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OPTIMAL CONTROL OF AN ECONOMIC MODEL
WITH A SMALL STOCHASTIC TERM

B.D. CRAVEN

Abstract: Some economic models, including financial models, involve a small stochastic term. Optimal
control for such models can be handled approximately, in discrete time, by considering mean and covari-
ance. This avoids independence assumptions made in the usual Brownian motion models, and allows simple
computation.
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Introduction

Economic models often include stochastic terms. In a model of economic growth, it may
happen that the growth is largely deterministic, with a smaller, though significant, stochas-
tic term included. The distribution of stochastic contributions may be known only up to
mean and variance. When considering the optimal control of such a model, e.g. to optimize
the expectation of some utility function, a detailed (and computationally heavy) stochastic
optimization (e.g. of some Markovian formulation) may be less appropriate than a sim-
pler approximate approach, where the probability distributions are described by mean and
variance. Moreover, a model in discrete (rather than continuous) time does not require
independence of contributions from very small disjoint time intervals.

As one application, an optimal control economic model in continuous time is modified
by discretizing the time, then adding stochastic terms. In terms of the continuious-time
model, the small stochastic increments are added at discrete times. The optimization can
then be computed using software for continuous-time optimal control. The result shows the
evolution of the expectation and standard deviation of a state variable.

Consider an economic growth model with a state function x; (¢t =0,1,2,...) describing
capital (of one or several kinds) at time ¢, and a control function u; (¢t = 0,1,2,...) describing
consumption (of one or several kinds). Many such models have been proposed. Consider
first a dynamic equation:

Tip1 = Fzy —u, ) (60=0,1,2,...), (1)

in which the €; terms are independently identically distributed random variables, with mean
E(e;) = 0 and variance var(e;) = 2. As one example, an objective function, depending on
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capital:
N

J = Zth(E(wt) —0s;) + pN®(zN) (2)

t=0

is to be maximized, subject to bounds on the u; terms, namely:

0<a<u <b(t=0,1,2,...,n). (3)

Here p! is a discount term, U(-) is a concave increasing utility function, s; := (var (z;))"/?

is the standard deviation of z;,6 is a constant (e.g. 6 = 2), and ®(-) is an endpoint term
describing the more distant future. Instead of a conventional EU (z;) term, the form in (2)
describes a chosen lower quantile of the distribution of the state. Note that EU(z;) has an
implied assumption that the model will be applied a number of times, to allow averaging
of the stochastic contribution. But for a “single run” model, the term in (2) may be a
more appropriate description. Terms depending on consumption might also be added to the
objective.

Another model is described in section 4, with objective depending on both state functions
(describing money) and control functions (describing allotment of investment). Section 6
describes an inventory model, with objective depending on state function (inventory) and
control functions (production and delivery), with a stochastic term in the demand.

A computation for such stochastic models often requires heavy computing, to include
the details of the probability distibutions involved. However, this may be inappropriate,
especially when (as usual) only limited information is available about those distributions.

This paper makes the simplifying assumption that the stochastic contributions are “small”,
in the sense that the deterministic contributions dominate, rather than the other way about.
Consistently with this, it is also assumed that mean and variance carry sufficient information
about the distributions. (Indeed, these all the data that are usually recorded and analysed.)

One possible form of the dynamic function F' is:

F(we —ugy &) = (1 + 6e) Q2 — uy), (4)

where () is concave increasing, and the term ke; describes a stochastic variation in the
growth rate of the economic system (compare Hakansson 1975).

It is remarked that many financial models are given in continuous time, with stochastic
contributions based on a Wiener process (see e.g. Klebaner 1998). But this assumes the
independence of stochastic contributions from disjoint time intervals, however short, an
assumption unlikely to hold in the real world. The underlying stochastic process may be
modified to fractional Brownian motion (see Cutland et al. 1995), which allows dependence
between the contributions at different times. However, discrete time model can be more
realistic (since the data are observed in discrete time), and may also lend itself better to
numerical optimization or simulation.

Approximating the Stochastic Contribution
For an optimal control model, modify (1) to:

Tiy1 = F(mt; €ty ut) (t - 07 1)27 .. ) (5)

where u; is a control variable. Denote by F, F5, F3 the partial derivatives of F' with respect
to its first, second and third arguments.
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Assume initially that the state z; has only a single component; a vector case is discussed
later. Denote second partial derivatives similarly by Fii, Fi2, etc.. Optimization will find a
deterministic control variable u;. Denote the expectation & = E(z;) and z; = Z + y;. If y,
and €; are “small”, then, to a useful approximation:

1
Topr & F(Z4,0,up) + F1 (%, 0,ue)y: + §F11(ft,oaut)yt2 + F3 (%, 0,u)e;. (6)
Then:
1
E(zi41) = EF(Z:,0,u) + §F11(53t; 0,u)E(y;)

1
= F(i’t, 0, Ut) + §F11(i’t, O,Ut)VaI'(l't). (7)

Consider a random variable w = az + bz2 — aZ — bz?, where a and b are constants, z = Z +y
where z = E(z), and v := var(z). Then:

w = (a+2b2)y +y*; E(w)=0+n0. (8)
Hence:

var(w) =E((w — E(w))?)
=E[(a + 2b2)%y* + b*y* + b*0® + 2b(a + 2b2)y® — 2b%vy® + 2b(a + 2b2)yv]
=(a + 2b2)*v + b?(var(z?) — 4ZE(y*) — 42%0 + 20°) + b*0?
+ 2b(a + 2b2)E(y*) — 2b*v°
=(a® + 4abz)v + b*var(w?) + b*v? + 2abE (3°). (9)

If z is scaled so that b is “small”, then (5) and (8) with z = z; give:

var(xH_l) ~ F1 (ft, 0, ’U,t)z(l + QF.i't) var(a:t) + FQ(CEt, 0, ’U,t)20'2, (10)

where

I = (Fi1(2,0,up)xe)/ Fi (e, 0, uy).

Thus (7) and (10) give dynamic equations for E(z;) and var(z;).

The Vector Case

Suppose now that x; is a column vector with p components. Then w is replaced by a
(column) vector variable w = Az + 27 B'z, where the superscript dot indicates a set of
matrices B?, one for eacn component of w. Denote by V' = cov(y) the covariance matrix of

z. Let z = Z+ vy, where Z = E(2). Using E(y" By) = 457 + C, where C = Tr(BTV),

w—Ew=Qy+y'By-0C, (11)

Q=A+2B ; (z¥B);; .= Y _ zBj;. (12)
k
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If the elements of B are “small”, then the leading terms in cov(w) = E(ww”) are those
from E((Qy)(Qy)T). Thus:

cov(w) ~ E{AyyAT + Any(Z#B') + (Z#B')nyA}
= AVAT + AV(Z*B) + (z#B)TV A. (13)

Hence, for this vector case, the dynamic equation (10) is replaced by:
r, 1 apry Lo
cov(zir1) = Ficov(zy)F] + §F1cov(a:t)(:r B+ 5(3: B’ cov(zy)Fy + Facov(e)), (14)

where B" = L Fy,, and the arguments of Fy, F> and Fj, are (Z;,0,u;).

The Davis and Elzinga Financial Model

Davis and Elzinga (1975) proposed a model for investment in a utility company, in which the
share price P(t) and equity E(t) per share at time ¢ are described by differential equations:

P(t) = ¢((1 = wi (D)rE(t) - pP(t)), (15)
E(t) = rE(t)(u () + us()[1 = E(t)/(1 = 8) P(t)]). (16)
An objective function:
T
J = / e~ 1 — uy (D] E(t)dt + e~ P(T) (17)
0

is maximized, subject to constraints uy(t) > 0, ux(t) > 0, u1(t) + u2(t) < b on the control
functions wy (t) = proportion of earnings retained and s (t) = stock financing rate.
Denote U(t) := P(t)/E(t). Then, from (15) and (16), U(t) satisfies:

U(t) = a(t) = B(H)U(t) (18)

where
a(t) = cr(l —ui (b)) + rus(t)/(1 —9), (19)
B(t) = cp + r(uy (t) + ua(t)). (20)

Assume a planning period of [0,7], and divide it into n equal subintervals. Denote x?m =
U(jT/n) and 2§ := var(U (T /n)). For the subdivision interval h = T'/n sufficiently small,
the differential equations (18) may be approximated by a difference equation:

Am?m = a:?l”l - x?m = hla; — ﬂjm?m]’ 2D

a; = a(jT/n), B; =B(T/n). (22)

If a stochastic term €(¢) E(t) is added to the right side of (15), this adds €(¢) to the right side
of (18), hence adds €, to the right of (21), with ¢, = €(jT/n). Assume now that the €, are
i.i.d. with E(e;) = 0, var(e;) = 0T /n. (Thus variance o2 corresponds to unit time.) Then:

Aa:;h’ = :rgjfl — :L’E-JU ~ —:L“E-J” +(1- hﬁj)ngjm + 02 (23)



OPTIMAL CONTROL WITH SMALL STOCHASTIC TERM 237

from (10), since here the Fy; term is zero, and F = 0. Here, both mean and variance of U
are described by linear difference equations; and, since (18) is linear, the difference equation
for the variance is exact.

Consider now the two differential equations (15) and (16). Denote the discretized versions
of P(t) and E(t) by #}™ and '™, and the corresponding covariance matrix for (P, E) by
aPEv. Let ¢ = 1/(1 — 4). Then, since (15) is linear in P(t) and E(t),

xfﬁ = mfm + hler(1 — ul(jT/n))xfm — cp:rfm]. (24)

Let Cy1 = var(E), and C1» = cov(P, E). Expanding up to quadratic terms,
E(E?/P) ~ 2E(E)/E(P) — 2C12/(E(P))* + 2E(E)C11 /(E(P))?, (25)

with F and P at time t = j7'/n. Then, from (16),

et~ a4 r(un (T/n) + ux (jT/n))ef™ + rCE(E(jT/n)*/P(jT/n)).  (26)

Hence, in (14), with z; = (2™, 28™), z; = (zF™, 2P™):

o 1— hep her(1 —uy) (27)
V7 \hrCus B2P~2 1 — hr(uy 4 up) — 2hrCus EP1

. 1_/0 0 1 (2hrlus E*P~3  —2hr{uEP 2
# _ - - 2
@"B) =3P <0 0) tab (2hrgu2EP2 —2hrCus P!

<—hr§uzU3 —hrCU2U2> (28)

—hrCus U2 hrlus U1

Here ( = 1/(1 - 6), and the arguments are ((z5™,zF™),0, (u1 j,uz;)). Then, from (14),

VB = Pl PR+ SFal P (2% B)T + o (T/n) P, (29)

where S applied to a matrix denotes its symmetric part, namely the average of the matrix
and its transpose, and [ is a unit matrix, so cov(e;) = o?(T/n)I for i.i.d. €.
The objective function to be maximized is the expectation of (17):

Ip = Ze_p’j(l - ul(jT/n)m}Em + e PTghm. (30)

Jj=0

A Computational Example

For U(t) = P(t)/E(t) in the Davis-Elzinga model, denote z(t) := E(U(t)) and v(t) :=
var(U(t)). The difference equations (21) and (23) can be approximated by differential equa-
tions, to allow a continuous-time optimal control program to be used. A change of time
scale from [0,7] to [0,1] is made for the optimal control package (SCOM, see Craven and
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Islam 2000); this multiplies the right hand sides by T'. This gives the differential equations:

£(t) = Tla(t) — B(t)z(2)]
= Tler(l = ui(t) +r¢ua(t)] = Tlep + r(ud(t) + uz())]2(2); (31)

o(t) = Th =1+ (1= B(t)*v(t) + h *T(a*T/n)
= Th Y —2hB() (1 — %hﬂ(t))]v(t) +T(To?). (32)

Consider the parameters ¢ = 1,7 = 10,r = 0.2,p = 0.1,0 = 0.1,b = 0.75, and n = 20
subdivisions. As an approximation, the expectation of (17) is maximized, subject to the
differential equations (15) and (16) (thus neglecting the stochastic term in this part), and
also (31) and (32) are solved (thus calculating here the mean and variance of P(t)/E(t).) The
results are given in the following graphs, plotting z(¢) (solid line), s(t) = v(t)'/? (dashed
line), and P(t) (dotted line) against scaled time ¢. The optimum controls (u(t),us2(t))
jump from (0.75, 0.00) to (0.00, 0.00) at ¢t = 0.45, corresponding to a change in slope of P(t)
and z(t). The standard deviation increases steadily with ¢, since the model adds a further
increment at each time interval.

In Craven and Islam (2002), page 114, an economic growth model is analysed, with
growth described by the Kendrick-Taylor equation (Kendrick and Taylor 1971), of the form:

i(t) = ae*z(t)? — u(t) — pz(t) (33)

with a small stochastic term added to the right side. The differential equation is converted
to a difference equation by discretizing the time t; the stochastic terms at discrete times
t are assumed independent, with given variance; and difference equations are obtained for
expectation and variance of the state z(t). The optimal control results are qualitatively
similar to those of the present paper.

1 1
I 0.1 n.2 0.3 04 0.5 0.6 0.7 0.8 0.4 1
Scaled tirme ¢
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@ A Stochastic Model for Inventory and Production

For t =0,1,2,..., denote vectors I; = inventory at start of period ¢, m; = amount man-
ufactured during period ¢, y; = amount delivered during period ¢, d; + ¢, = demand for
period ¢, where d; is deterministic and ¢; is stochastic with E(e;) = 0 and var(e;) = 0. Let
uy := y¢ — dp — €;. Consider the model:

T
Max B [af ys — seme — Bi[I]y — ye[—L]y — 6il)] (34)
t=1
subject to:
I,=a, L1 = [It +my —Z/t]; Amy < by, mg >0 (t =0,1,...,T - 1)- (35)

Here a; describes unit profits, and &, 8,y unit costs; backordering is allowed, with different
unit costs for positive and negative inventory; [v] + = v when v > 0, = 0 when v < 0. A
penalty cost, with coefficient d; is attached to unmet demand. The deterministic part of
demand is assumed to be the major part, typically involving seasonal effects, where inventory
may have to built up in previous time periods to meet a high demand at certain times.
Denote u; := y; — d; — €;, and rewrite the model as:

T
Max EZ[atT(ut — dy) — ke — Be[L]y — n[—Lly — Oifz)’] (36)
t=1
subject to:
Io = a, It+1 = [It +my — U — dt - et], (37)
AmtSbt, thO(tZO,l,,T—l) (38)

This is an optimal control model with state variables I; and control variables m; and w,,
and a stochastic term in the dynamic equation. If I;,m; and y; have each only a single
component, then the expectation I; := E(I;) and variance var(l;) may be described by (7)
and (10). Here, the dynamic equation is linear, and m; and u, are control variables, so:

jt+1 = [ft +my — yt]; VaI‘(It+1) = Var(It) + 0'2. (39)
If the inventory equation is modified to:

IO = a, It+1 = (p(It + mey — Ut — dt — €t ), (40)

where ¢ is an increasing concave function, describing reduced value for a large level of
inventory. From (7), (9) and (10):

Iipr = [I + my — yi] + By var(Iy); (41)
var(I;) ~ v var(I;) + pio?; (42)

where 8, = " (), 7 = ¢'(-)> + 4¢' ()" (-), pr = By, at argument I, +m; — y;.
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Analysis of the Variance Approximation

Assume now a dynamic equation ;11 = F(x¢,e:), where e; is stochastic, and a control
function has been chosen (implicit in F'). Define &y by &o = wo, Z1+1 = F(Z+,0); note that
&y # %, := E(z,); but E(y;), where y; := z; — ;, may be small. Let ¢.(s) := E(exp(isy;)).
Then ¢y1(s) = E(exp(isG(y:))), for suitable G derived from F. Under some regularity
assumptions,

pra(s) = [ Ks.wlorw)do and oi(s) = S s, (43)
n=0
for some kernel K (s, w). Let
Mon == /(6/8s)mK(s,w)dw/m!. (44)
Then
Cosrm = D MuynCin, (45)

or in matrix terms, c;1 = Mc,.

The approximation used previously to get a difference equation for variance relates to
truncating the matrix M to five rows and columns. With #; now subtracted, the omitted
elements are small, when F' is approximated by a quadratic.
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