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Abstract: In this paper, we consider generalized augmented Lagrangian methods, including a classical
augmented Lagrangian method and some “lower order” augmented Lagrangian methods as special cases, for
a mathematical program with only equality constraints. Since generalized augmented Lagrangians are in
general not differentiable or even not locally Lipschitz, we carry out convergence analysis of first-order and
second-order stationary points of generalized augmented Lagrangian methods by applying the Borwein-Preiss
approximate smooth variational principle.
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Introduction

In the literature, three types of augmented Lagrangians have attracted extensive attention:
(1) classical augmented Lagrangian with a convex quadratic augmenting function; (ii) general
augmented Lagrangian with a convex augmenting function; and (iii) generalized augmented
Lagrangian with a (nonconvex) level-bounded augmenting function. Their implication rela-
tions are (i) = (i) = (iii).

Classical augmented Lagrangian method was first proposed by Hestenses [9] and Pow-
ell [14] to solve a mathematical program with only equality constraints. It was later ex-
tended by Rockafellar to solve optimization problems with both equality and inequality
constraints, see, e.g., [1, 15, 16]. As noted in [1], in comparison with the traditional
(quadratic) penalty method for constrained optimization problems, convergence of aug-
mented Lagrangian method usually does not require that the penalty parameter tends to
infinity. This important advantage results in elimination or at least moderation of the ill-
conditioning problem in the traditional penalty method. Another important advantange of
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augmented Lagrangian method over the traditional penalty method is that its convergence
rate is considerably better than that of the traditional penalty method.

Recently, Rockafellar and Wets [17] introduced a general augmented Lagrangian with a
convex augmenting function for an extended real-valued nonconvex optimization problem
and established a strong duality result. Moreover, a necessary and sufficient condition for
the exact penalty representation in the framework of the general augmented Lagrangian was
also obtained.

More recently, a generalized augmented Lagrangian was introduced in [10] by relaxing
the convexity on the augmenting function. This relaxation allows for the unification of some
unconstrained methods for constrained and unconstrained optimization problems, e.g., the
general augmented Lagrangian method discussed in [17], the “lower order” penalty function
methods considered in [12] and [13] as well as a class of nonlinear penalty methods studied
in [18].

It was shown in [19] that a “lower order” nonlinear penalty function usually admits a
smaller least exact penalty parameter than the ordinary I; penalty function(see, e.g., [4] and
[3]). As shown in [10], generalized augmented Lagrangian with a “lower order” augmenting
function generally requires weaker conditions to guarantee its global exact penalty represen-
tation property than the general augmented Lagrangian in [17]. It will be shown in Section
2 of this paper that the generalized augmented Lagrangian with a “lower order” augment-
ing function also admits a smaller least local exact penalty representation paramter than
the general augmented Lagrangian. These results motivate us to further study generalized
augmented Lagrangian methods.

Another direction in the study of augmented Lagrangian is the so-called exact augmented
Lagrangians for inequality constrained nonlinear programming problems (see, e.g., [6, 7, 8]).
Uunlike the (generalized) augmented Lagrangian we mentioned above in which the penalty
term only considers the feasibility of the the original constrained program, exact augmented
Lagrangian takes into account both the feasibility and the KKT conditions of the original
constrained program. Under certain conditions, the relationship in terms of optimality
conditions, local/global optimal solutions of the augmented Lagrangian function and that
of the original constrained optimization problem has been established (see [6, 7, 8]).

It is clear that augmented Lagrangian methods for constrained optimization are a class of
unconstrained methods. That is, they are used to solve a constrained optimization problem
by converting it into one or a sequence of unconstrained optimization problems. However,
it should be cautioned that for a nonconvex program, usual optimization methods only
generate stationary points, i.e., points that satisfy first-order or second-order necessary op-
timality conditions. Thus, it is both interesting and significant to investigate whether the
first-order or second-order stationary points of the unconstrained mathematical programs
converge to that of the original constrained mathematical program. In [11], in the context
of a mathematical program with both equality and inequality constraints, we proved that
the first-order and second-order stationary points of the classical augmented Lagrangian
problems considered in [15, 16] converge to that of the original constrained mathematical
program, respectively. In the framework of a mathematical program with only equality con-
straints, we showed that the second-order stationary points of the augmented Lagrangian
problems converge to that of the original constrained mathematical program for general
augmented Lagrangians with convex augmenting functions studied in [17].

It is worth noting that there is generally no explicit expression for a general augmented
Lagrangian for a mathematical program with inequality constraints and thus there exists
some techinical difficulty in deriving first-order and second-order necessary optimality con-
ditions for the corresponding augmented Lagrangian problems [11]. So we considered math-
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ematical programs with only equality constraints and their general augmented Lagrangian
problems. In this paper, for the same reason, we shall restrict our attention to a class of
generalized augmented Lagrangian methods for mathematical programs with only equal-
ity constraints. We shall investigate their convergence properties. More specifically, we
shall prove that first-order and second-order stationary points of the generalized augmented
Lagrangian problems converge to that of the original constrained mathematical program,
respectively. Since these generalized augmented Lagrangians are not differentiable or even
not locally Lipschitz, we approximate these generalized augmented Lagrangians by certain
smooth functions. We also show that the first-order and second-order stationary points of
the smooth approximate problems converge to that of the original constrained optimization
problem, respectively.

Generalized Augmented Lagrangian

We recall the definition of the generalized augmented Lagrangian. For details, see [10].
Consider the following primal optimization problem:
P inf
(P) inf ¢(2),

where ¢ : R" - R = R{J{—o00, 00} is an extended real-valued function.
Suppose that f(z,u) : R™ x R™ — R is a dualizing parameterization function of ¢, i.e.,

f(z,0) = p(x), x€R".

Let 0 : R™ — R be a generalized augmenting function, i.e., it is proper, lower semi-
continuous (lsc in short), level-bounded (the set {u € R™ : o(u) < a} is always bounded
for any a € R), and attains its minimum 0 at the origin 0 € R™. In [17], the augmenting
function o is required to be convex. Clearly, an augmenting function, which is Isc, convex
and attains its minimum 0 at its unique minimizer 0 € R™, is level-bounded.

The generalized augmented Lagrangian is defined as

lz,y,r) = inf {f(z,u) = (y,u) +ro(w)}, z€R"yeR™r>0.

Based on the generalized augmented Lagrangian for unconstrained programs, we intro-
duce generalized Lagrangian for constrained programs. Since there exists some technical
difficulty in deriving an explicit expression of a generalized augmented Lagrangian for a
mathematical program with inequality constraints, we will only discuss in this paper math-
ematical programs with equality constraints.

Consider the following constrained program:

(CP) inf  f(x)
s.t. xreR™
gi(z)=0, j=1,...,m,

where f,g; : R" = R,j = 1,...,m are twice continuously differentiable functions.
Denote by Xy the feasible set of (CP), i.e.,

Xo={x€eR":¢9;(x)=0,j=1,...,m}.

Let Mcp denote the optimal value of the problem (CP).
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Set

| fx), ifz e Xy,
wlw) = { +o0o0, ifze R’g\XO. (1)

It is clear that (CP) is equivalent to the following unconstrained problem (P’) in the
sense that the two problems have the same set of (locally) optimal solutions and the same
optimal value:

(P)  inf (@)

Define the dualizing parameterization function:
fop(z,u) = f(x) +670,,3(G(z) +u), =€ R",u€R™, (2)

where 0,,, is the origin of R™ and G(z) = (g1(),...,gm(z)). Thus, a class of generalized
augmented Lagrangians for (CP) with the dualizing parameterization function fop defined
by (2) can be expressed as

lep(z,y,r) = inf{fop(@,u) — (y,u) + ro(u) :u € R™}, (3)

where o is a generalized augmenting function.
It can be easily computed from (3) that

lop(@,y,m) = f(@) + 3 4j9;(2) + 1o(=g1(2), -, ~gm (@))- (4)

Definition 2.1[10]. Consider the constrained program (CP) and the associated generalized
augmented Lagrangian lcp(z,y,7). A vector § € R™ is said to support a global exact
penalty representation if there exists # > 0 such that

Mcp = inf {lcp(z,9,7) :x € R"}, Vr>7

and
argmin (CP) = argmin,lcp(z,7,r), Vr >,

where argmin (CP) and argmin,lcp(z,§,r) denote the set of optimal solutions of (CP)
and the set of optimal solutions to the problem of minimizing l¢p(z,y,r) over © € R™,
respectively.

Definition 2.2. Consider the constrained program (CP) and the associated generalized
augmented Lagrangian lop(7,y,7). Let € Xy be a local solution to (CP). § € R™ is
said to support a local exact penalty representation for (CP) at Z in the framework of the
generalized augmented Lagrangian Icp(x,y,r) if there exist # > 0 and § > 0 such that

f(@) <lcp(z,7,7), VeeVs={zxeR":|z—-Z|| <4} (5)
In the sequel, we restrict our attention to two classes of generalized augmenting functions
o for (CP). More specifically, they are stated as follows:
(a) the generalized augmenting function is o(u) = [Z;”:l |uj|] , where o > 0;

(b) the generalized augmenting function is o(u) = [max{|u;|:j =1,...,m}]", where
a > 0.
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It is obvious from (4) that the generalized augmented Lagrangian in case (a) is

«@

L (1’ y,r) = +Zy]gj +r Z|gj(m)| )
Jj=1

and the generalized augmented Lagrangian in case (b) is
L(z,y,r) = +ZngJ )+ r[max{|g;(z)| : j=1,...,m}]".

The generalized augmented Lagrangian problems in case (a) are

(Pp,)  min L (@0,7), (6)

and the generalized augmented Lagrangian problems in case (b) are

(B,)  min L"(z,y,7) (7)

It is clear from ([10], Theorems 5.3 and 5.4) that if 0 < o' < «, weaker conditions
are needed to guarantee that y € R™ supports a global exact penalty representation for
(CP) in the framework of the generalized augemented Lagrangian L* (z,y,r) than in the
case when the generalized augmented Lagrangian L®(z,y,r) is used. Next we show that if
0 < o < a and g supports a local exact penalty representation for (CP) in the framework
of L%(x,y,r) , then § also supports a local exact penalty representation for (CP) in the
framework of L® (z,y,r), and in some sense, L~ (z,y,r) admits a smaller least local exact
penalty representation parameter than L*(x,y,r).

Suppose that Z € X is a local solution to (CP) and j € R™ supports a local exact penalty
representation for (CP) at Z in the framework of the generalized augmented Lagrangian
L®(x,y,7). Let 6 > 0 in Definition 2.2 (with Icp replaced by L®) be fixed. Define the least
local exact penalization representation parameter by

ri(g,0) =inf{F > 0: f(z) < L¥(z,q,7), Yz € Vs}.

Define the following locally perturbed problem of (CP):

(CP(d))  inf f(z)
st. xeVs

gi(z) =s;, j=1,...,m,
where s = (s1,...,5m) € R™. Let (s, ) denote the optimal value of (CPs(0)). If (CP(0))
does not have a feasible solution, 3(s,d) = +o00. Set

S(@0)={s:s€R™,s#0,s; =g(x),j =1,...,m, for some z € V}.

We have the following proposition concerning the calculation of r* (g, d).

Proposition 2.1.

T 5
r* (§,6) = max{0, sup F(&) = B(s,0) = S ss;
s€5(9) sl

where [|s[|; = 7", [sj],Vs = (s1,...,5m) € R™

2
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Proof. Let

PR (G B OO R v/ 2
s€5(6) 11y
First we prove that r*(7,d) > A.

Let 7 > 0 satisfy
f(z) < L*(z,y,7), Yz €V, (8)
Then for any s € S(6), there exists an x feasible to (C'Ps(d)) such that

F@) < fla)+ > ais; + Fllsllg-

=1
Consequently,

F(®) < B(s,8) + Y gss; + sl

7j=1
Thus,
> A.

F
By the definition of r%(y,0), we see that r’(7,0) > A.
Now we show that

f(@) < L%(z,y,A), Voels.

Suppose to the contrary that there exist o € Vs and ty > 0 such that

Fl@o) + D Gigi(wo) + A | D lgi(zo)l| < f(&) ~ to. 9)
i=1 i=1
We assert that zo ¢ Xo. Otherwise, from (8), we have
f(@) < f(xo). (10)
On the other hand, from (9) we obtain

f(xo) < f(Z) — to,
contradicting (10). Let
sj:gj(:vo), j:l,...,m. (11)
Then from zg ¢ Xo, we conclude that s # 0. Moreover, it is apparent that s € S(0).
Substituting (11) into (9), we get

Flao) + > uis; + Allsllf < £(2) — to.

j=1
This further implies that

B(s,8) + > djs; + Allsllf < £(&) — to.

j=1

As a result,

(@) —to —B(s,0) — 2271, §js;
16315y ’

contradicting the definition of A. It follows that r’(7,0) < A. So the conclusion holds. O

A<
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Now assume that § supports a local exact penalty representation for (CP) at # € X
in the framework of the generalized augmented Lagrangian L*(x,y,r). Then there exists
0 > 0 such that (5) holds. Suppose that 0 < 6 < 1. By the continuity of g; (j = 1,...,m),
there exists ¢’ > 0 such that

> lgi@)| <0, VoeVy={zeR":|z—3|<d} (12)
j=1
Set ¢ = min{d,d'}. Then we have

f(#) < L*(z,5,7), Vze€Vsn ={z e R":|z—2| <} (13)

By Proposition 2.1, we obtain

Z) = B(s,6") =S 85
T;(g)(s”) = max{(), sup f( ) 6( )a 2]71 Yjsj
seS(8) IIs]]$

}- (14)

Suppose that 0 < o/ < a. Then (13) also holds when « is replaced by a'. Again, by
Proposition 2.1, we have

) = B(s,8") = ™, s,
7 (9,0") = max{0, sup o= )a, 2 j=1 755
s€S(6") [IsllS

. (15)

By our assumption (12) and the definition of ", we see that
IIslh <@ <1, VseS(").
Consequently, it is easily deduced from (14) and (15) that

T;’ (ga 6”) S ea—o/ ’I"Z (ga 6”)'
Note that #*~* < 1. So we conclude that the generalized augmented Lagrangian L~ (z,y,r)
admits a smaller least local exact penalty representation parameter than L*(z,y,r) if 0 <
o <a.
Similar arguments motivate our interest in the generalized augmented Lagrangian L®(x,
y,7), particularly when o > 0 is small.

Convergence Analysis

In this section, we consider the constrained optimization problem (CP). We shall discuss the
convergence of first-order and second-order necessary optimality conditions of the generalized
augmented Lagrangian problems (Py',) and (P;',), respectively.

Optimality Conditions for Generalized Lagrangian Problems

It is clear that both L%(x,y,r) and L®(x,y,r) are generally nonsmooth functions. Fur-
thermore, when 0 < a < 1, they may not even be locally Lipschitz or convex composite
functions. It is true that there have already been some results concerning first-order and
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second-order necessary conditions for nonsmooth or even non-Lipschitz optimization prob-
lems in the literature (see, e.g., [17]). However, we have not found one that is suitable
for our purpose of convergence analysis of the generalized augmented Lagrangian methods.
Fortunately, we are able to derive appropriate first-order and second-order necessary con-
ditions for the optimization problems (6) and (7) by combining the technique of smooth
approximation and the approximate smooth variational principle due to Borwein and Preiss

[2].
The next lemma follows immediately from the approximate smooth variational principle
([2], Theorem 2.6).

Lemma 3.1 Let X C R"™ be nonempty and closed. Let h : X — R be Isc and bounded
below on X. Suppose that Z is a point such that h(Z) < in)f( h(z) + €, where € is a positive
TE

number. Then, for any A > 0, there exists . € X such that
lze — 2|l < A,

h(ze) < xlél£( h(z) + e
and
h(z.) < h(z) + €/X2||x — z.|?, Vo€ X.

We need also the following lemma to derive second-order necessary conditions for (P",.)
and (Pg,.).

Lemma 3.2. Let {cf}22, C R",i =1,...,q be sequences such that

. k .
lim ¢ =¢, i1=1,...,q.
k—+o00

Suppose that {c; : i = 1,...,¢} are linearly independent. Then Vd € {d € R" : ¢'d =
0,7 =1,...,q}, there exists k > 0 such that, when k > k, there exists dF € R™ satisfying
(Td* =0, i=1,...,qand d* — d.

Proof. It follows directly from Corollary II.3.4 of [5] (see also Lemma 5.1 of [20]). O

The next proposition gives first-order and second-order necessary condition for a local
minimum of (P},).

Proposition 3.1. Consider the generalized augmented Lagrangian problem (P;*,). Suppose
that 7 is a local minimum of (Pg,) and {g;(Z) : j = 1,...,m} are linearly independent.
Then there exist v;,j = 1,...,m such that

(0
V@) + 3 vy 7 ,() = 0; (16)

and
(ii) for any d € R™ satisfying

vyi(Z)d=0, j=1,...,m, (17)
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there holds
d' 7* f(z d+Zde v° g;(@)d > 0. (18)

j=1

Proof. Since 7 is a local minimum of (P;',.), there exists a neighbourhood Us = {z € R" :
||z — Z|| < 0} such that
L*(z,y,r) < L*(z,y,r), V€ Us.

Let k£ be an integer and

a:)+2ngj(w)+r Z,/g]?(a:)+1/k2 , T€R"
=1 =1

It is not hard to check that for x € U, there holds
rm® [k, if 3251 lg;(@)] =0,
sp(7) < su(z) + { re/k® [E;n:l |gj(a_:)|]a_1, if 0 <a<land 37" |g;(%)] >0,
ra/k® [27:1 93(z) + l]a_1 , ifa>Tand 37" |g;(7)| > 0.

Set . .
er = 2max{m/k,a/k Z|g](i)| , alk Z g3 (z) +1 ).
j=1 j=1
Then we have
sip(Z) < sp(z) + €, Ya € Us. (19)

It is clear that €, | 0. So we assume without loss of generality that ei/4 <.

From (19) and Lemma 3.1 (taking A = ei/4), we obtain Z) € Us such that

|12, — 2| < e/

and Zj, is a minimum of the problem:

min sy (z) + e}/ * ||z — Z} || (20)
xzeUs

Since |2}, — Z|| < 6?4 < 4, it follows that Z}, € intUs. By the first-order necessary optimality
condition for problem (20), we get

Vsk(Z),) = 0.
That is,

a—1
vi@ +ZyJVg, ) +ra Z,/gf )+ 1/k?

Jj=1 7j=1

m

SR @) + 1/ 9@ v g5(@) = 0

j=1
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or
a—1
x;)%—Z{yj—kra Z\/g 1)+ 1/k?
Jj=1 j=1
- 271—-1/2 —1 AN
> g @) + /K] g5(#)} v g5(x) = 0. (21)
j=1
Let
a—1
1/]’-“ = yj+ra Z,/gf(:ﬁ’k) +1/k?
j:
- 21—1/2 ! .
Z W)+ 1/k ] 9;(Zy), ji=1,...,m. (22)
j=1
Then (21) becomes
&) + Y v v ;@) =0. (23)
j=1

We assert that 7, = Y77, [v§| is bounded. Indeed, suppose to the contrary that {7} is
unbounded. Assume without loss of generality that 7, — 400 and

lim I/k/Tk—V j=1,...,m. (24)

k—+o00

Dividing (23) by 7 and passing to the limit as k — +00, we obtain
> v v 9i(@) =0. (25)
Jj=1

The combination of (24) and (25) contradicts the linear independence of {57¢;(Z) : j =
1,...,m}. Hence, each sequence {1/]’?}, j = 1,...,m is bounded. Assume without loss of
generality that
vi s, j=1,.m. (26)

Taking the limit in (23) as k — 400, we obtain (16). This proves (i).

Now we apply second-order necessary condition to problem (20) and see that for any
d € R™, there holds

d” 72 si(zh)d + 2¢;/2d"d > 0.

That is,

a—2



GENERALIZED AUGMENTED LAGRANGIAN AND OPTIMIZATION 91

- qa—1
+ra ) | /g3 (@) +1/k? [g2(2,) + 1/ g2(2) (Vg (2) )’
j=1 [i=1 ]
r 9 a—1
_ —-1/2 _
oY S 2@ k2| [ + 1K) (V@)
j=1 | j=1
2¢1/%d"d > 0, (27)
where v¥, j =1,...,m are as in (22).

Note that zj, — Z and {/g¢;(Z) : j = 1,...,m} are linearly independent. By Lemma 3.2,
for any d € R™ satisfying (17), there exist d, € R™ such that d, — d as k — 400 and

vgi(z)d, =0, j=1,....m. (28)

Substituting (28) into (27) (with d repalced by di), we obtain

d{ 2 f(z})dy, + Zukdk \V4 g]( e di + 2€k/2dek > 0.

j=1

Passing to the limit as k¥ — 400 and applying (26), we obtain (18). The proof is complete.
O

The first-order and second-order necessary conditions for a local minimum of (Pijr) are
given in the following proposition.

Proposition 3.2. Consider the generalized augmented Lagrangian problem ( »)- Suppose
that Z is a local minimum of (P2,) and {vg;(%) : j = 1,...,m} are linearly 1ndependent.
Then there exist v;,j = 1,...,m such that (16) holds and for any d € R™ satisfying (17),
(18) holds.

Proof. Since Z is a local minimum of (Py,.), there exists a neighbourhood Us = {z € R™ :
||z — Z|| < 0} such that

L*(z,y,r) < L*(z,y,r), Yz € Us.

Let k£ be an integer and

e
2k
m

+Zng] +r Z(gf(m)—kl/k?)k , = €R"

i=1

Clearly, sy is twice continuously differentiable. Moreover, it is routine to verify that for
x € Us, there holds

sk(Z) < sk(z)
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(75 if max |g;(z)] =0,
Sjsm
=\ |Ja—17_1 Y A =
raf max 1g;(@)[]* = + (i 957 (2))7F — max g; ()]
N if max |g;(z)] >0
) and 0 < a < 1,
ra[35 g5(®) + 1% [ + (7L, 67" (@) _ i
- max 1g; (@], if max |g;(z)| >0
\ and o > 1.
Let
et = 2max{ 2% ral max o, (@) [ + (3 624 @)F — max |g;(@)]
ke < i<m k2 = J 1<j<m 7! ’
m . N 1 m L )
ra}_g}(@) + 1% [ + Q_ g7 (@) — max [g;(z)]}-
i=1 i=1 ==

Obviously, € | 0. Assume without loss of generality that ei/ ‘< 0, Vk.

Clearly, we have
sk(Z) < sp(z) + €, x € Us.

Applying Lemma 3.1, we obtain Zj, € Us such that

_ _ 1/4
17}, — 2| < e/

and zj, is a minimum of the problem:

min si(z) + ||z — 2} % (29)
xzeUs

Note that ||z}, — Z|| < 6?4 < 4. It follows that Z} € intUs. By the first-order necessary
optimality condition for problem (20), we get

Vsk(Z),) = 0.
That is,

VI + D05 v 5@ +ra |3 (@) +1/k)"
> (@) +1/k)" T 0@ 7 95 =0,
VI@) + Y s +roc | 3 (g @) + 1K)
> (@) +1/K)" g7} v 95() = 0. (30)

j=1
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Let
l/_;-c = yYjtra Z +1/k2)
Jj=1
- -1, .
() + 1k i), i=1,.m (31)
j=1
Then (30) becomes
1@ + D vi v 9i(@) = 0. (32)
Jj=1
As argued in the proof of Proposition 3.1, we can show that each sequence {VJ’?}, j=1....m
is bounded. As a result, we can assume without loss of generality that
kErfooV]I?:Vj, j=1,...,m. (33)

Taking the limit in (32) and applying (33), we obtain (16).

Applying second-order necessary optimality condition to the problem (29), we have that
for each d € R™, there holds

d" 7% si(z)d + 26,/ *dTd > 0.

That is,
T f(z})d + Zyde V2 g;(#,)d + Zﬂk Vi (@)d)? + 262 dTd >0,  (34)
j=1
where nuf,j =1,...,m are as in (31) and ﬁf,j =1,...,m are some real numbers.
Since {vg;(Z) : j = 1,...,m} are linearly independent and Z) — % as k — +o0, by

Lemma 3.2, for any d € R™ satisfying (17), there exist dy € R™ such that dy, — d as k — +o00
and

vgj(i’;c)dk =0, 7=1,...,m. (35)
Substituting (35) into (34) (with d repalced by di), we obtain

[Avas it dk+ZV’“dkv 9; () di + 26, 2dTdy, > 0.

j=1

Passing to the limit as k¥ — 400 and applying (33), we obtain (18). The proof is complete.
O

Remark 3.1. In [3], the exact penalization technique was employed in order to derive
first-order and second-order optimality conditions for a constrained optimization problem.
It was assumed there that the orginal constrained program admits a local exact penalization
at a local solution and the penalty function is a convex composite function. That is, the
local minimizer of the constrained program is also a local minimizer of the convex com-
posite penalty function. Then, from the previously developed first-order and second-order
optimality conditions for a local minimizer of a convex composite function, one can obtain
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first-order and second-order optimality conditions for a local minimizer of a constrained op-
timization problem. The goal of Propositions 3.1 and 3.2 is purely to derive first-order and
second-order conditions for local minimizers of problems (Py,) and (Pg,), respectively. It
is worth noting that we did not assume that Z is feasible to the original constrained pro-
gram (CP). Moreover, when 0 < a < 1, neither of the generalized augmented Lagrangian

problems (Py,) and (P;',) is a convex composite optimization problem.

Convergence Results

Definition 3.1. Consider the constrained program (CP). Let z* € Xy. Suppose that
vi{gj(z*) : j = 1,...,m} are linearly independent. The first-order necessary optimality
condition is that Jv;,j = 1,...,m such that

V() + Zuj v gi(z*) = 0; (36)

and the second-order necessary optimality condition is that the first-order necessary condi-
tion (36) holds, and for any d € R™ satisfying

vyi(x*)d=0, j=1,...,m, (37)

we have .
d' 7 f(@*)d+ Y vd" 7% gj(a*)d > 0. (38)

7j=1

Theorem 3.1. Let the sequence {yr} C R™ be bounded and 0 < 7 1T +oc0. Let each
zj, € R™ be generated by some method for solving (Py. ) (or (P . )). Assume that
there exist mg, M € R such that f(z}) > mo, Vk and L*(z},yr,7e) < M, VEk (or
L(z},yk,r) < M, Vk). Then every limit point z* of {z}} is feasible to the original
constrained program (CP). Let z* be a limit point of {z}} and suppose that {7g;(z*) :
j =1,...,m} are linearly independent. Further assume that each x} satisfies the necesary
optimality conditions presented in Proposition 3.1 (or 3.2). Then z* satisfies the first-order

and second-order necessary optimality conditions of (CP).

Proof. We only prove the case of (Py,). The case of (PJ",) can be analogously proved.

Without loss of generality, suppose that «j — x*. Note that L™ (x},ye, k) < M, Vk,

namely,
@

F) + > uigi(@i) +re | D lgs(zp)l| < M.
j=1 j=1

Moreover, {y;} is bounded and f(z}) > mg. Consequently, there exists M; > 0 such that

Thus,
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Passing to the limit as k — 400, we see that

gi(a) =0, j=1,...,m

Therefore, z* is a feasible solution to (CP). As each z satisfies optimality conditions in

Proposition 3.1, so there exist 1/ ,j =1,...,m such that
k +§:Vngj(a:k) =0; (39)
j=1
and for any d € R" satisfying
vgi(z¥)d=0, j=1,...,m, (40)
there holds
dT 7% f(x d+2udev gi(z®)d > 0. (41)
j=1

Arguing as in the proof of Proposition 3.1, we can prove that each sequence {V]’?},j =
1,...,m is bounded. Assume without loss of generality that

vi s, j=1,.m. (42)

Taking the limit in (39) while observing (42), we obtain (36). Now for any d € R™ satisfying
(37), since z; — z* and {/g;(z*) : j = 1,...,m} are linearly independent, by Lemma 3.2,
we have {d} C R™ such that d, — d and (40)holds with d replaced by dj. Hence, (41)
holds with d replaced by dj. That is,

df Bydy, + Zykdk v?2 g;(@®)dy > 0. (43)
Taking the limit in (43) as k — +o00, we obtain (38). The proof is complete. O
Remark 3.2. The linear independence assumption of {g;(z*),j = 1,...,m} is important

to guarantee the correctness of Theorem 3.1. Otherwise, Theorem 3.1 may fail.

Example 3.1. Consider the following constrained program

(CP) min f(z) =z,
st. zeR,
g(x) =2* =0.

Let y =0, Vkand 0 <7t 1 +oo. Consider problem (P! )

min z + rpz® s.t. x € R

Clearly, the optimal solution of (Pylk,rk) is zp = —ﬁ, which converges to * = 0 as
k — +oo. Since yg(xg) = 2z, = —1/r,, # 0, the linear independence assumption of
Proposition 3.1 holds. Moreover, Let v* = ri, Vk. Then, 7 f(zr) + v* 7 g(zx) = 0 and
for any d € R', d” 7% f(zi)d + v*d" 72 g(zr)d = 2rpd® > 0. Tt is easily checked that all
the other conditions (except the linear independence condition of {g(z*)}) of Theorem 3.1
also hold. However, it is routine to check that z* is not a KKT point of (CP), i.e., z* does

not satisfy the first-order necessary optimality condition given in Definition 3.1.
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Convergence of a Class of Approximate Augmented Lagrangian
Methods

As shown in Section 3, the nondifferentiable generalized augmented Lagrangian methods
(when 0 < a < 1) are convergent. However, the functions L® and L® are not even locally
Lipschitz when 0 < a < 1. Current algorithms for unconstrained optimization problems
are not applicable to minimize L® and L®. In this section, we shall smooth L® and L by
approximation. We prove that the smooth approximate problems corresponding to L* and
L™ preserve the convergence properties obtained in Section 3.

Let 0 < € 4 0. Set

L (z,y,7,e,) = +Zy]g] )+r Z\/g] z) + € z €R".

e
m k

L*(x,y,7, €x) )+ Zy,g] +r Z(gf(w) +e2)k , x €R"

=1

Clearly, both L(z,y,r,€e) and L(z,y,r, €) are twice continuously differentiable.
Consider the following smooth problems:

(Pyojr,ek) wnelgln La(l’,y,r, ek)) (44)
and B B
(Pyojr,ek) ;,tnelgln La(.’lj,y,r, Gk). (45)

It is routine to derive the next two propositions.

Proposition 4.1. Suppose that Z is a local minimum of ( Then

yrek)

VL (Z,y,re) = )+ Z{y] + ra {Z g] )+ ek}

Y@@+l P g@)yve@ =0, (46)

Jj=1

and
d" 72 Lz, y,r,e)d = d* * f(Z d+2udev 9;(%)d
+rafa —1) Z{Z 93(z +ek} [63(&) + 2] g2(2)(vg;(2)d)?
tray Z g?(a?)+ei [2(@) + &) @) (v (@)d)?

tray Z Z@+e|  [¢@ e P (vy@d? >0, deR" (47)
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Proposition 4.2. Suppose that Z is a local minimum of ( Then

yrek)

a
a1

VoL (Z,y,rer) = () + Z{yj +ra Z (g7 (2) + ei)’c
Jj=1 Jj=1

Y (2@ +a) T g@)ve@ =0, (48)

Jj=1

and

j=1 j=1

Y@+ | Y 2k - (@ + ) @)

+ (g2 (@) + &) T [ Hwg@d? >0, de R, (49)

Theorem 4.1. Let the sequence {y,} C R™ be bounded, 0 < r; 1 400 and 0 < ¢ | 0. Let
each 7 € R™ be generated by some method for solving (P;,c ) (or (Pg ). Assume
that there exist mg, M € R such that f(z}) > mo, Vkand L® (mk,yk,rk,ek) <M, Vk (or
L(z}, yk, Tk, €r) < M, Vk). Then every limit point z* of {z}} is feasible to the original
constrained program (CP). Let 2* be a limit point of {z}} and suppose that {7g;(z*) :
j =1,...,m} are linearly independent. Further assume that each x} satisfies the necesary
optimality conditions presented in Proposition 4.1 (or 4.2). Then z* satisfies the first-order

and second-order necessary optimality conditions of (CP).

Proof. The proof is almost the same as that of Theorem 3.1 and thus omited. O
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