma ���� the point x�e�� in � must satisfy

z�e�� � f�x�e��� � e�T�Ax�e��� b� � 	�e�� � cr�� � ez�
Suppose x�e�� 
� fv�� � � � �vr��g� Then x�e�� lies among vertices of � � �G
 and we have

x�e�� � ��� ��vp � �vq for some vp� vq and � � ��� ��� Therefore� the following holds�

z�e�� � ��� ��
f�vp� � e�T�Avp � b�� � �
f�vq� � e�T�Avq � b�� � ez�
if f is strictly concave on ��

Since ez might coincide with z� e�g�� when ex � �� the bound z�e�� can be superior even to

z� Although Lx��
 e�� yielding z�e�� is a concave minimization problem� we can solve it in
polynomial time if the value of f is given by oracle� Since the objective function is concave�
x�e�� is a vertex of � �G� The number of its vertices is� however� O�r�� at most� We need
only to check the objective function value at the intersection of �G with each edge vi�vj of
� such that vi � int�G� and vj 
� G� as well as at each vi � G
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Description of the Modi�ed Algorithm

Now� recall the three basic steps of the simplicial branch�and�bound algorithm given in
Section �� The bounding operation of Step � we propose consists of two phases�

Step ���� Solve eP��� and compute zk de�ned in ������ If f�x��� zk � � for the
incumbent x�� discard � from further consideration�

Step ���� If f�x���zk � �� solve Lx��
 e�� and compute z�e��� If f�x���z�e�� � ��
then discard � from further consideration�

The following is the detailed description of our simplicial branch�and�bound algorithm for
solving problem P�

algorithm �PHASE BB

begin

compute v �� maxf
Pr

j�� xj j x � Xg and let �� �� conv�fve�� � � � � ver��g�

L �� f�g
 z� �� ��
 k �� �

while L 
� � do begin

select jk � L and let L �� L n fjkg
 � �� �jk 
 �� Step � ��
let v�� � � � �vr�� denote the vertices of � and let V �� 
v�� � � � �vr���

U �� 
VT� e�T
 
cT� cr��� �� 
f�v��� � � � � f�vr����U

��


solve eP��� of minimizing g�x� � cTx� cr��
 �� Step ��� ��

if eP��� is feasible then begin

let exk be an optimal solution to eP��� and ez �� g�exk�

if f�exk� � z� then update z� �� f�exk� and x� �� exk

zk �� maxfez�minff�v��� � � � � f�vr���gg

if f�x��� zk � � then begin �� Step ��� ��

de�ne Lx��
 e�� for a dual optimal solution �e�� e�� e�� to eP���


compute an optimal solution x�e�� to Lx��
 e�� and the value z�e��

if f�x��� z�e�� � � then begin �� Step � ��

select the longest edge vp�vq of � and let v �� �����vp��vq for a �xed
� � ��� ����

��k �� conv�fvi j i 
� pg 
 fvg�
 ��k�� �� conv�fvi j i 
� qg 
 fvg�

L �� L 
 f�k� �k� �g

end

end

end

k �� k � �

end

end


Theorem ��� When � � �� the sequence fexk j k � �� �� � � �g generated by algorithm

�PHASE BB with the best�bound rule has accumulation points� each of which is a globally

optimal solution to problem P�

Proof� When the algorithm terminates in �nite time� the assertion is obvious� Suppose
that it does not terminate and generates an in�nite sequence of nested simplices f�k� j � �
�� �� � � �g� Since the best�bound rule is adopted� we have

zk� � zj � z��j�� 	j � L�



SIMPLICIAL ALGORITHM FOR CONCAVE MINIMIZATION ��

at the k�th iteration� Recall that z��j� is the optimal value of subproblem P��j� and
minfz��j� j j � Lg is equal to the value z���� of the target P� Therefore� we have

zk� � z���� � f�exk��� � � �� �� � � � �

However� by Lemma ���� we have f�exk��� zk� � � as � � �� This implies that f�exk�� �
z���� as ����

Corollary ��� When � � �� algorithm �PHASE BB with either of the depth��rst and

best�bound rules terminates after a �nite number of iterations and yields x� as a globally

��optimal solution to problem P�

Proof� If the algorithm does not terminates� it generates an in�nite sequence of nested
simplices f�k� j � � �� �� � � �g such that

f�xk��� zk� � f�x��� zk� � � � �� � � �� �� � � � �

However� f�exk��� zk� � � as ���� which is a contradiction�

� Numerical Experiment

Let us report numerical results of having compared computer codes of �PHASE BB and the
standard simplicial branch�and�bound algorithm using only the relaxation P���� We refer
to them here� as �phase and standard� respectively� The test problem we solved is a concave
quadratic minimization problem of the form�

���� minimize ������xTQTQx� �dTy
subject to A�x�B�y � b�� �x�y� � ��

�����

where Q � IRr�
�r�

� A� � IRm�
�r�

� B� � IRm�
��n�

�r��� b� � IRm�

� d � IRn�
�r�

and � is a
positive weight� The matrix Q � 
qij � was generated so as to have two nonzero entries
in each row� i�e�� �qii� qi�i��� for i � �� � � � � r� � �� and �qr��� qr�r��� where qii � qr�r� � ���

and the rest were drawn randomly from the uniform distribution on 
���� ����� Then QTQ
has three nonzero entries at most in each row� Also� each component of d was a uniformly
random number in 
���� ����� To make the feasible set bounded� b� was an all�ones vector and
each component in the last row of 
A��B�� was �xed at ����n�� Other components were all
random numbers in 
����� ����� where the percentages of zeros and negative numbers were
about ��� and ���� respectively� Selecting various sets of parameters �m�� n�� r�� ��� we
solved ten instances of ����� for each set using �phase and standard on a Linux workstation
�Linux ������� Itanium� processor ���GHz��

Computer Codes

Both codes �phase and standard were written using GNU Octave �version ������� 
���� a
Matlab�like computational tool� in accordance with the depth��rst rule� The tolerance �
was �xed at ����� To adjust the form of ����� to ������ we introduced an additional variable

 and applied the code �phase to

������
minimize ������xTQTQx� �

subject to A�x�B�y � b�� �x�y� � ��


 � dTy � �� 
 � ��

�����
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where we should note 
 � � because d � �� The size �m�n� r� of ����� is therefore equal to
�m� � �� n� � �� r� � ��� As for standard� we applied it directly to ����� because it uses only
the relaxed problem P���� which can be written 
�� as

������
minimize �f ��T� � �dTy
subject to A�V�� �B�y � b�

eT� � �� ���y� � ��

whereV� � 
v�� � � � �vr���� and f
� � 
f�v��� � � � � f�vr�����

T for r��� vertices vj �s of � � IRr�

�
As the subdivision rule of �� bisection of ratio � � ��� was adopted in �phase� but not in
standard� because we found in our preliminary experiment that the convergence of standard
with the bisection rule is too slow to be compared with �phase� Instead� we took the way to
bisect the longest edge of the minimal face of � which contains an optimal x � V�� of P����
Although this subdivision rule does not guarantee the convergence� standard incorporating
it terminated for every tested instance of ����� and generated the same output as �phase

with the usual bisection rule�

Numerical Results

In Figures �������� line plots are given for comparing the behavior of �phase with that of
standard when the size of constraint matrix 
A��B�� was �xed at �m�� n�� � ���� ���� The
solid and broken lines represent the results of �phase and standard� respectively�

Figure ��� shows the variation in the average number of branching operations required
by each code when � was �xed at ��� and r� was increased from �� to ��� We see that the
dominance between �phase and standard is reversed around r� � ��� and can con�rm that
the second phase of the bounding operation using the Lagrangian relaxation Lx��
 e�� works
properly� The variations in the average CPU seconds are plotted in Figure ���� The code
�phase surpasses standard in computational time at every r�� which we can understand the
problem ����� associated with eP��� is easy enough to cancel out the inferiority of �phase in
the number of branching operations for r� � ��� In our preliminary experiments� we removed
the second�phase procedure from �phase and tried to solve the same set of instances using
the resulting code� named �phase� It performed well when r� � ��� just as �phase did� but
failed to terminate in ��� branching operations� on one instance with each r� � ��� ��� four
instances with r� � �� and three instances with r� � ��� This implies that the second�phase
bears a crucial role in �PHASE BB�

Figures ��� and ��� show the variations in the average number of branching operations
and CPU seconds� respectively� required by each code when r� was �xed at �� and � was
changed in f���� ���� ���� ���� ���� ����� ����g� Unfortunately� both codes are very sensitive to
changes in �� especially when � � �� Nevertheless� �phase needs considerably less branching
operations than standard when � � �� which is totally due to the tight lower bound z�e��
computed in the second phase of the bounding operation� This� together with the ease of
solution to ������ yields the signi�cant advantage of �phase against standard in computational
time when � � ��� Incidentally� �phase failed to terminate in ��� branching operations� on
seven instances with � � ��� and three instances with � � ����

From the above observation� we can expect that �PHASE BB has potential for solving
much larger scale problems than the standard algorithm can� unless the concavity part has
a lot of weight in the objective function� We therefore tested the code �phase on ����� of size
�m�� n�� from ���� ���� to ����� ���� with � �xed at ���� The number of nonlinear variables
r� was set from ��� to ��� of the whole variables� i�e�� the maximum size of �m�� n�� r��
was ����� ���� ����� The computational results are listed in Table ���� in which � and
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Table ���� Computational results of �phase when � � ����

r� � ���n� r� � ���n� r� � ���n� r� � ���n�

m�� n� � time � time � time � time

������ ���� ����� ���� ����� ���� ����� ����� �����

������� ���� ����� ���� ����� ���� ����� ����� �����

������ ���� ����� ���� ����� ����� ����� ����� �����

������� ��� ����� ���� ����� ����� ����� ����� �����

������� ���� ����� ���� ����� ����� ����� ����� �����

������� ���� ����� ���� ����� ����� ����� ����� �����

time indicate the average number of branching operations and CPU seconds� respectively�
required by �phase for each �m�� n�� r��� We see from this table that the number of branching
operations increases rather mildly as m� and n� increase� in contrast to the case of r��
The similar tendency can be observed in the CPU seconds� We could solve still larger scale
problems by elaborating the computer code of algorithm �PHASE BB� as long as the number
r� of nonlinear variables is about ��� of the whole�

� Conclusion and Future Issues

We have developed a simplicial branch�and�bound algorithm for solving a low�rank concave
minimization problem ������ The major feature of this problem is that the variables involved
in the objective function are only a part of the whole� In the bounding operation of the
algorithm� we have proposed to enlarge the feasible set of each linear programming relaxed
problem� in order to facilitate application of specialized algorithms and sensitivity analysis
of the simplex method� Furthermore� to tighten the lower bound deteriorated by this en�
largement of the feasible set� we have proposed the second bounding operation based on a
Lagrangian relaxation� We have seen in the preceding section that both operations work
very well and the algorithm has potential for solving much larger scale problems than the
existing algorithm can solve�

To further expand the versatility of the algorithm� we need to resolve two issues in the
future� Low�rank concave minimization problems can certainly be transformed into the form
of ������ However� many of such transformations destroy the structure of the constraint� like
the ones from ����� to ����� and from ����� to ������ and can take away from the devices in
the �rst phase of our bounding operation� Another issue is on the subdivision rule� Even
though bisection works reasonably well in our algorithm compared with in the standard
algorithm� its performance is still far from satisfactory� In the meanwhile� we need to try
out a variety of subdivision rules and hybrids of them to accelerate the convergence� For
these issues� we will report the details elsewhere�
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