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Abstract� The multidimensional assignment problem �MAP� is a combinatorial problem where elements
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� Introduction

In the �eld of operations research� many problems require the computation of an optimal as�
signment among objects from di�erent sets� Examples where this situation occurs abound in
the literature� including optimal resource allocation ����� multitarget tracking ��	�� measure�
ment of particle trajectories ��
�� and detection of tissue cells from a sequence of images �����

A general way of formalizing such situations is given by the multidimensional assignment
problem MAP�� In the MAP� elements from a variable number of sets can be mutually
assigned� For each assignment a from a set A of possible assignments�� an associated cost
ca is given� A solution to the MAP is a complete assignment� i�e�� each element of the �rst
set is assigned to exactly one element in each of the other sets� The MAP asks for a complete
assignment of elements with minimum cost�

A formal description of the MAP can be given in the following way� Let A�� � � � � Ad be
the d sets of elements d is also known as the dimension of the problem�� and let ni be the
number of elements in set Ai� i�e�� ni � jAij� Let xi����� �id be a binary variable stating that
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element i� of set A� is assigned to element ik of set Ak � for k � f�� � � � � dg� Also� let the cost
of assignment i�� � � � � id� be given by ci����� �id � Then� the MAP can be formulated as

min

n�X

i���

� � �
ndX

id��

ci����idxi� ���id

s�t�

n�X

i���

� � �
ndX

id��

xi����id � � for all i� � �� �� � � � � n��

n�X

i���

� � �
nk��X

ik����

nk��X

ik����

� � �
ndX

id��

xi����id � �

for all k � �� � � � � d� �� and ik � �� � � � � nk�
n�X

i���

� � �
nd��X

id����

xi����id � � for all id � �� �� � � � � nd�

xi����id � f�� �g for all i�� i�� � � � � id � f�� � � � � ng�
n� � n� � � � �nd�

where d is the dimension of the MAP instance�
An equivalent formulation when n� � n� � � � � � nd � n� states the MAP in terms of

permutations ��� � � � � �d�� of numbers � to n� Using this notation� the MAP is equivalent to

min
������ ��d����n

nX

i��

ci����i����� ��d���i��

where �n is the set of all permutations of f�� � � � � ng� In this paper we assume ni � n� for
i � f�� � � � � dg�

The MAP is known to be NP�hard� This follows from a reduction of the NP�complete
problem ��dimensional matching �DM� ����� The �DM problem is to decide if there ex�
ists a stable matching of elements from three sets A�� A�� and A�� where speci�c preferences
are given for each triple of elements a�� a�� a��� a� � A�� a� � A�� and a� � A�� That is� one
wants to �nd a set of triples forming a match such that the preferences of all elements are
satis�ed� The �DM problem can be easily reduced to the MAP with dimension d � � ��	��

Some special cases of the MAP are� however� known to the solvable in polynomial time�
For example� the most well known special case of the MAP when d � �� is the linear
assignment problem LAP�� The LAP is a classical combinatorial optimization problem
that can be solved in polynomial time by di�erent algorithms� such as the maximum �ow
algorithm ��
�� and the Hungarian method ��	��

In this paper we are interested in studying the average behavior of instances of the
MAP� when assignment costs are drawn from random distributions such as the uniform�
normal� or exponential distributions� By average behavior� we mean the value of some
parameters� such as the expected cost of the optimal solution� and the number of local
minima� when the instances have assignment costs drawn from a known distribution� We
give in Section � a review of previous results related to the average behavior for diverse
combinatorial optimization problems� In Section � we give a survey of our results related
to the asymptotic behavior of the expected optimal value for MAP instances� In Section ��
we present new results on the average number of local minima for the MAP� Finally� in
Section � we present computational experiments used to illustrate the results discussed in
previous sections� We conclude in Section � with some remarks and future work�
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� Review of Previous Results

Studies on the average behavior of random combinatorial problems can be traced back to the
work of Beardwood� Halton and Hammersley ��� on the traveling salesman problem TSP��
The TSP can be de�ned in the following way� let Xi� i � f�� � � � � ng� be independent random
variables uniformly distributed on the unit square ��� ���� and let Ln denote the length of
the shortest closed path on the usual Euclidean distance� which connects each element of
fX�� X�� � � � � Xng� The classic result proved by ��� is

lim
n��

Lnp
n
� ��

with probability one� for a �nite constant �� This becomes signi�cant� as addressed by
Steele ����� because it is the key to Karp�s algorithm ���� for solving the TSP� Karp uses a
cellular dissection algorithm for approximating the solution of the TSP� His result may be
summarized by saying that the optimal tour through n points is sharply predictable when n
is large and the dissection method tends to give near�optimal solutions when n is large� This
points to the idea of using asymptotic techniques to develop e�ective solution algorithms�

Other work in this area includes studies of the minimum spanning tree ��� ���� quadratic
assignment problem QAP� ��� ��� ��� and� most notably� studies of the linear assignment
problem LAP� ��� 
� ��� ��� ��� ��� ��� ���� More general work can be found in ����� where
an analysis of parameters for random graphs was performed by Lueker� A nice introduction
to probability topics in combinatorial optimization is given in �����

In the minimum spanning tree problem� consider an undirected graph G � V�E� de�ned
by the set V of n nodes and a set E of m arcs� with a length cij associated with each arc
i� j� � E� The problem is to �nd a spanning tree of G� called a minimum spanning tree
MST� that has the smallest total length LMST of its constituent arcs ��
�� If we let each
arc length cij be an independent random variable drawn from the uniform distribution on
��� ��� Frieze ��� showed that

E�LMST �� ��� �

�X

k��

�

k�
� ����� � � � as n���

This result was followed by ����� where the Tutte polynomial for a connected graph is
used to develop an exact formula for the expected value of LMST in a �nite graph with
uniformly distributed arc costs�

For the Steiner tree problem� which is a NP�hard variant of the MST� Bollob�as et al� ���
proved that with high probability the weight of the Steiner tree is ��O���k� ��logn�
log k��n when k � On� and n��� where n is the number of vertices in a complete graph
with edge weights chosen as i�i�d� random variables� distributed as exponential with mean
one� Here� k is number of vertices contained in the Steiner tree�

A famous result that some call the Burkard�Fincke condition relates to the QAP� The
QAP was introduced by Koopmans and Beckmann ���� in ���	 as a model for the location of
a set of indivisible economical activities� QAP applications� extensions and solution methods
are well covered in ����� The Burkard�Fincke condition taken from ��� is stated as follows�

Proposition �� The ratio between the objective function values of worst and optimal solu�

tions is arbitrarily close to one� with probability tending to one as the size of the problem

approaches in�nity�
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Another way of describing this is by saying that for a large problem any permutation
is close to optimal� According to ���� this condition applies to all problems in the class of
combinatorial optimization problems with sum� and bottleneck objective functions� The
linear ordering problem LOP� �	� falls into this category as well� Burkard and Fincke
suggest that this result means that very simple heuristic algorithms can yield good solutions
for very large problems�

Recent work by Aldous and Steele ��� provides part survey� part tutorial on objective
methods for understanding asymptotic characteristics of combinatorial problems� They
provide some concrete examples of the approach and point out unavoidable limitations�

One of the most explored problems in this area has been the linear assignment problem
LAP�� In the LAP we are given a matrix Cn�n with coe�cients cij and the objective is to
�nd a minimum cost assignment� i�e�� a permutation � of the numbers f�� � � � � ng minimizing
the objective function

Pn
i�� ci��i��

M�ezard and Parisi conjectured ���� ��� that the optimum solution z�� for instances where
costs cij are drawn from the exponential or uniform distributions� approaches the asymptotic
value ���� when n the size of the instance� approaches in�nity� Additional empirical
evidence of the validity of this conjecture was given by Pardalos and Ramakrishnan �����
with experiments over several very large dense LAPs solved with an interior point algorithm�

The M�ezard�Parisi conjecture has been further strengthened by Coppersmith and Sorkin
�
�� who claimed that the expected value of the optimum k�assignment� for a �xed matrix
of size n�m� is given by

X

i�j��� i�j�k

�

m� i�n� j�
�

Coppersmith and Sorkin also presented proofs of this claim for small values of n� m and k�
The conjecture is consistent with ����� since it can be proved that for m � n � k this is
simply

nX

i��

�

i�
�

Moreover�

nX

i��

�

i�
� ��

�
as n���

Although the proof of such conjectures concerning the MAP has eluded researchers for
many years� there has been continuous progress in the determination of upper and lower
bounds� In ����� Walkup proved an upper bound of � on the asymptotic value of the objective
function� when the problem size increases� This was improved later by Karp ����� who
showed that the limit is at most �� On the other hand� Lazarus ���� proved a lower bound
of ����e � ����	�� More recently this result was improved by Olin ���� to the tighter value
of �����

Finally� the conjectures of M�ezard and Parisi have been solved in recent papers by Linus�
son and W�astlund ���� and Nair et al� ����� Their results have also con�rmed the conjecture
of Coppersmith and Sorkin�

Concerning the MAP� the study of asymptotic behavior when the size of the problem
increases is still in its early stages� Recently� however� we have made some progress on the
determination of asymptotic behavior for the expected value of optimum solutions for the
MAP ����� and on the average number of local minima� given the distribution of costs� This
work is discussed in the next two sections�
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� Expected Value of Optimum Solutions for the MAP

One of the main di�culties encountered when solving instances of the MAP is the large
increase in size of instances� when the dimension parameter d increases� Instances I with
dimension d and n elements per dimension have size jI j � nd� This suggests that the
exponential computational time is inherent to the MAP� and it is also a real reason to
develop estimates of the optimal solution for the MAP without checking all assignment
costs in the instance�

It turns out that an estimate of optimum objective value for the MAP is possible� when we
consider instances whose assignment costs are drawn from a known probability distribution�
In this section we present results for the cases in which costs are taken from the uniform�
exponential and normal distributions� The results in this section were �rst presented in �����

��� Preliminary Results

Initially� let us consider an enumeration method for MAP solution costs known as the index
tree representation� This type of representation was introduced by Pierskalla ����� and
consists of ordering the assignment costs according to the sequence of its indices� Each node
in the index tree with the exception of the root� represents an assignment i�� � � � � id�� A
path in the index tree from the root to any leaf node represents a feasible solution to the
current instance�

The resulting tree is composed of n levels� At level j of the tree� all assignments with
i� � j are listed� For a node v at level j� let Ai� for i � f�� � � � � dg� be the set of values
appearing in position i on any of the assignments in the path from the root node to v� Then�
v is parent of all nodes w in level j � � such that w � j � �� k�� � � � � kd� and ki �� Ai� for
i � f�� � � � � dg�

Given an instance of the MAP� let n be the number of elements in each set� and d
the number of sets dimension of the instance�� Let A be the set of feasible solutions to
the problem instance� We de�ne z� as the optimum value of the MAP instance� We are
interested in computing the value of Ez��� given instances with random distributed costs�

The main tool for our study is the following proposition� which gives a lower bound on the
number of feasible solutions for a random subset of elements in A� This proposition is based
on the technique known as probabilistic method ���� In this technique� some combinatorial
con�guration is shown to exist with certainty� given the probability distribution of all possible
con�gurations� We investigate the distribution of nodes in an index tree representation� and
show that among a speci�ed number of such nodes there is at least one feasible solution�

Proposition � ������� Using an index tree to represent the cost coe�cients of the MAP�

randomly select � di�erent nodes from each level of the tree and combine these nodes from

each level into set L� Then� L is expected to produce at least one feasible solution to the

MAP when

� � dnd���n� �d����ne and jLj � n�� ��

Recall that if X�� X�� � � � � Xk are k independent identically distributed variables and
X�i� is the i�th smallest of these� then X�i� is called the i�th order statistic for the set
fX�� X�� � � � � Xkg� In the rest of this section� we will consider bounds for the value of the
��th order statistic of i�i�d� variables drawn from a random distribution� This value will be
used to derive an upper bound on the cost of the optimal solution for random instances�
when n or d increases�
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Notice that in the following we assume � � nd���n�
d��

n without the ceiling operation��
The importance of determining the expected value of the ��th order statistic is described in
the next proposition�

Proposition � ������� Let z�u � nE�X����� where E�X���� is the expected value of the �th

order statistic for each level of the index tree representation of the MAP� Then� z�u is an

upper bound to the mean optimal solution cost of an instance of a MAP with independent

identically distributed cost coe�cients�

��� Exponential and Uniform Distributions

The propositions presented above can be used to derive some upper bounds on the asymp�
totic optimum value for instances with assignment costs taken from the exponential or
uniform distributions� This is shown in the next theorems�

Theorem � ������� Given a d�dimensional MAP with n elements in each dimension� if the

nd cost coe�cients are independent exponentially distributed random variables with mean

� 	 �� then z� � � as n�� or d���

Theorem � ������� Given a d�dimensional MAP with n elements in each dimension� if the

nd cost coe�cients are independent uniformly distributed random variables in ��� ��� then
z� � � as n�� or d���

Theorem � ������� Given a d�dimensional MAP with n elements in each dimension� for

some �xed n� if the nd cost coe�cients are independent� uniformly distributed random vari�

ables in �a� b�� then z� � na as d���

These theorems say that for uniform and exponential distributed assignment costs� the
value of the optimal solutions for the MAP approaches zero when n or d increases� It is not
a surprise that this happens when d increases� since then the number of assignments also
increases exponentially� However� Theorems �� and � imply this behavior when n increases�

There are also practical implications of these theorems for algorithms that work on data
that can be shown to follow the random distributions above� For example� if n or d is large�
it is possible to dismiss assignments with large costs� knowing that with high probability
they will not appear on the optimal solution�

��� Normal Distribution

Asymptotic results similar to the ones presented above can be shown� for the case where cost
values are taken from a normal distribution� This can be done using the same technique
employed in the previous section to bound the cost of the optimal solution for normal
distributed random MAPs� However� in this case a simpler bound is given by the median
order statistics see ������

Theorem � ������� Given a d�dimensional MAP� for a �xed d� with n elements in each

dimension� if the nd cost coe�cients are independent standard normal random variables�

then z� � �� as n���

Theorem 	 ������� Given a d�dimensional MAP with n elements in each dimension� for a

�xed n� if the nd cost coe�cients are independent standard normal random variables� then

z� � �� as d���
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� Expected Number of Local Minima

Another important characteristic of a combinatorial optimization problem is given by its
number of local minima� Since a problem�s global optimum must be found among the set
M of its local minima� the size M of M is one of the indicators of how di�cult it is to
�nd the optimum solution for a combinatorial optimization problem� Clearly� the larger the
number of local minima� the harder it is to �nd a global solution unless most local solutions
are also optimal��

Another important issue is related to the complexity of �nding local minima in optimiza�
tion problems� Algorithms for �nding a local optimum� known as local search algorithms�
typically employ a steepest descent strategy� based on greedy decisions� The computational
complexity of such algorithms typically depends on the number of local minima in the in�
stance�

In this section we discuss some types of local search techniques for the MAP� and study
the distribution of the number M of local minima for random instances� when using a
��exchange neighborhood�

��� De
nitions

To study local search algorithms� a �rst step is to establish the concept of neighborhood
of a feasible solution� Let s be a feasible solution� S the set of all feasible solutions� and
gs� � S � �S the set of solutions that can be found starting from s and applying a single
rule of transformation 
� The set gs� is called a local neighborhood of s more information
about local search and related concepts can be found in ��
���

Depending on the transformation 
� di�erent local neighborhoods can be derived� A
very general type of neighborhood� applicable practically to all combinatorial optimization
problems is the k�exchange neighborhood� It consists of taking a subset B of elements
appearing in the current solution s� such that jBj � k� �nding a new subset B� �� B� such
that jB�j � k� of the elements not already in the current solution� and making

s	 s nB� 
 B��

For a concrete example� the n�exchange neighborhood for the MAP can be implemented
by selecting any one of the d sets� taking the current permutation of n elements in this set
B�� and substituting by a new permutation of n elements B��� In this case� the number J
of neighbors for a solution is clearly equal to dn�� ���

In the next subsection we study the expected number of local minima for the MAP� for
the case of a ��exchange neighborhood� We consider initially the situation when n � ��
followed by the case where assignment costs are taken from a normal distribution�

��� The ��Exchange Neighborhood

A very common type of neighborhood is the so�called ��exchange neighborhood� It has
been used for numerous problems� and its classical reference is the paper by Lin and
Kernighan ����� A possible implementation for the MAP consists of three steps�

� selecting a value k from � to d�

� selecting a pair of values i� j � Ak� and

� interchanging the values i and j in the assignments where they appear�
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Thus� this neighborhood is de�ned as all ��element exchange permutations ���� of the
feasible solution� Using this de�nition� one can easily compute the size J of the ��exchange
neighborhood as J � d

�
n

�

�
� If 	x is a feasible assignment set of the MAP and z�x is the

corresponding solution� then 	x is a discrete local minimum if and only if z�x � z�y for all
	y in the neighborhood of 	x� As an example� consider the following feasible solution to a
MAP instance with d � 
� n � 
� f���� ���� 


g� There are nine neighbors of this solution�
An example of such a neighbor is f���� 
��� �

g� The solution f���� ���� 


g is a local
minimum if its solution cost is less than or equal to all nine of its neighbors solution costs�

����� The Case n � �

In the special case of a MAP where n � �� d � 
� and cost elements are i�i�d� random
variables from some cumulative distribution F � we can establish a closed form expression
for the expected number of local minima� This is based on the following proposition�

Proposition �� In an instance of the MAP with n � � and with cost coe�cients that are

i�i�d� random variables with continuous distribution F � all feasible solutions are i�i�d� random
variables with distribution F�� where F� represents the convolution operation F � F �

Proof� Let I be an instance of MAP with n � �� Each feasible solution for I is an assignment
a� � c����������� ��d������ a� � c����������� ��d������ with cost z � a� � a�� The important feature
of such assignments is that for each �xed entry c����������� ��d������ there is just one remain�
ing possibility� namely c����������� ��d������ since each dimension has only two elements� This
implies that di�erent assignments cannot share elements in the cost vector� and therefore
di�erent assignments have independent costs z� Now� a� and a� are independent variables
from F � Thus z � a� � a� is a random variable with distribution F��

We are now ready to prove the following theorem�

Theorem �� Let M be the number of local minima for an instance of the MAP with cost

coe�cients that are i�i�d� continuous random variables� If the instance has n � � and d � 
�
then E�M � � �d����d� ���

Proof� Let N be the number of feasible solutions to the MAP where N � n� d�� � �d���
Using indicator variables� let

Yk �

�
�� if k�th solution� k � f�� � � � � Ng� is a local minimum�
�� otherwise�

Now� M can be written as the sum of indicator variables such that

M �

NX
k��

Yk�

Using the properties of expectation we can show that

E�M � �

NX
k��

E�Yk� �

NX
k��

P �Yk � ��� ���

where P �Yk � �� is simply the probability that the cost of the k�th feasible solution is less
than or equal to any of its neighbors� As the k�th solution has J � d

�
n

�

�
� d neighbors�

and using the fact that the current solution and all its neighbors have the same distribution�
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then we establish that P �Yk � �� � ���d � ��� After making some simple substitutions
into ��� we have

E�M � � �d����d� ��

����� The Case of Normal Distributed Costs

We now discuss the more general case where n can be greater than �� We assume however� in
this section� that assignment costs are drawn from a normal distribution� This is necessary
in order to simplify the formulas used for calculating the average number of local minima�

Let zs � f�s� represent the objective cost of the current solution s to the MAP instance�
If we allow the nd cost coe�cients of the MAP to be independent standard normal random
variables� then the random variable zs is normally distributed because it is the sum of n
standard normal variables� In the ��exchange neighborhood� a neighbor di�ers from the
current solution by replacing two cost coe�cients in the solution� Therefore� the e�ect of
the transformation � �the ��exchange operation� on s can be summarized as adding two
standard normal variables and subtracting two other standard normal variables�

As an example of neighborhood� consider the current solution� s � f���� ���� 


g for a
MAP with d � 
 and n � 
� As mentioned above� there are J � dn�n����� � � neighbors of
this solution� The di�erence of costs for each of the neighbors of s� represented as s�� � � � � s�

can be calculated as follows�

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

zs � zs� � c��� � c��� � c��� � c����

Let us denote by X� to XJ the random variables representing the di�erence in cost
between the current solution and its J neighbors� Given the variables X�� � � � � XJ � where
J � dn�n� ����� and each Xi � N��� ��� for i � f�� � � � � Jg� if we want to compute

Pr�X� � x�� � � � � XM � xM � � ��X��

then we can use the formula for the multivariate normal distribution� applied to vector
X � �X�� � � � � XJ � �from �
���

��x� �
exp���� �x� ��T����x� ���p

����nj�j
�

where � is the vector of means of the random variables� and � is the matrix of covariances�
In our case� this distribution becomes simpler� because the means are equal to zero� and

therefore � is the �� vector� The formula then reduces to

��x� �
exp���� xT���x�p

����nj�j
�
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Now� we want to calculate the probability of the current solution being a local optimum�
which can be described as Pr�X� � �� � � � � XJ � ��� This is

���� �

Z �

��

� � �

Z �

��

exp���� xT���x�p
����nj�j

�

In order to do this� we need to study the composition of the covariance matrix for the MAP�
using the ��exchange neighborhood�

����� Computing Covariances

The entries in the covariance matrix � are de�ned by the relationship �the transformation
�� between the costs of a solution s and a neighbor s� � g�s�� In the present case� this
relationship is simpli�ed� since the di�erence between s and s� is itself a normal random
variable� To analyze the value of this di�erence� we use the following simple lemma�

Lemma �� If X� Y � and Z are normal distributed random variables with mean � and stan�

dard deviation �� then the covariance of X � Y and X � Z is equal to ���

Proof� We know that for A�B � N��� ��� the following is true�

Cov�A�B� � E�AB� �E�A�E�B� � E�AB��

since E�A� and E�B� are zero� Then� if X�Y� Z � N��� ���

Cov�X � Y�X � Z� � E�X� �XZ �XY � Y Z� � E�X���

because X � Y � and Z are independent� so e�g�� E�XY � � EX EY � �� But as X � N��� ���
E�X�� � �� � �� � ���

We can use the lemma above to compute all entries in the covariance matrix� Initially�
in the main diagonal of the matrix� all entries are the variance of the variables X�� � � � � XJ �
It is known that the variance of the sum or di�erence of normal random variables is given
by the sum of the variance of its terms� Thus� given the selected assignments a and b and
the new assignments a� and b�� for any Xk � ca � cb � �ca� � cb��� k � f�� � � � � Jg� we have
V ar�Xk� � ��

Now� to compute the remaining entries of the matrix � of covariances for the ��exchange
local search� we consider the cases in which di�erent exchanges in a permutation can occur�
For entries where the same two assignment positions i� j are selected �there are only d � �
of these assignment for each neighbor� because they vary only the dimension where the
exchange is made�� the covariance is given by Cov�A � B�A � C�� where A is the shared
part of the assignment and B and C are the sum of two N��� �� random variables� According
to the previous lemma� Cov�A �B�A� C� � ��A � ��

There are also more �d�J � �� entries in each row of � that share only one entry �since
there are d dimensions� � options for the �rst position and J � � options for the second
position to be exchanged�� In this case� using the lemma above we have a covariance of
Cov�X�Y � � ��

Finally� each row of the matrix � has J � �d�J � ��� d remaining entries where no cost
is shared� since the positions exchanged in the assignment are completely di�erent� These
entries have covariance equal to zero�
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Example �� Continuing with the example where n � 
 and d � 
� by using the procedure

described above we can compute the covariance matrix as the following�

���� �

�
�������������

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

�
�������������

� Computational Experiments

In the previous section� we discussed some results related to the expected value of the optimal
solution and the expected number of local minima for an instance of the MAP� One of the
questions that remain after this discussion� however� is about how fast the convergence of
these values is� when the size of the instances increase�

In this section we present results of computational experiments performed to verify the
convergence of some asymptotic results discussed in the previous sections� We used a set
of randomly generated instances of the MAP� where the costs were drawn from random
distributions such as the exponential� uniform� and normal� These values were generated in
the following way�

Values from the uniform distribution �U ��� ��� were generated using the standard rand

function form the C library �in the Windows platform�� The next distribution used was
the exponential with mean one� being determined by X � EXP��� � � lnU � where U �
U ��� ��� Finally� the third distribution used was the standard normal� N��� ��� with values
X � N��� �� determined by the polar method ���� as shown in Algorithm ��

Algorithm �� Generate a r�v� X � N��� �� by the polar method�

Output� a random variable X � N��� ��
W � �
while W 	 � do

Generate U� and U�� for U�� U� � U ��� ���
V� � �U� � �
V� � �U� � �
W � V �

� � V �
�

end
X � V�

p
���lnW ��W �

��� Expected Value of Optimal Solutions

When considering the expected value of optimal solutions� it would be interesting to deter�
mine how fast these values converge to the limit� determined on Section 
�

In order to �nd this rate of convergence in practice� we performed a number of ex�
periments with random instances� generated as described above� For each of the random
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distributions considered� we run an exact algorithm for the MAP� applied to varying param�
eters d and n� The algorithm employed for solving exactly the MAP is a branch�and�bound�
which uses some ideas from the index tree representation discussed in Section 
� and is fully
described in �
���

The results found after running a large number of iterations of the algorithm are sum�
marized in Figures � to �� These �gures show how the costs of optimal solutions for the
MAP present a fast rate of convergence� even for small values of n and d� Figure � shows a
comparison of convergence between the cases where d � 
 and d � �� The curves show that
the costs follow a fast decreasing tendency� approaching the value zero when n increases�
Also� it can be observed that when the dimension increases to �� the rate of convergence
is still greater� with the objective value being nearly equal to zero for n � ��� The �gure
also shows the convergence of standard deviation� Again� the trend of decreasing standard
deviation occurs faster when the dimension increases from 
 to ��

Figure � displays a similar outcome when the assignment costs are normal distributed
variables� However� in this case the objective costs goes to minus in�nity� Here� for the
smaller dimension d � 
 the convergence of the standard deviation is not so pronounced�
but it appears more clearly when d � ��

Figure 
 is a summary of these observations� with the mean optimal cost being plotted
for a varying number of elements n and dimensions d� Finally� Figure � shows a direct
comparison of convergence for di�erent values of d when n increases� Notice that some
values could not be computed for large combinations of dimension�number of elements� due
to the high computational complexity involved�

��� Expected Number of Local Minima

In order to evaluate some of our results concerning the expected number of local minima�
tests have been performed to determine this number for some random generated instances�
In this case� however� a numerical veri�cation of the results is much more di�cult from
the computational point of view� To determine the number of local minima one needs to
completely enumerate all solutions� which is a daunting task even for small problems�

Instead of completely enumerating solutions� we decided to run a local search algorithm
to probe for local minima in the given instances� The procedure consists of starting at a
random solution and execute iterations of the local search algorithm until a local minimum is
found� After a large number of iterations� we take the ratio between the number of solutions
explored and the number of local minima found� As we increase the number of iterations�
this value should approach the true ratio of solutions to local minima�

Some computational results of our search procedure are given in Tables ���� Table � gives
the average number of local minima for the ��exchange neighborhood� Here� the assignment
costs are distributed according to a Normal����� distribution� as discussed in Section ��
We note that these values agree with the formulas derived in that section� when numerical
methods are used to compute the number of local minima� Table � gives a summary of ratios
between the number of local minima and the number of feasible solutions� when applying a
��exchange neighborhood� Similar results are shown in Tables 
 and �� when a 
�exchange
neighborhood is used instead�

� Concluding Remarks

In this paper� some results obtained by the authors on the average case behavior of the
MAP are presented� Initially� a quick review of the existing literature related to asymptotic
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Figure �� Convergence of optimal solution value for MAP instances with d � 
 �a and b��
and d � � �c and d�� and costs drawn from EXP���� The solution values are show in �a�
and �c�� while �b� and �d� indicate the convergence of the standard deviation�
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Figure �� Convergence of optimal solution value for MAP instances with d � 
 �a and b��
and d � � �c and d�� and costs drawn from Normal������ The solution values are show in
�a� and �c�� while �b� and �d� indicate the convergence of the standard deviation�
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features of combinatorial optimization problems is shown�

Then� we survey some of the recent results obtained by the authors on the average case
behavior of optimal solution costs for the MAP� The conclusion is that� when the size of
the MAP instances approach �� if the assignment costs are exponential or uniform��� ��
random variables� then the optimum value approaches zero� The optimum value approaches
�� when the assignment costs are normal��� �� random variables�

We presented novel results on the asymptotic number of local minima occurring in ran�
dom MAP instances� when n � �� and when costs are taken from the normal distribution�
We described techniques to calculate the number of local minima� which include computing
the covariance matrix for the random variables representing the costs of ��exchanges in a
local search algorithm�

These studies provide an insight into the problem intrinsic computational di�culty and
can be used to understand the performance of certain algorithms in practice for di�erent
problem data� Future work on this area include� for example� the determination of improved
methods for computing local minima for the MAP� The methods discussed in this paper could
also be extended to related combinatorial problems such as the linear ordering problem�
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