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Abstract: The multidimensional assignment problem (MAP) is a combinatorial problem where elements
of a variable number of sets must be matched, in order to find a minimum cost solution. The MAP has
applications in a large number of areas, and is known to be NP-hard. We survey some of the recent work being
done in the determination of the asymptotic value of optimal solutions to the MAP, when costs are drawn
from a known distribution (e.g., exponential, uniform, or normal). Novel results, concerning the average
number of local minima for random instances of the MAP for random distributions are discussed. We also
present computational experiments with local and global search algorithms that illustrate the validity of our
results.
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Introduction

In the field of operations research, many problems require the computation of an optimal as-
signment among objects from different sets. Examples where this situation occurs abound in
the literature, including optimal resource allocation [36], multitarget tracking [37], measure-
ment of particle trajectories [38], and detection of tissue cells from a sequence of images [15].

A general way of formalizing such situations is given by the multidimensional assignment
problem (MAP). In the MAP, elements from a variable number of sets can be mutually
assigned. For each assignment a (from a set A of possible assignments), an associated cost
cq is given. A solution to the MAP is a complete assignment, i.e., each element of the first
set is assigned to exactly one element in each of the other sets. The MAP asks for a complete
assignment of elements with minimum cost.

A formal description of the MAP can be given in the following way. Let Ay,..., Aq4 be
the d sets of elements (d is also known as the dimension of the problem), and let n; be the
number of elements in set A;, i.e., n; = |A;|. Let z;, .. ;, be a binary variable stating that
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element i; of set A; is assigned to element iy, of set Ay, for k € {2,...,d}. Also, let the cost
of assignment (i1, ... ,iq4) be given by ¢;, .. i,. Then, the MAP can be formulated as
ni ng
min Z Z Ciyoiiigiy-vig
ii=1  ig=1
no ng
s.t. Z---inl...idzl foralli; =1,2,...,nq,
is=1 ig=1
ni Nk —1 MNEk41 ng
Z Z Z "'Z$i1~~~id§1
i1=1  ip_1=ligpi=1  ig=1
forallk=2,...,d—1,and i, =1,... ,ng,
ny ng—1
Z Z wil...idSI forallid:1,2,...,nd,
ii=1  ig_1=1
x;..q, € {0,1} for all iy,42,...,iqg € {1,...,n},

ny <nz <---ng,

where d is the dimension of the MAP instance.
An equivalent formulation (when ny = ng = --- = ng = n) states the MAP in terms of
permutations dy, ... ,d04_1 of numbers 1 to n. Using this notation, the MAP is equivalent to
n
61,...,%1;{1161—[" ; Ci,81(i),... ,6a_1(i)»
where II"™ is the set of all permutations of {1,...,n}. In this paper we assume n; = n, for
ie{l,...,d}.

The MAP is known to be NP-hard. This follows from a reduction of the NP-complete
problem 3-DIMENSIONAL MATCHING (3DM) [10]. The 3DM problem is to decide if there ex-
ists a stable matching of elements from three sets Ay, Ay, and Az, where specific preferences
are given for each triple of elements (a1, as, as), a1 € A, as € Ay, and a3 € Az. That is, one
wants to find a set of triples forming a match such that the preferences of all elements are
satisfied. The 3DM problem can be easily reduced to the MAP with dimension d = 3 [27].

Some special cases of the MAP are, however, known to the solvable in polynomial time.
For example, the most well known special case of the MAP (when d = 2) is the linear
assignment problem (LAP). The LAP is a classical combinatorial optimization problem
that can be solved in polynomial time by different algorithms, such as the maximum flow
algorithm [28], and the Hungarian method [17].

In this paper we are interested in studying the average behavior of instances of the
MAP, when assignment costs are drawn from random distributions such as the uniform,
normal, or exponential distributions. By average behavior, we mean the value of some
parameters, such as the expected cost of the optimal solution, and the number of local
minima, when the instances have assignment costs drawn from a known distribution. We
give in Section 2 a review of previous results related to the average behavior for diverse
combinatorial optimization problems. In Section 3 we give a survey of our results related
to the asymptotic behavior of the expected optimal value for MAP instances. In Section 4,
we present new results on the average number of local minima for the MAP. Finally, in
Section 5 we present computational experiments used to illustrate the results discussed in
previous sections. We conclude in Section 6 with some remarks and future work.
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Review of Previous Results

Studies on the average behavior of random combinatorial problems can be traced back to the
work of Beardwood, Halton and Hammersley [4] on the traveling salesman problem (TSP).
The TSP can be defined in the following way: let X;, ¢ € {1,... ,n}, be independent random
variables uniformly distributed on the unit square [0,1]?, and let L,, denote the length of
the shortest closed path (on the usual Euclidean distance) which connects each element of
{X1,X>,...,Xn}. The classic result proved by [4] is

. L,
lim — =
n—oo /N

B,

with probability one, for a finite constant 3. This becomes significant, as addressed by
Steele [39], because it is the key to Karp’s algorithm [13] for solving the TSP. Karp uses a
cellular dissection algorithm for approximating the solution of the TSP. His result may be
summarized by saying that the optimal tour through n points is sharply predictable when n
is large and the dissection method tends to give near-optimal solutions when n is large. This
points to the idea of using asymptotic techniques to develop effective solution algorithms.

Other work in this area includes studies of the minimum spanning tree [9, 41], quadratic
assignment problem (QAP) [6, 30, 32] and, most notably, studies of the linear assignment
problem (LAP) [1, 8, 14, 19, 33, 26, 31, 42]. More general work can be found in [22], where
an analysis of parameters for random graphs was performed by Lueker. A nice introduction
to probability topics in combinatorial optimization is given in [40].

In the minimum spanning tree problem, consider an undirected graph G = (V, E) defined
by the set V' of n nodes and a set E of m arcs, with a length ¢;; associated with each arc
(i,7) € E. The problem is to find a spanning tree of G, called a minimum spanning tree
(MST) that has the smallest total length Lassr of its constituent arcs [28]. If we let each
arc length ¢;; be an independent random variable drawn from the uniform distribution on
[0, 1], Frieze [9] showed that

— 1
E[Lmst] = ((3) =) 73 = 1202+ as n - oo,
k=1

This result was followed by [41], where the Tutte polynomial for a connected graph is
used to develop an exact formula for the expected value of Lj;gr in a finite graph with
uniformly distributed arc costs.

For the Steiner tree problem, which is a NP-hard variant of the MST, Bollobds et al. [5]
proved that with high probability the weight of the Steiner tree is (1 + O(1))(k — 1)(logn —
log k)/n when k = O(n) and n — oo, where n is the number of vertices in a complete graph
with edge weights chosen as i.i.d. random variables, distributed as exponential with mean
one. Here, k is number of vertices contained in the Steiner tree.

A famous result that some call the Burkard-Fincke condition relates to the QAP. The
QAP was introduced by Koopmans and Beckmann [16] in 1957 as a model for the location of
a set of indivisible economical activities. QAP applications, extensions and solution methods
are well covered in [12]. The Burkard-Fincke condition taken from [6] is stated as follows.

Proposition 1. The ratio between the objective function values of worst and optimal solu-
tions is arbitrarily close to one, with probability tending to one as the size of the problem
approaches infinity.
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Another way of describing this is by saying that for a large problem any permutation
is close to optimal. According to [6], this condition applies to all problems in the class of
combinatorial optimization problems with sum- and bottleneck objective functions. The
linear ordering problem (LOP) [7] falls into this category as well. Burkard and Fincke
suggest that this result means that very simple heuristic algorithms can yield good solutions
for very large problems.

Recent work by Aldous and Steele [2] provides part survey, part tutorial on objective
methods for understanding asymptotic characteristics of combinatorial problems. They
provide some concrete examples of the approach and point out unavoidable limitations.

One of the most explored problems in this area has been the linear assignment problem
(LAP). In the LAP we are given a matrix C"*" with coefficients ¢;; and the objective is to
find a minimum cost assignment, i.e., a permutation 7 of the numbers {1,... ,n} minimizing
the objective function ;" cir(i)-

Meézard and Parisi conjectured [23, 24] that the optimum solution z*, for instances where
costs ¢;; are drawn from the exponential or uniform distributions, approaches the asymptotic
value 72/6 when n (the size of the instance) approaches infinity. Additional empirical
evidence of the validity of this conjecture was given by Pardalos and Ramakrishnan [31],
with experiments over several very large dense LAPs solved with an interior point algorithm.

The Mézard-Parisi conjecture has been further strengthened by Coppersmith and Sorkin
[8], who claimed that the expected value of the optimum k-assignment, for a fixed matrix
of size n x m, is given by

> ;
P G Rl
Coppersmith and Sorkin also presented proofs of this claim for small values of n, m and k.

The conjecture is consistent with [23], since it can be proved that for m = n = k this is
simply

n

Z .

i 2"
=1

I\/lOI'eOVGI“,

En 1 — —W2 —

- as n — 00.
— 12 6

i

Although the proof of such conjectures concerning the MAP has eluded researchers for
many years, there has been continuous progress in the determination of upper and lower
bounds. In [42], Walkup proved an upper bound of 3 on the asymptotic value of the objective
function, when the problem size increases. This was improved later by Karp [14], who
showed that the limit is at most 2. On the other hand, Lazarus [19] proved a lower bound
of 14+1/e ~ 1.3679. More recently this result was improved by Olin [26] to the tighter value
of 1.51.

Finally, the conjectures of Mézard and Parisi have been solved in recent papers by Linus-
son and Wistlund [21] and Nair et al. [25]. Their results have also confirmed the conjecture
of Coppersmith and Sorkin.

Concerning the MAP, the study of asymptotic behavior when the size of the problem
increases is still in its early stages. Recently, however, we have made some progress on the
determination of asymptotic behavior for the expected value of optimum solutions for the
MAP [11], and on the average number of local minima, given the distribution of costs. This
work is discussed in the next two sections.
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Expected Value of Optimum Solutions for the MAP

One of the main difficulties encountered when solving instances of the MAP is the large
increase in size of instances, when the dimension parameter d increases. Instances I with
dimension d and n elements per dimension have size |I| = n?. This suggests that the
exponential computational time is inherent to the MAP, and it is also a real reason to
develop estimates of the optimal solution for the MAP without checking all assignment
costs in the instance.

It turns out that an estimate of optimum objective value for the MAP is possible, when we
consider instances whose assignment costs are drawn from a known probability distribution.
In this section we present results for the cases in which costs are taken from the uniform,
exponential and normal distributions. The results in this section were first presented in [11].

Preliminary Results

Initially, let us consider an enumeration method for MAP solution costs known as the index
tree representation. This type of representation was introduced by Pierskalla [36], and
consists of ordering the assignment costs according to the sequence of its indices. Each node
in the index tree (with the exception of the root) represents an assignment (i1,...,44). A
path in the index tree from the root to any leaf node represents a feasible solution to the
current instance.

The resulting tree is composed of n levels. At level j of the tree, all assignments with
iy = j are listed. For a node v at level j, let A;, for i € {1,...,d}, be the set of values
appearing in position i on any of the assignments in the path from the root node to v. Then,
v is parent of all nodes w in level j + 1 such that w = (j + 1, ko, ... ,kq) and k; & A;, for
ie{2,...,d}.

Given an instance of the MAP, let n be the number of elements in each set, and d
the number of sets (dimension of the instance). Let A be the set of feasible solutions to
the problem instance. We define z* as the optimum value of the MAP instance. We are
interested in computing the value of E(z*), given instances with random distributed costs.

The main tool for our study is the following proposition, which gives a lower bound on the
number of feasible solutions for a random subset of elements in A. This proposition is based
on the technique known as probabilistic method [3]. In this technique, some combinatorial
configuration is shown to exist with certainty, given the probability distribution of all possible
configurations. We investigate the distribution of nodes in an index tree representation, and
show that among a specified number of such nodes there is at least one feasible solution.

Proposition 2 ([11]). Using an index tree to represent the cost coefficients of the MAP,
randomly select o different nodes from each level of the tree and combine these nodes from
each level into set L. Then, L is expected to produce at least one feasible solution to the
MAP when

a = [nd=t/p!d=V/" and |£] = na. (1)

Recall that if Xy, X5,..., X are k independent identically distributed variables and
X(4) is the i-th smallest of these, then X(;) is called the i-th order statistic for the set
{X1,X2,...,X}. In the rest of this section, we will consider bounds for the value of the
a-th order statistic of i.i.d. variables drawn from a random distribution. This value will be
used to derive an upper bound on the cost of the optimal solution for random instances,
when n or d increases.
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Notice that in the following we assume a = n9=!/n! “= (without the ceiling operation).
The importance of determining the expected value of the a-th order statistic is described in
the next proposition.

Proposition 3 ([11]). Let z}; = nE[X(,)], where E[X (4] is the expected value of the a"
order statistic for each level of the index tree representation of the MAP. Then, zi is an
upper bound to the mean optimal solution cost of an instance of a MAP with independent
identically distributed cost coefficients.

Exponential and Uniform Distributions

The propositions presented above can be used to derive some upper bounds on the asymp-
totic optimum value for instances with assignment costs taken from the exponential or
uniform distributions. This is shown in the next theorems.

Theorem 1 ([11]). Given a d-dimensional MAP with n elements in each dimension, if the
n? cost coefficients are independent exponentially distributed random variables with mean
A>0, then z¥ -0 asn — o0 ord — 0.

Theorem 2 ([11]). Given a d-dimensional MAP with n elements in each dimension, if the
n cost coefficients are independent uniformly distributed random variables in [0,1], then

z"—=0asn— o0 ord— .

Theorem 3 ([11]). Given a d-dimensional MAP with n elements in each dimension, for
some fized n, if the n® cost coefficients are independent, uniformly distributed random vari-
ables in [a,b], then z* — na as d — .

These theorems say that for uniform and exponential distributed assignment costs, the
value of the optimal solutions for the MAP approaches zero when n or d increases. It is not
a surprise that this happens when d increases, since then the number of assignments also
increases exponentially. However, Theorems 1, and 2 imply this behavior when n increases.

There are also practical implications of these theorems for algorithms that work on data
that can be shown to follow the random distributions above. For example, if n or d is large,
it is possible to dismiss assignments with large costs, knowing that with high probability
they will not appear on the optimal solution.

Normal Distribution

Asymptotic results similar to the ones presented above can be shown, for the case where cost
values are taken from a normal distribution. This can be done using the same technique
employed in the previous section to bound the cost of the optimal solution for normal
distributed random MAPs. However, in this case a simpler bound is given by the median
order statistics (see [11]).

Theorem 4 ([11]). Given a d-dimensional MAP, for a fized d, with n elements in each
dimension, if the n? cost coefficients are independent standard normal random variables,
then z* — —o00 as n — 0.

Theorem 5 ([11]). Given a d-dimensional MAP with n elements in each dimension, for a
fized n, if the n® cost coefficients are independent standard normal random variables, then
z*¥ = —00 as d — 0.
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Expected Number of Local Minima

Another important characteristic of a combinatorial optimization problem is given by its
number of local minima. Since a problem’s global optimum must be found among the set
M of its local minima, the size M of M is one of the indicators of how difficult it is to
find the optimum solution for a combinatorial optimization problem. Clearly, the larger the
number of local minima, the harder it is to find a global solution (unless most local solutions
are also optimal).

Another important issue is related to the complexity of finding local minima in optimiza-
tion problems. Algorithms for finding a local optimum, known as local search algorithms,
typically employ a steepest descent strategy, based on greedy decisions. The computational
complexity of such algorithms typically depends on the number of local minima in the in-
stance.

In this section we discuss some types of local search techniques for the MAP, and study
the distribution of the number M of local minima for random instances, when using a
2-exchange neighborhood.

Definitions

To study local search algorithms, a first step is to establish the concept of neighborhood
of a feasible solution. Let s be a feasible solution, S the set of all feasible solutions, and
g(s) : & = 25 the set of solutions that can be found starting from s and applying a single
rule of transformation . The set g(s) is called a local neighborhood of s (more information
about local search and related concepts can be found in [28]).

Depending on the transformation 7, different local neighborhoods can be derived. A
very general type of neighborhood, applicable practically to all combinatorial optimization
problems is the k-exchange neighborhood. It consists of taking a subset B of elements
appearing in the current solution s, such that |B| = k, finding a new subset B’ # B, such
that |B'| = k, of the elements not already in the current solution, and making

s+ (s\ B)UB'".

For a concrete example, the n-exchange neighborhood for the MAP can be implemented
by selecting any one of the d sets, taking the current permutation of n elements in this set
(B), and substituting by a new permutation of n elements (B'). In this case, the number J
of neighbors for a solution is clearly equal to d(n! —1).

In the next subsection we study the expected number of local minima for the MAP, for
the case of a 2-exchange neighborhood. We consider initially the situation when n = 2,
followed by the case where assignment costs are taken from a normal distribution.

The 2-Exchange Neighborhood

A very common type of neighborhood is the so-called 2-exchange neighborhood. It has
been used for numerous problems, and its classical reference is the paper by Lin and
Kernighan [20]. A possible implementation for the MAP consists of three steps:

e selecting a value k from 1 to d,
e selecting a pair of values i,j € A, and

e interchanging the values ¢ and j in the assignments where they appear.
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Thus, this neighborhood is defined as all 2-element exchange permutations [29] of the
feasible solution. Using this definition, one can easily compute the size J of the 2-exchange
neighborhood as J = d(;’) If 2 is a feasible assignment set of the MAP and z; is the
corresponding solution, then £ is a discrete local minimum if and only if z; < z; for all
y in the neighborhood of #. As an example, consider the following feasible solution to a
MAP instance with d = 3, n = 3: {111,222,333}. There are nine neighbors of this solution.
An example of such a neighbor is {111,322,233}. The solution {111,222,333} is a local
minimum if its solution cost is less than or equal to all nine of its neighbors’ solution costs.

The Case n =2

In the special case of a MAP where n = 2, d > 3, and cost elements are i.i.d. random
variables from some cumulative distribution F', we can establish a closed form expression
for the expected number of local minima. This is based on the following proposition.

Proposition 4. In an instance of the MAP with n = 2 and with cost coefficients that are
i.1.d. random variables with continuous distribution F', all feasible solutions are i.i.d. random
variables with distribution Fy, where Fy represents the convolution operation F x F'.

Proof. Let I be an instance of MAP with n = 2. Each feasible solution for I is an assignment
ar = C15,(1),... 54_1(1)> @2 = C2.5,(2),... 54_1(2), With cost 2 = a; + az. The important feature
of such assignments is that for each fixed entry ¢; 5,(1),... 5,_,(1), there is just one remain-
ing possibility, namely ¢35, (2),... .5,_,(2), since each dimension has only two elements. This
implies that different assignments cannot share elements in the cost vector, and therefore
different assignments have independent costs z. Now, a; and ay are independent variables
from F. Thus z = a; + as is a random variable with distribution F5. O

We are now ready to prove the following theorem.

Theorem 6. Let M be the number of local minima for an instance of the MAP with cost
coefficients that are i.i.d. continuous random variables. If the instance hasn =2 and d > 3,
then E[M] =2¢"1/(d +1).

Proof. Let N be the number of feasible solutions to the MAP where N = p!4~1 = 241,
Using indicator variables, let

1, if k-th solution, k € {1,...,N}, is a local minimum,;
Y = .
0, otherwise.

Now, M can be written as the sum of indicator variables such that

N
M= ZYk.
k=1

Using the properties of expectation we can show that

N N
E[M] =Y E[Yi]=) P(}i=1), (2)
k=1 k=1

where P(Y}, = 1) is simply the probability that the cost of the k-th feasible solution is less
than or equal to any of its neighbors. As the k-th solution has J = d(g) = d neighbors,
and using the fact that the current solution and all its neighbors have the same distribution,
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then we establish that P(Y, = 1) = 1/(d 4+ 1). After making some simple substitutions
into (2) we have

E[M]=2"1/(d+1)

The Case of Normal Distributed Costs

We now discuss the more general case where n can be greater than 2. We assume however, in
this section, that assignment costs are drawn from a normal distribution. This is necessary
in order to simplify the formulas used for calculating the average number of local minima.

Let z; = f(s) represent the objective cost of the current solution s to the MAP instance.
If we allow the n? cost coefficients of the MAP to be independent standard normal random
variables, then the random variable z, is normally distributed because it is the sum of n
standard normal variables. In the 2-exchange neighborhood, a neighbor differs from the
current solution by replacing two cost coefficients in the solution. Therefore, the effect of
the transformation v (the 2-exchange operation) on s can be summarized as adding two
standard normal variables and subtracting two other standard normal variables.

As an example of neighborhood, consider the current solution, s = {111,222, 333} for a
MAP with d = 3 and n = 3. As mentioned above, there are J = dn(n—1)/2 = 9 neighbors of
this solution. The difference of costs for each of the neighbors of s, represented as s', ... ,s°
can be calculated as follows:

Zs — Zg1 = C111 + C222 — C112 — C221,
Zs — Zg2 = C111 + Ca22 — C121 — C212,
Zs — Zg8 = C111 + Ca22 — C211 — C122,
Zs — Zgt = C111 + €333 — C113 — C331,
Zs — Zs5 = C111 T €333 — C131 — €313,
Zs — Z¢6 = €111 + C333 — €311 — C133,
Zs — 27 = C222 + C333 — C223 — C332,
Zs — Zg8 = C222 + C333 — C232 — C323,
Zs — 29 = C222 + C333 — C322 — C233-
Let us denote by X; to Xy the random variables representing the difference in cost

between the current solution and its J neighbors. Given the variables Xi,..., X, where
J =dn(n —1)/2, and each X; ~ N(0,0), for i € {1,...,J}, if we want to compute

Pr(Xl Smly"' )XM SmM) ZQ(X))

then we can use the formula for the multivariate normal distribution, applied to vector
X =(X1,...,X) (from [35])

D) = exp(S(z — p)"E ! (@ — p))
- 2m)"[3

Y

where p is the vector of means of the random variables, and ¥ is the matrix of covariances.
In our case, this distribution becomes simpler, because the means are equal to zero, and
therefore p is the 0 vector. The formula then reduces to

exp(Sta’S 1 a)

P(x) =
) (2m)" ]
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Now, we want to calculate the probability of the current solution being a local optimum,
which can be described as Pr(X; < 0,...,Xy <0). This is

0 0 —1,Txn-1
@(0):/ / exp(5 057 7)
Y N (PRD]
In order to do this, we need to study the composition of the covariance matrix for the MAP,
using the 2-exchange neighborhood.

Computing Covariances

The entries in the covariance matrix ¥ are defined by the relationship (the transformation
v) between the costs of a solution s and a neighbor s’ € g(s). In the present case, this
relationship is simplified, since the difference between s and s’ is itself a normal random
variable. To analyze the value of this difference, we use the following simple lemma.

Lemma 1. If X, Y, and Z are normal distributed random variables with mean 0 and stan-
dard deviation o, then the covariance of X +Y and X + Z is equal to o2.

Proof. We know that for A, B ~ N(0,0), the following is true:
Cov(A,B) = E(AB) — E(A)E(B) = E(AB),
since E(A) and E(B) are zero. Then, if X,Y,Z ~ N(0,0),
Cov(X+Y,X+2)=E(X*+XZ+ XY +YZ)=EX?),

because X, Y, and Z are independent, so e.g., E(XY) = EX EY =0. But as X ~ N(0,1),
E(X?) =0+ p? =02, O

We can use the lemma above to compute all entries in the covariance matrix. Initially,
in the main diagonal of the matrix, all entries are the variance of the variables Xy,... , X ;.
It is known that the variance of the sum or difference of normal random variables is given
by the sum of the variance of its terms. Thus, given the selected assignments a and b and
the new assignments a’ and b', for any Xy = ¢, + ¢, — (o + ), k € {1,...,J}, we have
Var(Xy) = 4.

Now, to compute the remaining entries of the matrix X of covariances for the 2-exchange
local search, we consider the cases in which different exchanges in a permutation can occur.
For entries where the same two assignment positions 4, j are selected (there are only d — 1
of these assignment for each neighbor, because they vary only the dimension where the
exchange is made), the covariance is given by Cov(A — B, A — C'), where A is the shared
part of the assignment and B and C are the sum of two N (0, 1) random variables. According
to the previous lemma, Cov(A — B,A — C) = 0% = 2.

There are also more 2d(.J — 2) entries in each row of ¥ that share only one entry (since
there are d dimensions, 2 options for the first position and J — 2 options for the second
position to be exchanged). In this case, using the lemma above we have a covariance of
Cov(X,Y)=1.

Finally, each row of the matrix ¥ has J — 2d(J — 2) — d remaining entries where no cost
is shared, since the positions exchanged in the assignment are completely different. These
entries have covariance equal to zero.
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Example 1. Continuing with the example where n = 3 and d = 3, by using the procedure
described above we can compute the covariance matriz as the following:

29><9 —

= = = = NN
= e e e = DN S DN
— o = = = S NN
— NN R e
= =N R DN
o R NN
NN B = e e e
N B DN = e e
DN DN = e e

Computational Experiments

In the previous section, we discussed some results related to the expected value of the optimal
solution and the expected number of local minima for an instance of the MAP. One of the
questions that remain after this discussion, however, is about how fast the convergence of
these values is, when the size of the instances increase.

In this section we present results of computational experiments performed to verify the
convergence of some asymptotic results discussed in the previous sections. We used a set
of randomly generated instances of the MAP, where the costs were drawn from random
distributions such as the exponential, uniform, and normal. These values were generated in
the following way.

Values from the uniform distribution (U0, 1]) were generated using the standard rand
function form the C library (in the Windows platform). The next distribution used was
the exponential with mean one, being determined by X ~ EXP(1) = —InU, where U ~
UJ0,1]. Finally, the third distribution used was the standard normal, N (0, 1), with values
X ~ N(0,1) determined by the polar method [18] as shown in Algorithm 1.

Algorithm 1: Generate a r.v. X ~ N(0,1) by the polar method.

Output: a random variable X ~ N(0,1)
W 2
while W > 1 do
Generate U; and Us, for Uy, U, ~ U|0,1];

‘/1(—2U1—].
‘6(—2U2—1
W V24V

end

X =V /=2(mW)/W.

Expected Value of Optimal Solutions

When considering the expected value of optimal solutions, it would be interesting to deter-
mine how fast these values converge to the limit, determined on Section 3.

In order to find this rate of convergence in practice, we performed a number of ex-
periments with random instances, generated as described above. For each of the random
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distributions considered, we run an exact algorithm for the MAP, applied to varying param-
eters d and n. The algorithm employed for solving exactly the MAP is a branch-and-bound,
which uses some ideas from the index tree representation discussed in Section 3, and is fully
described in [34].

The results found after running a large number of iterations of the algorithm are sum-
marized in Figures 1 to 4. These figures show how the costs of optimal solutions for the
MAP present a fast rate of convergence, even for small values of n and d. Figure 1 shows a
comparison of convergence between the cases where d = 3 and d = 5. The curves show that
the costs follow a fast decreasing tendency, approaching the value zero when n increases.
Also, it can be observed that when the dimension increases to 5, the rate of convergence
is still greater, with the objective value being nearly equal to zero for n = 12. The figure
also shows the convergence of standard deviation. Again, the trend of decreasing standard
deviation occurs faster when the dimension increases from 3 to 5.

Figure 2 displays a similar outcome when the assignment costs are normal distributed
variables. However, in this case the objective costs goes to minus infinity. Here, for the
smaller dimension d = 3 the convergence of the standard deviation is not so pronounced,
but it appears more clearly when d = 5.

Figure 3 is a summary of these observations, with the mean optimal cost being plotted
for a varying number of elements n and dimensions d. Finally, Figure 4 shows a direct
comparison of convergence for different values of d when n increases. Notice that some
values could not be computed for large combinations of dimension—-number of elements, due
to the high computational complexity involved.

Expected Number of Local Minima

In order to evaluate some of our results concerning the expected number of local minima,
tests have been performed to determine this number for some random generated instances.
In this case, however, a numerical verification of the results is much more difficult from
the computational point of view. To determine the number of local minima one needs to
completely enumerate all solutions, which is a daunting task even for small problems.

Instead of completely enumerating solutions, we decided to run a local search algorithm
to probe for local minima in the given instances. The procedure consists of starting at a
random solution and execute iterations of the local search algorithm until a local minimum is
found. After a large number of iterations, we take the ratio between the number of solutions
explored and the number of local minima found. As we increase the number of iterations,
this value should approach the true ratio of solutions to local minima.

Some computational results of our search procedure are given in Tables 1-4. Table 1 gives
the average number of local minima for the 2-exchange neighborhood. Here, the assignment
costs are distributed according to a Normal(0,1) distribution, as discussed in Section 4.
We note that these values agree with the formulas derived in that section, when numerical
methods are used to compute the number of local minima. Table 2 gives a summary of ratios
between the number of local minima and the number of feasible solutions, when applying a
2-exchange neighborhood. Similar results are shown in Tables 3 and 4, when a 3-exchange
neighborhood is used instead.

@ Concluding Remarks

In this paper, some results obtained by the authors on the average case behavior of the
MAP are presented. Initially, a quick review of the existing literature related to asymptotic
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Figure 1: Convergence of optimal solution value for MAP instances with d = 3 (a and b),
and d = 5 (c and d), and costs drawn from EXP(1). The solution values are show in (a)
and (c), while (b) and (d) indicate the convergence of the standard deviation.
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(a) and (c), while (b) and (d) indicate the convergence of the standard deviation.
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n\d| 3 4 5 6
2 | 1.00003 1.59812  2.66971  4.56433
3 | 175544 7.05994 30.7258  164.13
4 | 4.6201 62.2495  952.73  22383.7
5 | 162187 9385  65048.8  4.75E+06
6 | 77.6563 23589.3 7.90E+06 3.48E+09

Table 1: Average number of local minima for 2-exchange neighborhood. Costs are dis-
tributed as Normal(0,1).

n\d 3 4 ) 6

0.250008 0.199765 0.166857 0.142637
0.048762 0.032685 0.023708 0.021107
0.008021 0.004503 0.002872 0.002811
0.001126 0.000543 0.000314 0.000191
0.00015 6.32E-05 2.94E-05 1.8E-05

SO W N|—

Table 2: Ratio of local minima to number of feasible solutions for a 2-exchange neighborhood.
Costs are distributed as Normal(0,1).

n\d| 3 4 5 6
3 | 1.52222 6.20525  26.617  122.507
4 | 322272 433244 672444 11179
5 | 9216 516326 347674  2.65E+06
6 | 30.793 8709.12 3.06E+06 =

Table 3: Average number of local minima for 3-exchange neighborhood. Costs are dis-
tributed as Normal(0,1).

n\d 3 4 5 6
3| 0.042284 0.028728 0.020538 0.015766
4 ]0.005595 0.003134 0.002027 0.001404
5 | 0.00064 0.000299 0.000168 0.000106
6 | 5.94E-05 2.33E-05 1.14E-05 -

Table 4: Ratio of local minima to number of feasible solutions for a 3-exchange neighborhood.
Costs are distributed as Normal(0,1).
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features of combinatorial optimization problems is shown.

Then, we survey some of the recent results obtained by the authors on the average case
behavior of optimal solution costs for the MAP. The conclusion is that, when the size of
the MAP instances approach oo, if the assignment costs are exponential or uniform(0, 1)
random variables, then the optimum value approaches zero. The optimum value approaches
—oo when the assignment costs are normal(0, 1) random variables.

We presented novel results on the asymptotic number of local minima occurring in ran-
dom MAP instances, when n = 2, and when costs are taken from the normal distribution.
We described techniques to calculate the number of local minima, which include computing
the covariance matrix for the random variables representing the costs of 2-exchanges in a
local search algorithm.

These studies provide an insight into the problem intrinsic computational difficulty and
can be used to understand the performance of certain algorithms in practice for different
problem data. Future work on this area include, for example, the determination of improved
methods for computing local minima for the MAP. The methods discussed in this paper could
also be extended to related combinatorial problems such as the linear ordering problem.
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