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Abstract: This paper establishes some sufficient conditions for finite termination of the proximal point
method and the subgradient method. It is shown that the notion of boundedly weak sharp minima is
sufficient for finite termination of these descent methods under mild conditions.
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Introduction
Consider the convex minimization problem.
(P) minimize f(z) s.t. z € R",

where f is a proper closed convex function on IR"™. We assume throughout that the optimal
solution set S of (P) is non-empty, and denote the optimal value of (P) by fimin-

Among many descent methods to solve (P), the proximal point (resolvent) method gen-
erates, with a given z1, an iterative sequence {z;} as follows:

Tit1 = Ti — Niy1T;,q, (1)

where z7,, € 0f(2;11), the step length A; > 0, and

) 1
Tip1 = argmingc zn § f(z) + |z —z]? ¢ .
2Xit1

Since the seminal work of [5], the proximal point method has been the subject of much
attention. In [5], Rockafellar has shown the proximal point method exhibits the finite
termination property when either 0 € int (0f(z)) [5, Theorem 3] for some Z € S or f
is a polyhedral convex function [5, Proposition 8], which includes linear programming as a
special case. In [3], Ferris generalized Rockafellar’s result on the finite termination property
under the assumption that S is a set of weak sharp minima for f (see the formal definition
in the next section).
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In this paper, we study conditions under which the finite termination property of descent
methods holds. Our approach is quite different from that used in [3]. Specifically, by
establishing a bound on the sum of step lengths first, we show that boundedly weak sharp
minimality is sufficient for finite termination of the proximal point method; we also show
that the proximal point method will find an e-optimal solution in finitely many iterations
under only the assumption that S is non-empty. Furthermore, we extend our analysis on
finite termination to subgradient methods.

Throughout this paper, the notation we will use is the same as that in Rockafellar [4].

Proximal Point Method

We begin with a lemma, which states that the magnitude of any subgradient from the set
Of(y) with y € S, is at least as large as the rise “f(y) — fmin” divided by the run “dist(y, S).”

Lemma 2.1 Suppose that y € dom f\S. Then

>
Iyl =

Yy* € 0f(y), (2)

where ||y*|| is the Euclidean norm of y*, and dist(y,S) denotes the Euclidean distance
between y and S.

Proof. Let IIg(y) be the projection of y onto S. Then for any y* € 9f(y), we have, by the
convexity of f,

fmin = f(y) = F(Ws(y)) — f(y) > (¥", s(y) —y).
It follows that
ly*Idist (y,S) > (y*,y — s (y)) > f(y) — fmin-
Thus (2) holds. O

The first result of this note follows.

Theorem 2.1 Consider (P). Let {x;} be a sequence generated by the algorithm (1). Sup-
pose that x; € S fori=1,....N. Then

f(xl) _zfmin, (3)

™
>
IN

) Ti)=fmin
where TN = miny<i<n (fd(m)(i”fs))

Proof. By (1), we have that
f(a:l) - f($i+1) Z >\i+1||37:+1"2 for i = 1,2, ...,N - 1.

By summing this expression over all indices i < N — 1, we obtain

N-—1
> Xilai P < f@) = flan) < f@1) = fmin- (4)

i=1
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By Lemma 2.1, |z7| > ’;(Zzt)(ii”g)" for i = 2,..., N. This observation along with (4) yields

N
M f( fmzn
(5 B (50 01

This establishes (3), and the proof is complete. O

It is well-known that (I + X\;110f) '(z) = z if and only if z € S, and the operator
(I + Xiz10f)7L(+) is non-expansive. This implies that |z;1; — 2| < |z; — x| for all z € S.
So, for any z € dom f and z € S,

|k — 2| < ek — 2| ()
By invoking (5) repeatedly for k = 2,3,...,i, we get
|zi — 2] < o1 — 2], VzeS. (6)
As a consequence of (6),
dist(z;,S) < |z; — Ug(x1)| < |x1 —Hg(z1)| = dist(zq, S).

Therefore,

_ . f(xz) - fmin . f(mz) - fmzn
™= 2gl<nN< dist(z;,S) > = 2SiSN ( dist(zy,S) ) ' @

Theorem 2.1 has some interesting implications. Suppose that {z;} is an infinite sequence
generated by the algorithm (1) with z; € S for all 7. First, we observe that {7} is a positive
decreasing sequence of N, and the right side of (3) is bounded above for all N if and only if

lim 7n > 0.

N —oco
Also, the inequality (6) implies that {z;} is a bounded sequence. So a sufficient condition
for imy_oo 7v > 0 is the following notion of boundedly weak sharp minima [1]: Vr > 0
there is some «, > 0 such that

f(x) = fmin > apdist(z,S), Vx € riBN (dom f). (8)

If (8) holds for r = oo, we say that S is a set of weak sharp minima for f with modulus
Q. In this case, we simply denote as by a. [1, Example 6.6] shows that the notion of
boundedly weak sharp minima is weaker than that of weak sharp minima. Secondly, if

Z)\i — 400 as N — 400, (9)
then by (3), limy_ o 74 = 0; that is, (9) and limy_, 7% > 0 are not compatible. The

above observations yield the following corollary. No proof is needed.

Corollary 2.1 Consider (P). Let 1 be given. Suppose that the algorithm (1) is imple-
mented such that (9) is satisfied. Suppose that S is a set of boundedly weak sharp minima.
Then the algorithm (1) terminates in finitely many iterations.
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A few remarks on Corollary 2.1 and [3, Theorem 6] are in order. Corollary 2.1 improves

[3, Theorem 6] in two ways: First, the weak sharp minimality is replaced by the boundedly

weak sharp minimality; secondly, the assumption that A\; > X > 0 is replaced by (9).
Recall that, for any € > 0, the set of e-optimal solutions is defined as follows:

Se={z € R"| f(z) — fmin < €}.
Another consequence is the following corollary on e-optimal solutions.

Corollary 2.2 Consider problem (P). Let x1 be given. Suppose that the algorithm (1) is
implemented such that (9) is satisfied. Let € > 0 be given. Then, there is some N such that
TN € Se. If it is further assumed that \; > X\ > 0 for all i, then

di8t2(1‘1,5)(f(1‘1) - fmzn)
Ae2

Proof. Suppose that x; is not an e-optimal solution for ¢ = 0,1,...,N. We have that

f(z;) = fmin > €eforalli=1,...,N. Relation (7) implies that

TN = min F(@:) = fmin > €
N = licn dist(z;,S) ) = dist(x1,S)’

N<1+

. (10)

Relation (3) along with the above estimate of 7y yields

N . 9
ZAi S dist (mlas)(f(ml) - fmzn) (11)

€2

Clearly, both (9) and (11) cannot hold at the same time for N sufficiently large. So there is
some N such that zy € S..
If \; > X for all ¢, then, by (11), we have

diStQ (1'1 ) S)(f(xl) - fmzn)
2
This establishes (10). O

AN —-1) <

Subgradient Method

Another commonly used descent method for solving (P) can be described as follows. Given
x1, let

Tip1 = x; — Gz} fori=1,2,... (12)

where the step length ¢; > 0 and =} € 0f(z;). If f is differentiable, then 0f(z;) = {V f(x;)},
and the algorithm (12) is the well-known steepest descent method. It is well-known that
{z;} generated by (12) may not converge without a proper line search. We shall impose the
following sufficient descent condition at each iteration: there is some 0 < m < 1 such that

f(@izr) < f(zi) —mts]|z ] (13)

By the non-emptiness assumption of S, and by summing (13) over all indices i < N with
x; ¢ S, we have the following inequality similar to (4):

m

N
i=1
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Inspired by the related work on convergence analysis of descent methods for differentiable
convex functions [6] and the bundle methods [2], we give below some convergence results on
the algorithm (12). To make our presentation self-contained, we include the proofs here.

Proposition 3.1 Suppose that {z;}, generated by the algorithm (12), is an infinite se-
quence. Assume that x; € S for all i, and {x;} satisfies (13). Then the following is true.

(a) If
N
Zti — 00 as N — oo, (15)
i=1

then im; oo f(2:) = fmin-
(b) If lim; o0 f(x;) > fmin, then {x;} is bounded.
(c) If

S it —aill? < oo, (16)

i=1

then {z;} is bounded. Relation (16) holds whenever there is some ¢ > 0 such that t; < ¢ for
all 4.
(d) If im;_, o f(zi) = fmin, and (16) holds, then {x;} converges to a point of S.

Proof. [Proof of (a):] We observe that {f(z;)} is decreasing. If the conclusion does not
hold, then there is some ¢ > 0 such that f(x;) > fmin + 0 for all i. Let z € S. By

|zisr = Z|° = [Jos = 21> + |21 — 2l |* + 2(zip1 — 24,2 — 7),
and the convexity of f,
|zisr = 2|° < Jes = 21> + |lzir — il |* + 2t (fomin — f(22))- (17)
From (14), lim; , t;||z}||> = 0. So there is some k such that
l|Zit1 — i[> + 2ti(fonin — f(23)) < =61, for i > k. (18)
It follows, by summing (17) over k < i < N, that

N
lewsr — 2l < llew — 2l =53t
i=k

By (15), the above inequality cannot hold for N sufficiently large. The contradiction proves
(a).

[Proof of (b):] Since {f(z;)} is monotone decreasing, lim; . f(x;) exists. If lim; , f(z;) >
fmin, then there is some § > 0 such that f(z;) > fmin +J. By a similar argument as in the
proof of (a), we see that (17) and (18) hold, and the boundedness of {z;} follows.

[Proof of (c):] Again from (17), ||zi+1 — Z||* < ||lzi — Z||* + ||7ix1 — z4]|*. So, for any N,

N
lew = 2|* < lzr = &|1° + Y ||ziss — @l
i=1
This shows that {z;} is bounded by (16). The last part follows from (14), t; < ¢, and
lzivs — 2 [* = [,
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[Proof of (d):] By (c), {z;} is a bounded sequence. Let {x;, } be a convergent subsequence
with the limit Z. Then Z € S since f(Z) = fmin. For any € > 0, by limg_,o z;, = Z, and
by (16), there is some positive integer K such that ||z;, — z||*> < % for all k£ > K, and
Y llzier — 2i|* < & Then for any j > i, by (17),

j
lle; = 21° < llex —2[1° + D ||z — @l < €.
i=K

This shows that {z;} converges to Z. O

When S is a set of weak sharp minima or boundedly weak sharp minima, we have the
following sharp results.

Theorem 3.1 Consider (P). Let 1 € dom (f) be given. Then the following holds.

(a) Suppose that S is a set of weak sharp minima for f with modulus . Suppose that
the algorithm (12) is implemented such that (13) is satisfied. Then {x;} is a convergent
sequence. If it is further assumed that (15) is satisfied, then the algorithm (12) finds a
minimizer of (P) in finitely many iterations.

(b) Suppose that S is a set of boundedly weak sharp minima. Suppose that the algorithm
(12) is implemented such that (13) is satisfied. Then either lim; oo f(2;) = fmin or {z:}
is a convergent sequence. If it is further assumed that (15) is satisfied and {z;} is bounded,
then {x;} is a finite sequence; that is, the algorithm (12) finds a minimizer of (P) in finitely
many iterations.

Proof. [Proof of (a):] By (12), ||zi+1 — ;|| = t;||z}||. Since S is a set of weak sharp minima
for f with modulus «, and z; ¢ S, by Lemma 2.1 and (8) ||z}|| > « for all i. These facts
along with (14) show that, for any NV,

Z||mz+1—xz||< T = min, (19)

So {z;} is a convergent sequence.
Relation (14) yields

Zt < L&)~ Join, (20)

When (15) holds, (20) cannot hold for N sufficiently large. So the algorithm (12) terminates
in finitely many iterations.
[Proof of (b):] If lim; oo f(2;) = fimin, then we are done. Otherwise, {z;} is bounded by
Part (b) of Proposition 3.1, Since S is a set of boundedly weak sharp minima, there is some
a;, > 0 such that (19) holds with « replaced by a,.. This shows that {z;} is convergent.

If (15) holds and {z;} is bounded, then there is some «, > 0 such that (20) holds with
a replaced by ;.. The assertion on finite termination follows again from (15). O

For the algorithm (12), we can also obtain results similar to Corollary 2.2 on e-optimal
solutions. Since the analysis is quite similar, we omit these results here.
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