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Abstract� Recently� semide�nite programming has been used to bound the price of a single�asset European
call option at a �xed time� Given the �rst n moments� a tight bound can be obtained by solving a single
semide�nite programming problem of dimension n� �� In this paper� we study the multi�asset case� which
is generally more practical than the single�asset case� We construct a sequence of semide�nite programming
relaxations� As the dimension of the semide�nite relaxations increases� the bound becomes more accurate
and converges to the tight bound� Some numerical results are reported to illustrate the method�
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� Introduction

The Black�Scholes ��� formula for the European call option price on a single asset at a �xed
time can be obtained only under the conditions that the market is arbitrage�free and that
the asset price return follows a lognormal distribution� Unfortunately� the latter condition
is usually not satis�ed in reality� which may result in pricing biases ����� Some alternative
models� based on some other distributions� have been studied� which include the jump
di	usion process of Merton �
��� the pure jump model of Cox et al� ����� and the compound
option model of Geske ����� Those models have a unique option price� but they still have
pricing biases in some sense�

Without assuming an arbitrage�free market or a speci�c distribution of the underlying
asset price� several authors tried to use tools from mathematical programming� such as linear
programming and semide�nite programming� to obtain bounds on option prices ��� 
� 

� 
���
Given the �rst and the second order moments of the asset� Lo ���� derived an upper bound for
the price of a single�asset European option by using a classical result of Scarf ����� Recently�

�Jie Sun was Terry�s �rst Ph�D student from China� As a person from a totally di�erent social�cultural
system� Jie has learnt from Terry not only the mathematics of optimization �in this aspect Jie was not too
good but is still trying to be better	� but also the way to live and work as an academic� The other authors of
this paper are colleagues of Jie� who have met Terry during Terry�s visits to National University of Singapore
and have bene�ted from reading his works and attending his seminars� All of us wish the best for Terry on
this celebrated occasion�
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Lo�s result has been extended by Bertsimas and Popescu ��� and Gotoh and Konno ���� to
the case where the �rst n moments of the asset are known� A tight upper or lower bound
can be obtained via solving a single semide�nite programming problem of dimensions n��
��� ����

In many applications� the payo	 on a derivative security often depends on more than
one underlying asset� An example is the commodity index bonds issued by producers of a
particular commodity� The coupon payments on the bond can depend on both a commodity
price and some economic variables ��� ���� Other examples of this kind can be found in
��� 
���

For European options of two underlying assets� Stulz ���� proposed a closed�form solution�
Tilley and Latainer ���� and Johnson ���� extended Stulz�s results to the case of an arbitrary
number of underlying assets� However� all those results were derived under the assumption
that the underlying assets follow the multivariate lognormal distribution� which is a strong
assumption�

Boyle and Lin �
� derived distribution�free semi�parametric bounds on a European call on
the maximum of any number of assets� which is an extension of Lo�s results ����� Similar to
Lo�s results� Boyle and Lin only needed the �rst and the second order moments �means and
covariance matrix of the returns of m underlying assets� of a distribution� They suggested
to obtain the bound via solving a semide�nite programming problem of dimension �m �
���m� 
��
�

The upper bounds obtained by Boyle and Lin are better than those obtained by applying
Lo�s method directly to the multi�asset case� However� the upper bound from Boyle and
Lin�s method is still higher than the exact value �see �
� Table ����

In this paper� we propose to approximate the tight upper bound of the price of a multi�
asset European call option by solving a sequence of semide�nite programming problems�
The method can be viewed as a generalization of the method of Boyle and Lin �
� in the
sense that the �rst n moments� rather than the �rst two moments are given� The method
is also a generalization of the methods of Bertsimas and Popescu ��� and Gotoh and Konno
���� in the sense that we treat multi�assets rather than a single asset� As the dimension of
the semide�nite programs increases� the solutions of the semide�nite programming problems
converge to the tight bound under suitable assumptions�

It should be noted that Bertsimas and Popescu �
� �� have also considered the multi�asset
problem for a special case� They proved that the problem can be solved in polynomial time
under the following three conditions� �� the �rst two moments are given� 
� the underlying
domain is the whole space Rm� and �� the payo	 function is a piecewise quadratic function�
If one of the conditions is not satis�ed� then the problem is NP�hard� Zuluaga and Pe�na
���� have also considered a semide�nite programming approximation problem for generalized
Tchebyche	 inequalities that includes the problem considered here as a special case� Their
method is an outer approximation of the cone of moment sequences and can be viewed as the
primal approach used by Lasserre ��
�� The method in this paper is an inner approximation
of the cone of positive polynomials associated with the technique of sums of squares� It can
be viewed as the dual approach used by Shor� Nesterov� and Parrilo �

� 
�� ����

Notation and convention� Throughout the paper� Rm denotes the m dimensional Eu�
clidean space and Rm

� �� fx � Rm j xi � �� i � �� � � � �mg is the nonnegative orthant of
Rm� Similarly� Zm denotes the set of m�tuples of integers and Zm

� �� fz � Zm j zi � �� i �
�� � � � �mg is the set of m�tuples of nonnegative integers� Let ej be the jth unit coordinate
vector� We write �X � �� if a symmetric matrix X is positive semide�nite and �X � ��
if it is positive de�nite� We will use T to denote the exercise time while K denote the
exercise price� In addition� St �� �S�t� � � � � Smt�

� denote the price of m assets at time t�
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Let i � �k�� � � � � km�
� � Zm

� � xi � xk�� � � � xkmm � pi � pk����km � In �� fi � Zm
� j

mX
j��

kj � ng�

and jInj be the number of elements in In� Then any real�coe�cient polynomial of degree k
can be written in the compact form

p�x� �
X
i�Ik

pix
i�

We will use B � Rm to denote the domain under consideration� and M��B� to denote
the nonnegative regular Borel measure on B� For any A � Rm� intA denotes the interior of
A�

The paper is organized as follows� In Section 
� we state the problem under consid�
eration� We derive its dual problem and dicuss the relation between the primal and the
dual� In Section �� we present our semide�nite programming relaxation method and prove
its convergence� Its relation to the method of Boyle and Lin �
� is discussed in Section ��
We illustrate our methods by some numerical results in Section � and conclude the paper
in Section ��

� Formulation� Primal and Dual

Let x � Rm
� be a nonnegative random vector and x�� � � � � xm be its correlated components�

Let f � Rm � R be a real valued function� Suppose we know the �rst n moments mi� i � In
of the probability measure �� We are interested in the upper bound of the call option price

�UB�P�

���
��

max
��x�

R
B
f�x�d��x��

subject to
R
B
xid��x� � mi� i � In�

� �M��B��

���

where m� � � corresponds to the probability mass constraint� If

f�x� � maxfmaxfx�� � � � � xmg �K� �g� �
�

and x�� � � � � xm are the prices of m assets at a �xed time T � then f�x� is the payo	 of a
European call on the maximum of these m assets with strike price K� When x�� � � � � xm
represent the prices of an asset at di	erent times t� � t� � � � � � tm� f�x� is the payo	 of a
discrete lookback option� Furthermore� if n � 
� then �UB�P� reduces to the case studied in
�
�� If m � �� then ��� reduces to the case of single asset at a �xed time� which was studied
in� e�g�� ��� ��� ���� Thus� model ��� is quite general�

To derive the dual of ���� let�s �rst rewrite it as

max
�

hf�x�� ��x�i

subject to hxi� ��x�i � mi� i � In�
��x� �M��B��

���

Similar to �nite linear programming� we associate a dual variable yi� i � In to the
equality constraints� then the dual can be de�ned as

�UB�D�

����
���

min
y

X
i�In

miyi

subject to
X
i�In

xiyi � f�x�� 	x � B�
���
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This is a semi�in�nite programming problem in the sense that a linear objective function
in the �nite Euclidean space RjInj is minimized subject to an in�nite number of linear
constraints� Let V �UB�P� and V �UB�D� be the optimal values of the primal and the dual
problems� respectively� which might be 
� in general� It is easy to establish the weak
duality�

Theorem ���� �Weak duality� V �UB�D�� V �UB�P��

To establish strong duality� we need some additional conditions� Let S be a set and let
cone�S� be the convex cone generated by S in the sense of convex analysis ����� Consider
the cone

MjInj�� � � cone

���
xi

f�x�

�
j i � In� x � B

��

�

�� R
B
xid��x�R

B
f�x�d��x�

�
j i � In� � �M��B�

�
���

� RjInj���

For the equality ���� see ��
� for the case that B is compact and ���� Lemma ���� for the
general case �See also ��� �����

Based on conic duality theory� Shapiro proved that ����� Proposition ������

Theorem ���� �Strong duality� Suppose that V �UB�P� is 	nite and the cone MjInj��

is closed in the standard topology of RjInj��� Then� V �UB�P�
V �UB�D� and the primal
problem has an optimal solution�

Consider also the cone of feasible moment vectors

MjInj � � cone
�
xi� j i � In x � B

	

�

�Z
B

xid��x�� i � In j � �M��B�

�
� RjInj�

Then� under the following so�called Slater condition� strong duality also holds ����� Propo�
sition ������

Theorem ���� If the moment vector m � �mi� i � In�
� satis	es

m � int �MjInj�� ���

then V �UB�P�
V �UB�D��

If the strong duality holds� then by solving the dual problem �UB�D�� the exact upper
bound of the original problem �UB�P� is obtained�

A similar relation also holds between the lower bound problem

�LB�P�

���
��

min
��x�

R
B
f�x�d��x��

subject to
R
B
xid��x� � mi� i � In�

� �M��B��

���
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and its dual

�LB�D�

����
���

max
y

X
i�In

miyi

subject to
X
i�In

xiyi � f�x�� 	x � B�
�
�

That is� the weak duality V�LB�D�� V�LB�P� holds and under suitable conditions such as
those in Theorem 
�
 and 
��� the equality holds�

� The SDP Relaxation

In the following� we restrict our domain B under consideration to B � ��� Bi�
m
i�� and the

function f to a polynomial� The case that f is a piecewise polynomial �e�g�� the maximum
function �
�� can be discussed in a similar way�

Since the constraints in �UB�D� involve nonnegative polynomials� we �rst investigate
the conditions that guarantee a polynomial to be nonnegative� A univariate polynomial

f�x� �
�nP
i��

yix
i is nonnegative on R if and only if there is a matrix A � �akj �k�j�������n� such

that �
� 

� ���

yi �
X

k�j�i

akj � i � �� � � � � 
n�

A � ��

A univariate polynomial f�x� �
nP
i��

yix
i is nonnegative on R� if and only if there is a matrix

A � �akj �k�j�������n� such that �
� 

�

yi �
X

k�j��i

akj � i � �� � � � � n�

� �
X

k�j��i��

akj � i � �� � � � � n�

A � ��

Thus� when m � �� the problem �UB�D� is equivalent to a semide�nite programming prob�
lem� which can be solved e�ciently by interior point methods �
��� If in addition there is no
duality gap between �UB�P� and �UB�D� �Theorems 
�
 and 
���� then the problem �UB�P�
is also solved ��� ����

In the multivariate case �m � 
�� the problem is generally very hard� Clearly� if a
polynomial can be written as a sum of squares �sos for short� of other polynomials� then� it
is nonnegative� The converse is not true� as shown by the following example �
��

M�x� y� z� � x�y� � x�y� � z� � �x�y�z��

where the nonnegativity follows from the arithmetic�geometric inequality and the nonexis�
tence of an sos decomposition follows from standard algebraic manipulations �
���

A polynomial p�x� is nonnegative on a semialgebraic set D � Rm de�ned by polynomial
inequalities

D �� fx � Rm j pj�x� � �� j � �� � � � � lg ���
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if it can be written as

p�x� � s��x� �

lX
i��

pi�x�si�x�� ����

where si�x�� i � �� � � � � l are all sums of squares� Same as the unconstrained case� the above
decomposition is not necessary� that is� a polynomial p�x� that is nonnegative on D may
not be represented as ����� However� Putinar �
�� proved that

Theorem ���� Suppose that the semialgebraic set D de	ned by ��� is compact and there is
a polynomial p � Rm � R

p�x� � s��x� �
lX

i��

pi�x�si�x�� 	x � Rm

such that the set
fx � Rm j p�x� � �g

is compact and the polynomials si�x�� i � �� � � � � l are all sums of squares� Then any
polynomial v�x�� strictly positive on D� can be written as

v�x� � u��x� �
lX

i��

pi�x�ui�x�� 	x � Rm

for some polynomials ui�x�� i � �� � � � � l that are all sums of squares� �

The conditions in Theorem ��� are satis�ed in many cases� For example �
���

�� There is one polynomial pj�x� such that the set fx j pj�x� � �g is compact� In this
case� we can take ui�x� � � for all i 
� j and uj�x� � ��


� All pi�x� are linear� i � �� � � � � l and D is compact�

�� For ��� programs�

Recall that our problem �UB�D� is

�UB�D�

����
���

min
y

X
i�In

miyi

subject to
X
i�In

xiyi � f�x� � �� 	x � B�
����

Based on the above discussion� a simple relaxation of our problem is

�UB�R�

�������
������

min
y

X
i�In

miyi

subject to
X
i�In

xiyi � f�x� � s��x� �
mX
i��

xis
�i�x� �

mX
i��

�Bi � xi�s
�i�x��

s��x�� sij �x� are sos� i � �� 
� j � �� � � � �m�

��
�

The following lemma shows that the sos condition is equivalent to positive semide�niteness
of a certain matrix�
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Lemma ���� The polynomial g�x� �
P�k

r�� yrx
r is sum of squares if and only if there is a

positive semide	nite matrix M � such that

g�x� � dk�x�
�Mdk�x�� ����

where

dk�x� � ��� x�� � � � � xm� x
�
�� x�x�� � � � � x

�
m� � � � � x

k
� � � � � � x

k
m�

�

is a basis vector for polynomials of m variables of degree at most k�

Proof� � �� �� Suppose that there is M � �� such that ���� holds� Let M �
P

i aiwiw
�
i be

its eigenvalue�eigenvector decomposition� Since M � �� ai � �� 	i� We have

g�x� � dk�x�
�Mdk�x� �

X
i

aidk�x�
�wiw

�
i dk�x� �

X
i

ai



�X

j

wij�dk�x��j

�
A

�

�

��� �� Suppose that g is a sum of squares� i�e��

g�x� �
X
i

�fi�x��
��

Let Fi be the vector of the coe�cients of fi�x� under the basis dk�x�� Then�

g�x� �
X
i

�F�
i dk�x��

� �
X
i

dk�x�
�FiF

�
i dk�x��

and ���� holds with M �
P

i FiF
�
i � �

Let � � ddeg�f��
e be the smallest integer larger than deg�f��
� half of the degree of f �
� � dn�
e and � � maxf�� �g� Denoting

s��x� � d��N �x�
�S�d��N�x�� s

il�x� � d��N���x�
�Sild��N���x�� i � �� 
� l � �� � � � �m�

where d��x� �� �� S� � �� and Sil � �� i � �� 
� l � �� � � � �m� by Lemma ��� we can rewrite
problem ��
� as for a certain N

�UB�D�R�N��

��������������
�������������

min
y

X
i�In

miyi

subject to
X
i�In

xiyi � f�x�

� d��N�x�
�S�d��N �x� �

mP
i��

xid��N���x�
�S�id��N���x�

�
mP
i��

�Bi � xi�d��N���x�
�S�id��N���x�

S� � �� Sjl � �� j � �� 
� l � �� � � � �m�
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Theorem ���� �UB�D�R�N�� is equivalent to the following semide�nite program

�UB�D�SDP�N��

��������������������
�������������������

min
y

X
i�In

miyi

subject to yi � fi � s�i �
mP
k��

�s�ki�ei � s�ki�ei � �
mP
k��

s�ki Bi� �i � I��N

S� � �S�ij �i�j�I��N � �
s�k �

P
i�j�I��N �i�j�k

S�ij

S�l � �S�lij �i�j�I��N�� � �
s�lk �

P
i�j�I��N���i�j�k

S�lij � l � �� � � � �m

S�l � �S�lij �i�j�I��N�� � �

s�lk �
P

i�j�I��N���i�j�k

S�lij � l � �� � � � �m�

Proof� By equating terms in �UB�D�R�N��	 we obtain the results immediately
 �

Let

F ��

�
y � RjInj j

X
i�In

yix
i � f�x� � �� �x � B

�

denote the feasible set of �UB�D� and let

FN �� fy � RjInj j �S�� Sil� such that the constraints in �UB�D�SDP�N�� holdg

denote the projection of the feasible set of �UB�D�SDP�N�� to RjInj
 Then	 from the con�
struction we have that

F� � � � � � FN � FN�� � � � � � F� ����

For any y � F and any small positive number �	 we haveX
i�In

xiyi � f�x� � � � �� �x � B�

It then follows from Putinar
s theorem �Theorem �
�� that there exists a number L such
that

y � �e� � FL�

where e� � RjInj with its �th component � and all others �
 Since � � � is arbitrary	 we
conclude that

F �
�
N

FN � ����

Theorem ���� Let VN�UB�R� be the optimal value of the problem �UB�D�SDP�N�� and
V�UB�D� be the optimal value of problem �UB�D�� then

V��UB�R� � � � � � VN �UB�R� � VN���UB�R� � � � � � V �UB�D�� ����

and

lim
N��

VN �UB�R� � V �UB�D�� ����
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Proof� The relation ���� follows from ���� and ���� follows from ����
 �

Let M � fpi�pi� � � � pik j i�� i�� � � � ik � f�� � � � � lgg be the set of all partial products of pij 	
where pij is a de�ning polynomial of D	 ij � �� � � � � l
 Without the assumptions in Theorem
�
�	 there is another representation of polynomials strictly positive on D ����	 i
e
	

p�x� � �� �x � D �� p�x� � s��x� �
X
vi�M

vi�x�s
i�x��

where i � �i�� � � � � ik�� ij � f�� � � � � lg	 such that vi�x� � pi��x� � � � pik �x�	 s
��x�	 and si�x� are

all sum of squares
 Then we still have semide�nite programming relaxation of �UB�D�


If f is not a polynomial but a �piecewise
 polynomial in the sense that we can do a

partition of the underlying domain B �
kS

j��
Cj 	 such that each Cj is a semi�algebraic set

and

f�x� � fj�x�� �x � Cj � j � �� � � � � k�

then �UB�D� can be written as

min
y

X
i�In

miyi

subject to
X
i�In

xiyi � fj�x�� �x � Cj � j � �� � � � � k�
����

and we can �rst de�ne a similar sums of squares relaxation for ���� then solve the resulted
semide�nite programs to get an upper bound of �UB�P�


In summary	 our method for solving �UB�D� solves the semide�nite programming relax�
ations �UB�D�SDP�N��	 starting withN � �
 If the solution of the semide�nite programming
problem is good enough	 then stop� otherwise	 increase N and solve the next semide�nite
programming problem to get a better approximation
 Theorem �
� guarantees that a suit�
able bound will be obtained for some N 
 As to whether the solution of a semide�nite
programming problem is good enough	 one can refer to ����


� Relation to the Method of Boyle and Lin

In this section	 we discuss the relation between our method and the semide�nite program�
ming relaxation method of Boyle and Lin ���


Boyle and Lin considered the payo� of a European call on the maximum of any number
of assets	 given the means	 variances and covariance matrix of asset prices at the time to
option maturity T 
 That is

f�x� � maxfmaxfx�� � � � � xmg �K� �g�

with strike price K
 Let B � Rm
� 	 then the problem is

�UB�P�

���
��

max
��x�

R
Rm
�

maxfmaxfx�� � � � � xmg �K� �gd��x��

subject to
R
Rm
�

xid��x� � mi� i � I��

� �M��Rm
� ��
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The dual problem then becomes

�UB�D�

����
���

min
y

X
i�I�

miyi

subject to
X
i�I�

xiyi � maxfmaxfx�� � � � � xmg �K� �g� �x � Rm
� �

Let

E� �� fx j � 	 xi 	 K� i � �� � � � �mg

and

Ei �� fx j xi � K� � 	 xj 	 xi� j 
� ig�

Then	 the dual problem can be written equivalently as

min
y

X
i�I�

miyi

s�t�
X
i�I�

xiyi � �� �x � E� ����

X
i�I�

xiyi � xj �K � �� �x � Ej � j � �� � � � �m� ����

Boyle and Lin ��� �rst relaxed the conditions in ���� and ���� to Rm	

min
y

X
i�I�

miyi

s�t�
X
i�I�

xiyi � �� �x � Rm

X
i�I�

xiyi � xj �K � �� �x � Rm j � �� � � � �m�

Since the polynomial is quadratic	 this problem is in fact equivalent to the sos problem ����

min
y

X
i�I�

miyi

s�t�
X
i�I�

xiyi is sos

X
i�I�

xiyi � xj �K is sos j � �� � � � �m�
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which	 by Lemma �
�	 is equivalent to

�BL�

�����������������������
����������������������

min
y

X
i�I�

miyi

s�t�

�
���	

y��
�
�y�� � � � �

�y�m
�
�y�� y�� � � � �

�y�m










 
 






�
�y�m

�
�y�m � � � ymm



���� � �

�
��������	

y�� �K �
�y�� � � � �

�y�j � ��� � � � �
�y�m

�
�y�� y�� � � � � � � � � � �

�y�m








 � � �

 
 
 � � �





�
�y�j � ��� �

�y�j � � � � � � � � � �
�yjm








 � � �


 
 
 � � �





�
�y�m

�
�y�m � � � � � � � � � ymm



���������
� �� j � �� � � � �m�

A simple comparison between �BL� and �UB�D�R�N�� shows that

�BL��� �UB�D�R�����

that is	 the relaxation of Boyle and Lin serves as our �rst level relaxation
 Boyle and Lin then
solve the following nonlinear semide�nite programming problem to get the upper bound�

min

mX
i��

mX
j��

aij



�ij�i�j � ��i �K �

�

�
bi���j �K �

�

�
bj�

�

s
t
 A � �aij � � ��

where bi is the ith diagonal entry of A��	 �ij is the correlation coe�cient between xi and
xj 	 �i is the standard variance and �i is mean of xi


� Numerical Results

We now illustrate the application of the proposed method to some problems of bounding the
option price on several assets
 The �rst example is an arti�cial one to check the reliability
of the method with f�x� � �x� � x��

�
 The second involves a European call option where f
is the maximum function as ���	 which is the �rst example considered in ���
 We show that
we can get better bounds with the third level relaxation than those obtained from Boyle
and Lin
s method
 The third is the two asset rainbow and the fourth is the basket option
on two currencies
 We use the sum of squares optimization toolbox	 a free Matlab software
developed by Prajna	 Papachristodoulou and Parrilo ���� based on the method of Parrilo
���� and available at http���www
cds
caltech
edu�sostools to solve �UB�D�R�N��	 in which
the semide�nite programming problem �UB�D�SDP�N�� is solved with SeDuMi version �
��
developed by Sturm ����
 The computations are done on a Pentium IV �
�G Hz PC with
���M RAM


In applying our method	 we do not need to make any assumption on the distribution
of the underlying assets
 For convenience of comparison	 however	 we assume in the fol�
lowing that the underlying assets follow a multivariate lognormal distribution
 Under this
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Table �
 Semide�nite relaxation values for � � ���� ������

� Exact Value N � � N � � N � � N � � N � �
�
� ���
���� ���
���� ���
���� ���
���� ���
���� ���
����
� ���
���� ���
���� ���
���� ���
���� ���
���� ���
����

��
� ���
���� ���
���� ���
���� ���
���� ���
���� ���
����

assumption	 the k�th moment can be computed by

mk � E

�
mY
i��

Si�T �
ki

�

�

mY
i��

Si�t�
ki exp

�
�
�
	kr � mX

i��

kiqi �
�

�

mX
i��

ki�ki � ����i �

m��X
i��

mX
j�i

kikj�ij�i�j



� �T � t�

�
A �

����

where ki � �� �� � � � � k	
Pm

i�� ki � k	 Si�t� is the price of asset i at time t	 T is the maturity	
r is the interest rate	 qi and �i are the dividend and volatility of asset i	 respectively	 and
�ij is the correlation of the assets


��� A Small Example with Known Solution

To check the reliability of our method	 we consider the case of two assets	 the underlying
domain B � R� and the payo� function f � �S� � S��

�
 In this case	 the payo� of the
derivative can be expressed as

v�t� S�� S�� �S��t�
�e�r��q���

�
���T�t� � S��t�

�e�r��q���
�
���T�t�

� �S��t�S��t�e
�r�q��q���������T�t�� ����

The riskless interest rate r is assumed to be ��	 the time to option maturity	 T 	 is one year	
the current price is S���� � �� and S���� � ��	 q� � q� � � and the volatilities are �� � ���
and �� � ���	 respectively
 Suppose that we know the �rst four moments	 that is	 n � �


The computational results are listed in Table �	 where the �rst column is the values of
�	 the second column is the exact value computed via ����	 and the third to the seventh
columns are the SDP values of the �rst to the �fth level of relaxation	 respectively


we can see from Table � that with the increase of the level of the semide�nite program�
ming relaxation	 we obtain closer and closer upper bound of the exact value
 We plot the
exact value and the computational results in Figures �	 �	 and �	 where � � ���� �� and ����	
respectively


��� An Example of Boyle and Lin

In this subsection	 we consider example � from Boyle and Lin ���	 which is a call option on the
maximum of three assets
 We use the same data
 That is	 the current price S���� � S���� �
S���� � ��	 r � ���	 q� � q� � q� � �	 �� � �� � �� � ���	 and ��� � ��� � ��� � ���

We get the means and covariance from ��	 Table ��
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Table �
 Upper bound from the semide�nite relaxation with up to �nd order moments

Strike price Exact value Upper bound from this paper Upper bound of BL
N � � N � � N � �

�� ��
�� ��
���� ��
���� ��
���� ��
��
�� ��
�� ��
���� ��
���� ��
���� ��
��
�� �
�� ��
���� ��
���� ��
���� ��
��
�� �
�� �
���� �
���� �
���� �
��
�� �
�� �
���� �
���� �
���� �
��

Table �
 Lower bound from the semide�nite relaxation with up to �nd order moments

Strike price Exact value Lower bound from this paper
N � � N � � N � �

�� ��
�� ��
���� ��
���� ��
����
�� ��
�� �
���� �
���� ��
����
�� �
�� �
���� �
���� �
����
�� �
�� �
���� �
���� �
����
�� �
�� �
���� �
���� �
����
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Table �
 Semide�nite relaxation value for two asset rainbow with up to �nd order moments

Exact Value N �� N �� N �� N �� N ��
�
�� ��
���� ��
���� ��
���� ��
���� �
����

The computational results of the upper and lower bounds are reported in Table � and
Table �	 respectively
 From Table � we can observe that the results of the third level
semide�nite relaxation are better than the upper bounds obtained in ���


Figures � and � plot the results in Table � and Table �	 respectively	 and Figure � plots
the exact value	 the upper bound and the lower bound of the third level relaxation with the
strike price
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Figure �� Computational results� Upper bound

��� Two Asset Rainbow

The two assets satisfy	 S���� � S���� � ���	 �� � �� � ���	 � � �	 q� � ln������ and q� � �

We price an at�the�money basket option S��T � � S��T �	 with K � ���	 T � ��� and the
interest rate r � ln�����
 For this basket option	 our method with the �fth level relaxation
yields a price of �������	 while Rubinstein
s quasi�binomial method yields a price of �����
and the high�order Gauss�Hermite integration method of ���� yields a price of �������
 See
Table � and Figure �



�
 DEREN HAN� XUN LI� DEFENG SUN AND JIE SUN

30 35 40 45 50
−2

0

2

4

6

8

10

12

14

16

18

Strike price

V
al

u
e

Exact Value
First Level
Second Level
Third Level

Figure �� Computational results� Lower bound

30 35 40 45
0

2 

4 

6 

8 

10

12

14

16

Strike price

V
al

u
e

Upper bound
Exact Value
Lower bound

Figure �� Computational results� Upper bound and lower bound of the third relaxation



BOUNDING OPTION PRICES OF MULTI�ASSETS ��

1 2 3 4 5
7

8

9

10

11

12

13

14

15

16

Degree N of relaxation

V
al

u
e 

o
f 

S
D

P
 b

o
u

n
d

SDP Value
Exact Value

Figure �� Computational results for two asset rainbow

Table �
 Basket call options on two currencies


Correlation Strike Rubinstein Vorst�Gentle Our Method
���� price
��� ��	��� �	���
�� �	���
�� �	���
�
��� ��	��� ���
�� ���
�� ���
�
��� ��	��� ��
�� ��
�� ��
�
� ��	��� �	���
�� �	���
�� �	���
�
� ��	��� ���
�� ���
�� ���
�
� ��	��� ���
�� ���
�� ���
�
�� ��	��� �	���
�� �	���
�� �	���
�
�� ��	��� ���
�� ���
�� ���
�
�� ��	��� ���
�� ���
�� ���
�
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��� Basket Options on Two Currencies

We consider several basket options on two currencies from ����	 wherein some present works
are reviewed and benchmarked
 The nominal underlying currency is US Dollar
 The pa�
rameters are as follows
 The interest rate in US Dollar is r � ����	 the Yen amount S�
is �	���	��� with an exchange rate of ��
����Yen	 with its interest rate playing the role
of dividend q� � ����	 and the Sterling amount S� is ��	��� with the exchange rate of
���Sterling and its interest rate playing the role of dividend q� � ���
 The volatility of
Yen expressed in US Dollar is �� � ��� and that of Sterling is �� � ���
 The maturity
time is six months	 and the correlation matrix is given by ��S�� S��
 The results are in
Table �	 where the column of Rubinstein is obtained by a simulation method	 hence could
somehow be thought of as the approximate exact value
 The column of Vorst�Gentle shows
a lowerbound in ���� and the column of our methods shows an upperbound obtained with
N � ��

� Conclusions

We have considered the problem of bounding the option prices on multi�asset	 under the
condition of knowing the �rst n moments
 We proposed to approximate the dual problem	 a
semi�in�nite programming problem	 by using the technique of sum of squares of polynomials	
which is equivalent to a semide�nite programming problem
 Under suitable conditions	 we
proved the asymptotic convergence of the method
 Some numerical results were reported	
which indicated that we can get quite good bounds after a few iterations


The method can be extended to the problem where f is a piecewise polynomial
 The
discussion is similar to the polynomial case
 However	 this is true only if the number of the
pieces is small from the numerical point of view since the scale of the resulted semide�nite
programming problem may be numerically prohibitive if the number of the pieces is large
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