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Abstract: In this paper, we develop a simplicial branch-and-bound algorithm with two-phase bounding
operation for solving a class of concave minimization problems to which many of problems with low rank
nonconvexity reduce. In the first phase of the bounding operation, we enlarge the feasible set of each linear
programming relaxed problem to facilitate application of some procedures for improving the efficiency.
In the second phase, we tighten the lower bound deteriorated by this enlargement, using a Lagrangian
relaxation. Computational results indicate that the proposed algorithm is promising, compared with a
standard simplicial branch-and-bound algorithm.

Key words: global optimization, concave minimization, low-rank nonconvezxity, branch-and-bound algo-
rithm, Lagrangian relazation

Mathematics Subject Classification: 90-08, 90C26, 90C30, 90C57

Introduction

In this paper, we develop a branch-and-bound algorithm for solving a class of concave
minimization problems to which many of problems with low rank nonconvexity [7] reduce.
The major feature of this class is that the variables involved in the objective function are
a small fraction of the whole variables. As a typical example, let us consider the linear
multiplicative program [14, 6, 8, 10]:

minimize  [];_,(c]y + cio)

subject to By <b, y >0, (1.1)

where ¢!y + c;o > 0 for any feasible solution y. In general, the number 7 of affine functions
in the objective is assumed to be far less than the dimensionality of (1.1). If we introduce
a vector x = (x1,...,2,)" of auxiliary variables, (1.1) reduces to a concave minimization
problem in our target class:

minimize Y., log(x;)
subject to —z; +cly < —cio, i=1,...,r (1.2)
By<b, (xy)20.
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the Japan Society for the Promotion of Science.
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Another example is the production-transportation problem [9, 11, 16, 17]. This is a kind of
network flow problem and minimizes the sum of concave production and linear transporta-
tion costs. If we move the transportation cost function to the set of constraints by means
of an auxiliary variable, the objective function is left with only the concave production cost
and auxiliary variable. For various other examples that can undergo similar transformations
to this class of problems, the readers are referred to the textbook on low-rank nonconvex
structures [7].

If the objective function is separable into a sum of univariate functions like (1.2), prob-
lems of this class can be solved rather efficiently using the rectangular branch-and-bound
algorithm [3, 8, 9]. To deal with a wider range of problems, we do not assume the sepa-
rability in this paper, but tailor the simplicial branch-and-bound algorithm [4] to suit the
class and to facilitate application of some procedures for improving the efficiency. In Sec-
tion 2, after giving the problem settings, we will review the basic workings of the simplicial
branch-and-bound algorithm and explore difficulties in its implementation. In Section 3, to
overcome those difficulties, we will modify the linear programming relaxed problem to be
solved in the bounding operation, by enlarging the feasible set. This modification does not
affect the convergence property of the algorithm but naturally deteriorates the quality of the
lower bound on the optimal value. To prevent rapid growth of the branching tree, we will
propose the second bounding operation based on a Lagrangian relaxation in Section 4, and
give a detailed description of the algorithm incorporating two bounding operations. Com-
putational results of comparison with the standard simplicial branch-and-bound algorithm
are reported in Section 5. Lastly, we will discuss some remaining issues to be resolved in
the future, in Section 6.

Problem Settings and the Simplicial Algorithm

Let D C IR" be an open convex set and f : D — IR a concave function. The problem we
consider in this paper is a concave minimization over a polyhedral set:

minimize 2z = f(x) (2.1)
subject to Ax+ By <b, (x,y)>0, )
where A € R™*", B € R™*(" ) b e R™ and 1 < r < n. Let us denote the feasible set
and its projection onto the space of x, respectively by

S={(x,y) e R"|Ax+By <b, (x,y) >0}, X={xecR"|3Iy,(x,y) €S}
Using these notation, (2.1) can be embedded in IR":

minimize z= f(x)
subject to x e X.

We assume that S is bounded and has a nonempty interior. The same is then true for the
projection X; and so we have v = max{}>;_, =; | x € X}. We assume the domain D of f
large enough to include the set {x e R" |0 <z; <wv,j=1,...,r}

Unless the objective function is separable, the most often used solution method for
concave minimization is the simplicial branch-and-bound algorithm [4, 5, 15]. Let us run
through its basic workings on our problem P.
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Overview of the Standard Simplicial Algorithm

In the simplicial branch-and-bound algorithm, we first need to define an r-simplex A! in-
cluding X. For the value v defined above, let v} = ve; fori = 1,...,r, where e; € R’ is the
ith unit vector. Then A! is given by the convex hull of vi,...,v} and v}, = 0. Since X
is just a subset of A!, problem P is equivalent to the following with A = A':

P(A) minimize z= f(x)
subject to x € XNA.

Then, as we subdivide A! into smaller simplices A7, j € £, satisfying

J A=A int(A7)nint(A%) =0 if j# K,
JEL

we solve each subproblem P(A7) of P(A!) with a feasible set X N A7, where int( - ) represents
the set of interior points. Since P(A7) is of the same class as the initial P(A!), we cannot
solve it in a direct manner. Instead, the following recursive method of three steps is used:

Let £:= {1} and k := 1. Repeat Steps 1-3 until £ = §.

Step 1. Take an appropriate index j; out of £ and let A := AJx,

Step 2 (bounding operation). Compute a lower bound z* on the optimal value
z(A) of P(A). If f(x*) — zF < € for the best feasible solution x* to P
obtained so far, discard A from further consideration.

Step 3 (branching operation). Otherwise, divide the simplex A into two subsim-
plices A%* A2k+1 and add their indices to £. Let k := k + 1.

In this description, € > 0 is a given tolerance, and z(A) is regarded as +oo if X N A = {J.
When the set £ comes to be empty, we have a globally e-optimal solution x* to problem
P. However, if the value of € is set to zero, the simplicial branch-and-bound algorithm does
not terminate in general, and generates an infinite sequence of nested simplices {A*¢ | ¢ =
1,2,...} such that

Ao AR5 XN <ﬂ A’”) # 0.
(=1
Even in the case where € > 0, to terminate the algorithm in finite steps, we have to subdivide
A in a way that makes N52; A* a singleton. The simplest subdivision rule to ensure this
exhaustiveness is bisection. We select the longest edge of A = conv({vy,...,v.41}), say
v,—Vy, and divide it at a fixed ratio of @ € (0, 1/2], where conv( ) is the convex hull. Letting
v = (1 —a)v, + av,, then A%* and AZ**+! are given as follows

A% = conv({v; | i ApyU{v}), A =conv({v;|i#q}U{v}).

If ¢ > 0 and the bisection rule is adopted, we can obtain an e-optimal solution to P after a
finite number of steps, using either of the usual selection rules at Step 1:

Depth first. The set £ is maintained as a list of stack. An index ji is taken from the top of
L; and 2k, 2k + 1 are put back to the top at Step 3.

Best bound. The set £ is maintained as a list of priority queue. An index j; of least z* is
taken out of L.
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Linear Programming Relaxation at Step 2

The most time-consuming step in the simplicial branch-and-bound algorithm is Step 2.
As is well known, the efficiency of algorithms of this kind depends largely on this bounding
operation. At Step 2, to compute a lower bound z*, we usually replace the objective function
f of P(A) by its convex envelope g on A and solve a problem:

P(A) minimize z= g(x)
subject to x € XNA.

The convex envelope ¢ is an affine function which agrees with f at r 41 vertices of A. Since
A is given by the vertices, we can easily determine the value of g at any point x € A if we

have x as a convex combination of v;, ¢ =1,...,r + 1:
r+1 r+1
x=Y vi&, » &=1, £&=(&,...,&)" >0 (2.2)
=1 =1
By the concavity of f, we immediately have
r+1
9(x) =) f(vi)& < f(x), Vx€EA. (2.3)
i=1

Substituting (2.2) into P(A), we see that P(A) is equivalent to a linear program of n + 1
variables:
minimize z= fT¢
subject to AVE+By <b (2.4)
ef¢=1, (&y) >0,

where e € R"! is an all-ones vector and

f: [f(Vl),...,f(Vr+1)]T, V = [Vl,...,VT+1]. (25)

Obviously, (2.4) has an optimal solution (£,¥) if and only if X N A # (). Then we may set
zF to _
z:{ £ ifXNA#D
+o00 otherwise.
Note that when X N'A # ), we have a feasible solution X to the subproblem P(A), and to
the target problem P, by letting X = V€. We can therefore update the incumbent x* with
X if necessary.

Certainly, the linearized subproblem P(A) is far easier to solve than P(A). However,
since the number of subproblems generated in the course of iterating Steps 1-3 is an ex-
ponential in r, in the worst case, we cannot obtain an optimal solution nor an e-optimal
solution to P within a practical amount of time if we solve each P(A) from scratch. In
the rectangular and combinatorial branch-and-bound algorithms, one can solve linearized
subproblems successively using sensitivity analysis of the simplex method, or using special-
ized algorithms if the original problem has some favorable structure. Unfortunately, such a
procedure does not work well on P(A) because

(a) each (2.4) associated with P(A) has a different constraint matrix, and

(b) no (2.4) inherits the structure of the original problem (2.1).
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Due to (a), we cannot utilize the optimal solution to P(AJ*-1) as the initial solution in
solving P(AJ*) through sensitivity analysis, because it might be neither feasible nor dual
feasible for (2.4) associated with P(A7*). Moreover, due to (b), even if the original problem
(2.1) has a network structure for instance, we cannot apply any network flow algorithms to
each P(A). To overcome these difficulties, we need to add some new twists to the relaxation
of each subproblem P(A) at Step 2.

Modified Linear Programming Relaxation

One way of sweeping away both difficulties (a) and (b) is to replace the constraint x € A in
P(A) by a simple bounding constraint on x. Let

sj =min{vg; |i=1,...,r+1} } j=1,...,r (3.1)

t; =max{v;; |[i=1,...,r+1}
where v;; denotes the jth component of v;. Also let
IF'A)={xeR"|s <x <t}

where s = (s1,...,8,)" and t = (t1,...,t,)T. Then we have A C T'(A). Instead of P(A),
we may solve the following to obtain a lower bound z* at Step 2:

~( ) minimize 2z = g(x)
subject to x € X NT(A).

However, if we transform the variables x into £ via (2.2), we would face the same difficulties as
(a) and (b). Here, we try another way to draw an explicit linear programming representation
of P(A).

Suppose that the convex envelope g of f is given by ¢'x + ¢, 1, where ¢ € R" and
cr+1 € R. Since g agrees with f at r + 1 vertices of A, the following equations hold:

Viterpr=f(vi), i=1,...,r+1.

Note that v;’s are affinely independent if A is generated according to the bisection rule. By
adding an all-ones vector eT to V given in (2.5) as the (r + 1)st row, we have a nonsingular

matrix:
U= { v } ,

and for fin (2.5) we have
e’ copa] =FTU,

Thus, g is specified as g(x) = ¢'x + ¢,41, and P(A) is represented explicitly as a linear

program:
minimize z= c¢'x

subject to Ax+By<b, s<x<t, y>0. (3-2)

If X NT(A) # (), then (3.2) has an optimal solution (X,y). The following can be an
alternative for the lower bound z*:

~ [ eTx+eq EXNT(A)#0
+00 otherwise.
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Lemma 3.1 Among Z, Z and the optimal value z(A) of P(A), there is a relationship:
zZ<z<z(A).

Proof. Immediately follows from (2.3) and the inclusion relation of the feasible sets of
P(A) and P(A). 0

It should be emphasized that each (3.2) has the same set of constraints as the original
(2.1), except for the bounding constraint s < x < t, though associated with a different
subproblem P(A). The bounding constraint can be treated almost the same way as the
usual nonnegative constraint in the simplex and network flow algorithms [1, 2]. Therefore,
when (2.1) has some favorable structure, we can exploit it in solving each (3.2). In general

2], we can generate an optimal solution (X*,§%) to (3.2) associated with P(A%*) from the
preceding (X", 7*7!) in two steps: (i) restore the feasibility of (X* 1, 7" 1) for P(A%*) with
dual pivoting operations, and (ii) reestablish the optimality of the resulting feasible basic
solution with primal pivoting operations. Since (ik_l,yk_l) violates only the bounding

constraint, step (i) requires a very few pivoting operations. If step (i) fails, both IS(Aj’C) and
P(A’*) are infeasible.

Convergence Property When Using IS(A)

Any optimal solution X to P(A) obtained by solving (3.2) is obviously feasible for the target
problem P; and hence we can update the incumbent x* with X if necessary. However, X
might be infeasible for P(A) and can satisfy

f(x) <% (3.3)

unlike the optimal solution X of P(A). If (3.3) holds, A contains no feasible solution better
than X, because z is a lower bound of f on X N A, and we can discard A from further
consideration. In addition to this, we can discard A if

F&E) < f(vi), i=1,....r+1 (3.4)

Recall that f is concave and achieves the minimum on A at some vertex. In other words,
the minimum of f(v;)’s is another lower bound on the value z(A) of P(A) which minimizes
fon XNACA. Let us define the lower bound z* at Step 2 as

2% = max{Z, min{f(v1),..., f(vrs1)}}. (3.5)

If neither (3.3) nor (3.4) holds, the simplicial branch-and-bound algorithm might generate
an infinite sequence of nested simplices {A* | £ = 1,2,...} in A when € is zero. Even in
that case, we can show that z¥¢ defined in (3.5) tends to f(X*) as £ — oo, because T'(Ak¢)

shrinks to a single point as A*¢ does if the bisection rule is adopted. When € > 0, it follows
from this property that f(x*) — zF < € holds for some k = k, before A*¢ becomes a point.

Lemma 3.2  Suppose that {A*¢ | £ =1,2,...} is an infinite sequence of nested simplices
generated by bisection. Then we have

lim (f(i’”) - zk‘) = 0. (3.6)

{—o0
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Proof. For the sequence {A* | £ =1,2,...} we can assume that
fvhe) < 2f < &), (3.7)

where v* is a vertex of A* minimizing f. Let {v} = N2, A", Then we see from the
definition of ['(A*) that N, T(A*¢) = {v}. Since both v* and X" belong to ['(A*), we
have vF* — v and X — v as £ — co. Moreover, by the continuity of f we have

lim f(v*) = lim f&") = f(v),

£— 00

which, together with (3.7), implies (3.6). 0

Some Issues to Resolve in Relaxation P(A)

Lemma 3.2 guarantees that the simplicial branch-and-bound still works if we use the relax-
ation P(A) instead of the usual P(A) in the bounding operation of Step 2. Before applying
it in practice, however, we need to resolve two issues.

First, P(A) requires one to compute the inverse of the (r + 1) x (r + 1)-matrix U every
iteration to determine the objective function ¢'x of (3.2). This is the main reason why the
representation ¢'x + ¢,;1 of g has been avoided in the past. However, this is not a big
challenge if we adopt the depth first rule at Step 1. Because most U’s are different from
their predecessors in only one column, we can update the inverse of the kth matrix U* from
(UF=1)~1 almost always in time O(r) using the rank-one update [2]. Suppose that U~
and U" are the same except for the pth column. Let uf = [(v)T, 1] denote the pth column
of U* and let

W = (kal)*lu’;, E=1+(e,— w)e;/wp,

where I denotes the identity matrix and w,, is the pth component of w. Then we have

(UMt =EUHL (3.8)
Note that E is an eta matrix with nonzero off-diagonal elements in pth column. Since vg is
a convex combination (1 — a)vi™ + avi~! of two vertices of AJ*~1, we have w, =1 —a,
wy = « and the other components of w equal to zeros. As a result, the pth column of E
has only two nonzero entries 1/(1 — &) and —a/(1 — «) in the p and gth rows, respectively.
We see from (3.8) that the inverse of U"* is yielded if we replace only the p and gth rows of
(U1~ by their affine combinations.

The second issue is much more serious. As shown in Lemma 3.1, the lower bound 2z
yielded by P(A) is inferior to Z; and the difference is not expected to be so small. Although
it is somewhat tightened to 2% by f(v;)’s in (3.5), the essential reason for introducing their
minimum is merely to guarantee convergence of the algorithm by Lemma 3.2. Therefore,
the branching tree when using P(A) might grow more rapidly than when using P(A). To
prevent the rapid growth of the branching tree, we have to introduce a full-scale procedure
for tightening z.

Algorithm Using Two-Phase Bounding Operation

For Z yielded by P(A), let G = {x € R" | g(x) > Z}. Since X N A is a subset of this half
space G, no feasible solution to P(A) is lost if we add x € G to P(A) as a constraint. The



8 T. KUNO AND H. NAGAI

resulting problem is then equivalent to

minimize z= f(x)
subject to Ax+By<b, (x,y)>0 (4.1)
XEA, c'X>7—cry1.

In the preceding section, we have relaxed the objective function f and the constraint x € A.
Instead, we try relaxing Ax+ By < b here, by introducing a Lagrangian multiplier A € R™.
Then we have

L(A: ) minimize z= f(x)+ AT(Ax + By —b)
’ subject to XEA, y>0, c"x>Z—cny1,

by noting x > 0 for any x € A. If ¢"v; < Z—¢,41, or f(v;) < Z equivalently, for each vertex
v; of A, then L(A; ) is infeasible. In that case, the hyperplane G = {x € R" | g(x) = z}
separates A and X; and we can discard A because P(A) is infeasible.

Suppose that L(A; A) has an optimal solution (x(\), y(A)) and denote the value f(x(\))+
AT(Ax(A) + By(A) — b) by z(X). As is well-known (see e.g. [12]), we have

2(A) < z(A), YA>0.
However, to use L(A; ) as a procedure for tightening z, we need to fix the value of A
appropriately so that z(\) > z holds.
Lagrangian Relaxation L(A;A) and its Solution

Since the structure of L(A; ) is similar to P(A), we can relax it into a linear program
as in the same way as we have obtained P(A). Let us replace f and A by g and T'(A),
respectively, in L(A; A), and further drop the constraint ¢'x > Z — ¢,+1. Then we have

¢(A) =min{(c" + ATA)x + A" By - ATb [s <x <t, y > 0},

where s and t are defined in (3.1). The right-hand side can also be thought of as a Lagrangian
relaxation of (3.2), i.e., problem P(A). As long as A satisfies ATB > 0, the value ¢(\) is
finite and coincides with

YA =max{s'u—tTv—-b'A|p—v=c+ATA (u,v) >0}
by the duality theorem of linear programming. Therefore, we have

max{p(A) | ATB > 0, A > 0} = max{y)(A) | \TB >0, > 0}.
Note that the right-hand side of this equation can be rewritten as

maximize z= —b'A+ sTp—tTy
subject to AT A\—p+v=—c (4.2)
B'A>0, (Auv)>0,

which is the dual problem of (3.2). Let (X, [z, ) be an optimal solution to (4.2).

Lemma 4.1  There is a relationship:
dA) +erp1 <Z, VA>O0.

where the equality holds if X = A
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The dual optimal solution (X, fi, ) is generated as a byproduct in solving the primal
problem P(A). We adopt A as the Lagrangian multiplier of L(A; ). As is easily seen,
L(A; ) can be decomposed into

. minimize z, = f(x)+ AT(Ax —b)
La (43 4) subject to x€ANG,
.. T
. minimize 2z, = A By
Ly(A;A) subject to y > 0.

When A = X, the latter problem has an obvious optimal solution y(;\) = 0 because (X, n,0)
is an optimal solution to (4.2) and BT A > 0 holds. Thus, for an optimal solution x(X) to
L.(A; ) the optimal value of L(A; ) is given by

2N = F(x(X) + X (Ax(X) —b).

Theorem 4.2  Among z(\), Z and the value z(A) of P(A), there is a relationship:

7 < 2(A) < 2(A), (4.3)

where the first inequality holds strictly if X(X) Z{vi,...,vey1} and f is strictly concave on
A.

Proof. Since (X, B, v) is an optimal solution to (4.2) and s < v; < t for each v;, we have

fvi) + XT(Avi —b) c'vi+ e + XT(Avi —b)

~T
~T ~T
nvi—v v,—A b+c

- - ~T
uTs —Ut—XA b+ Crt1

¢(A) + Cry1 = (b(A) + Cry1-

By the concavity of f and Lemma 4.1, the point x(\) in A must satisfy

Y%

~ ~T ~ ~ »
2(A) = F(x(A) + A (Ax(A) =b) 2 ¢(A) +¢rpr = 2.
Suppose x(A) ¢ {v1,..-,Vs41}. Then x(X) lies among vertices of A N OG; and we have
x(A) = (1 = B)vp + Bv, for some v, v, and § € (0,1). Therefore, the following holds:

2(X) > (1= B)[f(vy) + A (Av, — b)] + B[f(vy) + A (Av, —b)] > Z,

if f is strictly concave on A. 0

Since Z might coincide with Z, e.g., when X € A, the bound z(;\) can be superior even to
Z. Although L, (A; X) yielding Z(X) is a concave minimization problem, we can solve it in
polynomial time if the value of f is given by oracle. Since the objective function is concave,
x() is a vertex of A N G. The number of its vertices is, however, O(r?) at most. We need
only to check the objective function value at the intersection of 0G with each edge v;—v; of
A such that v; € int(G) and v; € G, as well as at each v; € G
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Description of the Modified Algorithm

Now, recall the three basic steps of the simplicial branch-and-bound algorithm given in
Section 2. The bounding operation of Step 2 we propose consists of two phases:

Step 2.1. Solve P(A) and compute z* defined in (3.5). If f(x*) — z* < ¢ for the
incumbent x*, discard A from further consideration.

Step 2.2. If f(x*)—2* > €, solve Ly (A; X) and compute z(X). If f(x*)—z(X) < ¢,
then discard A from further consideration.

The following is the detailed description of our simplicial branch-and-bound algorithm for
solving problem P:

algorithm 2PHASE BB

begin
compute v := max{}_;_, 7; | x € X} and let Al := conv({vey,...,ve,,0});
L:={1}; z* := +oo; k :=1;
while £ # () do begin

select ji, € £ and let £ := £\ {jr}; A 1= Alr; /% Step 1 =/
let vq,...,v,.41 denote the vertices of A and let V :=[vy,..., v, 41];

U:= [Vl [eT, crp] == [f(vi), ooy f(ve)]JUTH

solve P(A) of minimizing g(x) = ¢"x + ¢41; /* Step 2.1 x/

if P(A) is feasible then begin
let X* be an optimal solution to P(A) and Z := ¢(X");
if £(X") < 2* then update z* := f(X") and x* := X";
2% = max{Z, min{f(v1),..., f(vis1)}};
if f(x*) —2"* > € then begin /x Step 2.2 x/
define L,(A; X) for a dual optimal solution (X, i, ) to P(A);
compute an optimal solution x(X) to L, (A; X) and the value z(X);

if f(x*)—2z(X) > e then begin /* Step 3 =/
select the longest edge v,—v, of A and let v := (1 — a)v, + av, for a fixed
a € (0,1/2];

A2k = conv({v; | i # p} U {v}); A%+ = conv({vi | i # g} U {v});
L:=LU{2k,2k+ 1}
end
end
end;
k:=k+1
end
end;

Theorem 4.3 When € = 0, the sequence {ik | £ = 1,2,...} generated by algorithm
2PHASE_BB with the best-bound rule has accumulation points, each of which is a globally
optimal solution to problem P.

Proof. When the algorithm terminates in finite time, the assertion is obvious. Suppose
that it does not terminate and generates an infinite sequence of nested simplices {AF | £ =
1,2,...}. Since the best-bound rule is adopted, we have

M <2 < 2(A), Vel
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at the kgth iteration. Recall that z(A7) is the optimal value of subproblem P(A7) and
min{z(A7) | j € £} is equal to the value z(A') of the target P. Therefore, we have

e <AV < fEMY, 1=1,2,....

However, by Lemma 3.2, we have f(x") — z¥ — 0 as £ — co. This implies that f(X*) —
z(A) as £ — co. n

Corollary 4.4  When ¢ > 0, algorithm 2PHASE_BB with either of the depth-first and
best-bound rules terminates after a finite number of iterations and yields x* as a globally
e-optimal solution to problem P.

Proof. If the algorithm does not terminates, it generates an infinite sequence of nested
simplices {A*¢ | £ =1,2,...} such that

fxPy =2k > f(x*) =2 >e>0, £=1,2,....

However, f(ikl) — 2k — 0 as £ — 0o, which is a contradiction. 0

Numerical Experiment

Let us report numerical results of having compared computer codes of 2PHASE_BB and the
standard simplicial branch-and-bound algorithm using only the relaxation P(A). We refer
to them here, as 2phase and standard, respectively. The test problem we solved is a concave
quadratic minimization problem of the form:

minimize —(1/2)XTQTQX —wd'y (5.1)
subject to A'x +B'y <b', (x,y)>0, ’
where Q € R"*", A’ e R™*,B' e R *™ ") b e R, d € R” " and w is a
positive weight. The matrix Q = [g;;] was generated so as to have two nonzero entries
in each row, i.e., (gi;, ¢iiy1) for i = 1,...,7" — 1, and (g,1,¢ ), where g; = g = 1.0
and the rest were drawn randomly from the uniform distribution on [0.0,1.0]. Then Q'Q
has three nonzero entries at most in each row. Also, each component of d was a uniformly
random number in [0.0, 1.0]. To make the feasible set bounded, b’ was an all-ones vector and
each component in the last row of [A’, B'] was fixed at 1.0/n'. Other components were all
random numbers in [—0.5,1.0], where the percentages of zeros and negative numbers were
about 20% and 10%, respectively. Selecting various sets of parameters (m',n’,r',w), we
solved ten instances of (5.1) for each set using 2phase and standard on a Linux workstation
(Linux 2.4.21, Ttanium?2 processor 1.3GHz).

Computer Codes

Both codes 2phase and standard were written using GNU Octave (version 2.1.50) [13], a
Matlab-like computational tool, in accordance with the depth-first rule. The tolerance €
was fixed at 107%. To adjust the form of (5.1) to (2.1), we introduced an additional variable
¢ and applied the code 2phase to

minimize —(1/2)x'Q"Qx — w(
subject to A'x +B'y <b', (x,y)>0, (5.2)
(—d'y <0, ¢ >0.
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where we should note ¢ > 0 because d > 0. The size (m,n,r) of (5.2) is therefore equal to
(m' +1,n" +1,7" +1). As for standard, we applied it directly to (5.1) because it uses only
the relaxed problem P(A), which can be written [5] as

minimize  (f')T¢ —wd'y
subject to A'V'€ +B'y <b'
ef¢=1, (£y) >0,

where V' = [vy,...,vppi]and £ = [f(vy),. .., f(Ver41)]T for r'+1 vertices v;’s of A C R" .
As the subdivision rule of A, bisection of ratio @ = 1/2 was adopted in 2phase, but not in
standard, because we found in our preliminary experiment that the convergence of standard
with the bisection rule is too slow to be compared with 2phase. Instead, we took the way to
bisect the longest edge of the minimal face of A which contains an optimal ¥ = V'€ of P(A).
Although this subdivision rule does not guarantee the convergence, standard incorporating
it terminated for every tested instance of (5.1) and generated the same output as 2phase
with the usual bisection rule.

Numerical Results

In Figures 5.1-5.4, line plots are given for comparing the behavior of 2phase with that of
standard when the size of constraint matrix [A’,B'] was fixed at (m',n') = (40,80). The
solid and broken lines represent the results of 2phase and standard, respectively.

Figure 5.1 shows the variation in the average number of branching operations required
by each code when w was fixed at 5.0 and r' was increased from 16 to 32. We see that the
dominance between 2phase and standard is reversed around r’ = 25, and can confirm that
the second phase of the bounding operation using the Lagrangian relaxation L, (A; X) works
properly. The variations in the average CPU seconds are plotted in Figure 5.2. The code
2phase surpasses standard in computational time at every r', which we can understand the
problem (3.2) associated with P(A) is easy enough to cancel out the inferiority of 2phase in
the number of branching operations for r’ < 25. In our preliminary experiments, we removed
the second-phase procedure from 2phase and tried to solve the same set of instances using
the resulting code, named 1phase. It performed well when r’ < 25, just as 2phase did, but
failed to terminate in 10° branching operations, on one instance with each r’ = 26,28, four
instances with ' = 30 and three instances with ' = 32. This implies that the second-phase
bears a crucial role in 2PHASE_BB.

Figures 5.3 and 5.4 show the variations in the average number of branching operations
and CPU seconds, respectively, required by each code when 7’ was fixed at 20 and w was
changed in {3.0,3.5,4.0,5.0,7.0,10.0,20.0}. Unfortunately, both codes are very sensitive to
changes in w, especially when w < 5. Nevertheless, 2phase needs considerably less branching
operations than standard when w < 4, which is totally due to the tight lower bound z(\)
computed in the second phase of the bounding operation. This, together with the ease of
solution to (3.2), yields the significant advantage of 2phase against standard in computational
time when w < 10. Incidentally, 1phase failed to terminate in 10° branching operations, on
seven instances with w = 3.0 and three instances with w = 3.5.

From the above observation, we can expect that 2PHASE_BB has potential for solving
much larger scale problems than the standard algorithm can, unless the concavity part has
a lot of weight in the objective function. We therefore tested the code 2phase on (5.1) of size
(m',n') from (60,120) to (300,200) with w fixed at 5.0. The number of nonlinear variables
r' was set from 20% to 50% of the whole variables, i.e., the maximum size of (m',n',r")
was (300,200,100). The computational results are listed in Table 5.1, in which # and
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Table 5.1: Computational results of 2phase when w = 5.0.

r'=0.2n r'=0.3n r'=0.4n' r’' = 0.5n’
m'x n' #  time #  time #  time #  time
60x120 23.2  0.646 41.0 1.309 91.0 4.030 141.9 10.56
180120 17.0 2.646 544 5.311 49.2  6.554 141.3 18.34
80x160 15.8 1.156 55.0 3.376 1349 12.06 238.3 42.29
240x160 8.0 7.854 77.2  20.08 1174  33.19 229.5 80.40

100x200 22.0 2.526 54.8 6.117 129.0 23.97 256.1 89.83
300%200 26.6 21.83 66.6 41.55 135.4 81.56 200.2 170.8

time indicate the average number of branching operations and CPU seconds, respectively,
required by 2phase for each (m',n’,r"). We see from this table that the number of branching
operations increases rather mildly as m' and n' increase, in contrast to the case of r'.
The similar tendency can be observed in the CPU seconds. We could solve still larger scale
problems by elaborating the computer code of algorithm 2PHASE_BB, as long as the number
r' of nonlinear variables is about 30% of the whole.

@ Conclusion and Future Issues

We have developed a simplicial branch-and-bound algorithm for solving a low-rank concave
minimization problem (2.1). The major feature of this problem is that the variables involved
in the objective function are only a part of the whole. In the bounding operation of the
algorithm, we have proposed to enlarge the feasible set of each linear programming relaxed
problem, in order to facilitate application of specialized algorithms and sensitivity analysis
of the simplex method. Furthermore, to tighten the lower bound deteriorated by this en-
largement of the feasible set, we have proposed the second bounding operation based on a
Lagrangian relaxation. We have seen in the preceding section that both operations work
very well and the algorithm has potential for solving much larger scale problems than the
existing algorithm can solve.

To further expand the versatility of the algorithm, we need to resolve two issues in the
future. Low-rank concave minimization problems can certainly be transformed into the form
of (2.1). However, many of such transformations destroy the structure of the constraint, like
the ones from (1.1) to (1.2) and from (5.1) to (5.2), and can take away from the devices in
the first phase of our bounding operation. Another issue is on the subdivision rule. Even
though bisection works reasonably well in our algorithm compared with in the standard
algorithm, its performance is still far from satisfactory. In the meanwhile, we need to try
out a variety of subdivision rules and hybrids of them to accelerate the convergence. For
these issues, we will report the details elsewhere.
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