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Abstract: A functional error bound of a set C' is a bound on the distance from a point to the set involving
the function that defines the set C' with certain properties. Examples of such sets include the solution set
of a functional inequality, the set of all minimizers or the set of stationary points. In this paper, we derive
sufficient conditions for the existence of nonlinear functional error bounds for the solution set of an functional
inequality and the set of subdifferential stationary points involving a lower semicontinuous function defined
on a Banach space. It is also shown that error bound conditions for a functional inequality become necessary
if the function is convex. Applying the error bound conditions to the set of all minimizers of the function,
we obtain the conditions for the existence of the i-weak sharp minima.

Key words: error bounds, nonlinear error bounds, calmness of set-valued maps, nonlinear weak sharp
minima, upper Lipschitz set-valued maps, subdifferential stationary sets

Mathematics Subject Classification: /9J52, 90C31, 90C25

Introduction

Let X be a Banach space, D C X closed and f : X — R a proper lower semicontinuous
function. Consider the problem of finding = such that

f(z) <0, zeDCX. (1)
Let the solution set of (1) to be S:={x € X : f(z) <0, x € D}.

Definition 1.1. The solution set S is said to have a linear error bound if there exists T > 0
such that

d(z,S) < 7{f(2)ly VzeD

where [f(2)] = max{(z),0}

Hoffman and many other authors have shown that a linear error bound holds for a system
of linear inequalities and equalities. Putting into the frame work of the problem (1), the
solution set S always has a linear error bound if g is defined as the maximum of a finite set
of affine functions, for instance, f(z) := max{Az — b, Bx —d,—Bx + d} with A : X — R™
and B : X — R continuous linear operators. Deng [9] showed that for a convex function g
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that satisfies the Slater’s condition, namely there exists € D such that f(z) < 0, a linear
error bound exists. For a lower semicontinuous function, an important sufficient condition
for S to have a linear error bound is that the subdifferential of f at every point outside of S
is bounded away from 0 by a constant (See [23], [24] and [2]). K.F. Ng and X.Y. Zheng [15]
studied the conditions for existence of linear error bounds using Dini derivatives. The Dini
derivatives are also used in the conditions in [24]. In fact if we define g(z) := max{f(z),0}
the existence of a linear error bound for (1) is equivalent to all minimizers of the function
g forming a set of weak sharp minima [6]. Intuitively, a linear error bound exists if the
function f ascends at a linear rate when z moves away from S.

Of course a linear error bound will not hold for many functions such as f(z) := ||z[|.
Z.Q. Luo and J.S. Pang [14] have studied nonlinear error bounds for analytic systems and
quadratic systems. In this paper, we study the sufficient conditions for the existence of
general nonlinear error bounds using a general notion of subdifferential that satisfies a set
of most basic properties, these conditions are met by many commonly subdifferentials. This
practice has been quite common in literatures. In our studies, we also make a use of an
abstract directional derivative. It is shown that when the function g is convex, our suffi-
cient conditions become necessary as well. The discussions on the nonlinear weak sharp
minima are presented in the later part of the paper. As in many existing literatures on error
bounds, the crucial instrument for establishing the sufficient conditions for error bounds is
the Ekeland’s Variational Principle.

We introduce the following definition.

Definition 1.2. For a function v : Ry — Ry with ¢(0) = 0, the problem (1) is said to
have a -error bound if

¢(d(z,5)) <[f(x)]y VzeD. (2)

When (2) holds for ¢(t) = t*, we say the system (1) has an error bound of order .

In the sequel, X is a Banach space with its norm || - || unless specified otherwise. The
topological dual space of X is denoted by X* with its norm || -||.. For a point Z € X
we use B(Z,e) to denote the closed e-ball centered at Z. If f is a function defined on X,
domf := {z € X : f(z) < oo} is the domain of f. R is the set of all real numbers and
Ry :=={pw € R:pu >0} Forapoint z € X and a subset D C X, the distance from z to
D is d(z,D) := inf{||z' — z|| : 2’ € D}, we adopt the convention that d(x,) = co and
D + 0 = 0. Given two subsets C and D of X, C\D :={z € C :z ¢ D}.

The paper is organized as follows. In Section 2, we derive our main theorem and obtain
sufficient conditions for nonlinear error bounds of lower semicontinuous functional inequality
systems using abstract subdifferentials and directional derivatives. In Section 3 we establish
necessary conditions for convex functional inequality systems. In Section 4 we study the
relationship of the calmness properties of the inverse subdifferential mappings and the error
bounds on the set of subdifferential stationary set U = {z € X : 0 € 0f(z)}. We will present
the definitions for a general notion of nonlinear weak sharp minima of a lower semicontinuous
function and discuss the sufficient conditions in the Section 5. In the last section we provide
some concluding remarks.

Nonlinear Error Bounds

Consider a proper lower semicontinuous function f: X — R that is bounded from below.
We use 0f : X = X* to denote any subdifferential of f defined on a Banach space that
satisfies the following set of assumptions:
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(a) If x is a local minimizer of f, then 0 € df(x); _
(b) For any z € (domf N domg) and a convex function g : X — R, one has

o(f +g)(z) Caf(z) + Ig(x);

(c) If f is convex and finite near a point x € domf, then 9f coincides with the subdif-
ferential of f in the sense of convex analysis.

Note that the Clarke subdifferential [7], Michel-Penot subdifferential and limiting subd-
ifferential [4], Mordukhovich subdifferential [13] and of course the subdifferential in convex
analysis [21] all satisfy these conditions in the appropriate context.

The following theorem was inspired by the results of O. Cornejo, A. Jourani and C.
Zalinescu [8] and Penot [18].

Theorem 2.1. Let C' be a closed nonempty subset of X and T € C. If there exists € > 0
and a function ¢ : R — R nondecreasing on [0,¢] such that

¢(d(z,C)) < |[pll« Vv edf(z) Voebz,2e), (3)

then for any function ¢ : Ry — Ry satisfying 1(0) = 0 and for each t € (0,¢] there exists
0 < XA <t such that

P(t) <At —A), (4)
the following inequality holds
(d(z,C)) < f(x) —inf f, Vz e B(zZ,e). (5)
Proof. If (5) were not true, then there exist zg € B(Z,¢) with 2o & C and ¢y < 1 such that
f(zo) <inf f 4+ cotp(d(z0,C)).

Choose A such that 0 < A < d(xo,C) and (4) holds for ¢ := d(zo,C). Observe that
d(zo,C) < ||lzo — Z|| < e. By Ekeland’s Variational Principle [10], there exists 2’ € X such
that

2" = ol < A; (6)
f(@") < fy) + (co/ NP (d(zo, O))l|2" = yll, Vy € X, (7)

It follows that there exists v* € df(z') such that |[v*|. < (co/A)Y(d(zg,C)).
On the other hand, we have

d(2',C) > d(zo,C) — ||z’ — mo|| > d(zo,C) — X >0,
and
o = 7 < lla’ — woll + Iloo — 7] < A+e < 20
so ©' € B(Z,2¢). Consequently from (3), (4) and the nondecreasing property of ¢, we have

lo"]l« > &(d(a', C)) > ¢(d(x0,C) = A) > (1/A)¢h(d(w0,C))
> (co/ N (d(x0,C)) = [[v*]] (8)

The contradiction indicates that (5) must be true. O
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Remarks.

(a) The set C' can be an arbitrary set. It does not have to be the set of all minimizers S
of f. For instance, we can let C' be the set of subdifferential stationary points of f or
a sublevel set of f.

(b) The spirit of the above theorem is that a growth function ¢ on the map z — d(0,90f(x)),
which maybe easier to obtain, can be used to define a growth function on the function
f itself.

(c¢) To achieve stronger result in the inequality (5), one would choose v as large as possible.
Here are some examples for the ¢-1 function pair that satisfy the conditions in Theorem
2.1: ¢(t) = at®, Y(t) = ot™t! where 0 = ax”/(1 + k)", a > 0 and & > 0; ¢(t) = a,
¥ (t) = at or in general one may choose

Y(t) := sup (1 —y)td(7t).

0<~<1

(d) If in addition to the assumptions in Theorem 2.1 2.1, ¢ is continuous near 0, then the
function ¢ can be chosen to be

P(t) ;== max Ap(t — \)

0<A<t
(e) The results in the above theorem are presented as a local property around the point

Z. Similar results can be obtained if B(Z,¢) is replaced by C + B (See [8, 18]).

(e) The function satisfying (5) is said to be (locally) -conditioned around Z. See [8] and
the references therein.

(f) The connections of this theorem to the conditioning of functions and the asymptotical
behaviors of f can be found in [18].

One advantage of the above Theorem is that C' can be chosen to represent various
subsets defined by different problems. We now apply different choices of the function
and the subset C' to derive various error bound results. First we consider a proper lower
semicontinuous function g : X — R and let S be the solution set of the inequality g(z) < 0,
namely

S:={reX:g(z) <0} (9)

The following theorem gives a sufficient condition on the )-error bound of the system
(9).

Theorem 2.2. If there exists € > 0 and a function ¢ : R = R nondecreasing on [0,€] such
that for each © € B(Z,2¢e) with x ¢ S,

o(d(z,S)) < vll. Yo e dg(a), (10)
then for each z € B(Z,¢),
$(d(@, 5)) < [g(@)]s (11)
where [g(2)]4 = max{g(),0} and
(1) == sup (1—)td(t).

0<y<1
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Proof. Choose the subset C' := S and f(z) := [g()]+ in the Theorem 2.1. Set A := (1 —~)t
and v (t) := (1 — y)té(vt) in (4), then by Theorem 2.1 we have for each z € B(z,¢),

Py (d(z,5)) < lg(@)]+ Vye(0,1). (12)
Take a supremum on (12) over v € (0,1) we obtain (11). O

Now if, in Theorem 2.1, take C' := S, f(z) := [g(z)]+ and ¢(t) = p for a constant u,
we obtain a result similar to a sufficient condition by Z. Wu and J.J. Ye [23] (See also [2]):
if the subdifferential of g near Z is bounded away from 0 by a constant, then a linear error
bound exists for the system (9). Specifically, we have

Corollary 2.3. Assume T € S. If there exist € > 0 and a constant p > 0 such that
[v]l« > p Yveag(z) VzeB(Z,2e)\S,
then the system (9) has a linear error bound:
d(w,9) < u~'fg@)s Vo€ Bz,e). (13)

Proof. In Theorem 2.2, let ¢(t) = pfor ¢ > 0 and ¢(0) = 0. It is clear that () := t¢(0) = ut
and (13) follows immediately. O

The following corollary gives a result for exponential error bound for the system (9). Such
error bounds have also been studied by Z. Wu and J. J. Ye [24]. Our conditions here are
different from theirs.

Corollary 2.4. Assume & € S. If there exist e > 0, u > 0 and k > 0 such that
pld(z, S)* < |lvll« Vv e dg(x), Vo € B(Z,2), (14)
then inequality system (9) has an error bound of order k + 1:
old(z, $)**! < [g@)]; Ve € B(z,2) (15)
where 0 = pk” /(1 + k)",
Proof. In Theorem 2.2, let ¢(t) := ut". Then

D(t) = sup p(l—7y)y" "t = gttt
0<y<1

The rest follows from Theorem 2.2. O

Analogous to our approach with the subdifferentials, we consider all directional deriva-
tives with certain set of properties. A directional derivative of f at € X in the direction of
w € X, denoted by df(x;w) is a function on X x X satisfying the following set of conditions:

(a) If z is a local minimizer of f, then df(z;w) > 0 for all w € X;

(b) For a convex function g, one has d(f + g)(z;w) < df(z;w) + dg(z; w);

(c) If h(x) := ||z — wo|| for some o € X, then dh(zo;w) < ||w]];

(d) For a scalar A > 0, d(Af) = Adf.

(e) df(z;0) =0.

Many well known directional derivatives do possess these basic assumptions.

The following theorem provides a set of sufficient conditions for error bounds using the

directional derivatives, it is basically a variant of Theorem 2.1.
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Theorem 2.5. Let C' be a nonempty subset of X and £ € C. If for a given € > 0, the
function ¢ : R — R is nondecreasing on [0, 2¢] and for each x € B(Z, 2¢) there exists at least
one direction wyg € X such that wo # 0 and

df (z;wo) < —[lwollp(d(z,C)), (16)

then for any function ¢ : Ry — Ry satisfying 1(0) = 0 and for each t € (0,¢] there exists
A <t such that

P(t) < At — N, (17)
one has
(d(@,0)) < f() —inf f Va € B(7,e). (18)

Proof. The proof is analogous to that of Theorem 2.1. Suppose (18) were not true. From
the proof of Theorem 2.1, we have (7). It follows that for all w € X,

0 < df(z;w) + (co/ N (d(0, C))|w]l-
Combining this with (8), we have
0 < df(z";w) + cod(d(wo, O))lwl| < df(2";w) + $(d(wo, C))lwll, (19)
contradicting with (16). Therefore (16) must be true. O

Letting C := S, ¢(z) = u, a constant function, and f(z) := max{g(z),0} we obtain a result
similar to that of Theorem 4 of [24].

Corollary 2.6. Assume z € S. Suppose ¢ > 0 and u > 0 are constants such that there
exist at least one direction wy € X for each x € B(T,2¢) satisfying

df(z;wo) < —pllwoll,
then the system (9) has a linear error bound:
A, 8) < u ' fg(@)]s Va € Blz,e). (20)

Here we also state a corollary dealing with the exponential error bounds analogous to
Corollary 2.4 using the directional derivatives.

Corollary 2.7. Assume T € S. Suppose € > 0, u > 0 and k > 0 are constants such that
there exist at least one direction wy € X for each x € B(Z,2¢) satisfying

df (@;wo) < —pllwoll[d(z, S)]". (21)
Then the system (9) has an error bound of order k + 1:
old(z, )" < [g(@)]+ Vo€ B(z,e) (22)
where o = pk" /(K + 1)" 1.

Proof. In Theorem 2.5, let C := S, ¢(x) = ut* and f(x) := max{g(z),0}. O
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Error Bounds for Convex Inequalities

In the previous sections, we have established a series of sufficient conditions for nonlinear
error bounds. We now consider a convex function f : X — R and discuss the necessary
conditions for nonlinear error bounds of inequalities involving convex functions.

In the following theorem, f : X — R is a proper lower semicontinuous convex function
that is bounded from below. For convex functions, our abstract subdifferential Jf reverts
to the usual partial differential in the convex analysis.

Let E be the set of all minimizers of f over X. To avoid triviality, we assume E # (.

Theorem 3.1. Assume T € E. If there exists a function ¢ : R — Ry with ¢¥(0) = 0 such
that

P(d(z,E)) < f(z) —inf f Vaz e B(Z,e), (23)

then
o(d(z, E)) <|[v*]|« Vv e€df(x) VzeB(z,e) (24)
where ¢ : Ry — Ry is a function satisfying ¢(0) = 0 and ¢(t) < (t)/t for all t € (0,¢).
Proof. For any = € B(Z,¢) with x ¢ E and v* € df(z), one has by the convex analysis that
(2" —z,0*) < f(2') — f(z) Va' e X.
Choose z' € E, we have
P(d(z, B)) < f(z) = f(@) < (@ —a',v") <l = 2[[[]o"]]-
Take an infimum of 2’ € E, we get
Y(d(z, E)) < [lv*|]« d(z, E)

with d(z, E) < ||z — Z|| < e. It follows that

¢(d(z, E)) < ¢P(d(z, E))/ d(z, E) < [[o*]]«
We conclude the proof. O

In the rest of this section, ¢ : X — R is a proper lower semicontinuous and convex
function bounded from below. As before, let S := {z € X : g(z) < 0} and assume S # ().

Corollary 3.2. Let & € S. If there exists a function ¢ : Ry — Ry with 1(0) = 0 such that
U(d(z,9) <[9(=)]+ Yz eBz,e), (25)
then
¢(d(z,8)) < |lv*|l. Vo* € dg(x), Vo € B(Z,e)\S (26)
where ¢ : R — Ry is a function satisfying ¢(0) = 0 and ¢(t) < (t)/t for all t € (0,).

Proof. In Theorem 3.1, define f(z) := max{g(z),0}. It suffices to notice that for z € S,
(26) is trivial and for ¢ S, 8f(x) = dg(x). O



226 ROXIN ZHANG

Corollary 3.3. Let & € S. If there exist K > 0 and p > 0 such that

pld(z, S)]" < [g(x)]+ VzeB(z,e), (27)

then
pld(z, )" < |lv*]l. Yv* € dg(z), Vo € B(z,e)\S. (28)
Proof. Let ¥(t) := ut®. O

In the following corollary, we establish the necessary and sufficient condition for linear error
bounds of the functional system (9): The solution set S of the system g(z) < 0 has a linear
error bound if and only if the subdifferential of g is bounded away from 0 by a constant
near S. The corollary deals with the local error bounds, but it becomes a global one when
€ = 00.

Corollary 3.4. Let T € S. There exist k > 0 and p > 0 such that

d(w,S) < p ' g(@)]s Va € B(z,2), (20)

if and only if
u< |||l You* € dg(x), Vo € B(Z,e)\S. (30)
Proof. Set  :=1 in the previous corollary and combine it with the corollary 2.3. O

Error Bounds for Subdifferential Stationary Sets

Let f : X — R be a proper lower semicontinuous function that is bounded from below. We
consider the system

U:={zeX:0e€0f(x)} (31)

where Of is the abstract subdifferential of f as defined in the second section. We use
(0f) 1 (v*) to represent the inverse mapping of the subdifferential of f at v* € X*: (3f) ! (v*)
:={z € X :v* € f(x)}. The set that we are particularly interested in is the set of all sub-
differential stationary points (0 f)~1(0), which is equal to the set U defined in (31). Before
stating our main results, we pause to make some preliminary definitions.

Let F be a set-valued map from a Banach space Y to a Banach space X. We use the
following conventions: the domain of F is domF := {v € Y : F(v) # 0}; the graph of F is
gphF :={(v,z) € X xY : 2 € F(v),v € domF'}; the closed ball at z € X with radius ¢ is
B(x,e) and the unit ball at 0 is simply B.

Given a function ¢ : Ry — Ry with ¢(0) = 0. We introduce the following ¢-calmness
definition for a set-valued map.

Definition 4.1. Let & € F(0) with v € domF. We say F is ¢-calm at (0, %) if there exist
e >0 and 0 > 0 such that

é(d(z, F(0)) < |lv—ll. Yo € B(#,0) NdomF, Yz € F(v) N B(z,e). (32)

Choose ¢(t) = t*, we introduce the following calmness condition for set-valued maps of
order k.
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Definition 4.2. Let & € F(0) with 0 € domF and k > 0. We say F is calm of order k at
(0,Z) if there existe >0, 0 >0 and 7 > 0 such that

[d(z, F(0)]* < 7ljv — 0|l Yv € B(v,8) NdomF Yz e Fv)NB(z,e), (33)
or equivalently
F(v)NB(z,e) C F(v) + 7l|v — 0||Y/"B Vo € B(v,5) N domPF. (34)

When k£ = 1 and for a finite dimensional space, the above definition coincide with the
calmness for set-valued maps given in R.T. Rockafellar and J.B. Wets [20]. We will restate
the definition here for the convenience of discussions.

Definition 4.3. Let T € F(0) with © € domF. We say F is calm at (0,%) if there exist
€>0,0 >0 and 7 > 0 such that

d(z, F(7)) <7llv—0]l« VYveB@,0)NdomF VYze F(v)NnB(z,e), (35)
or equivalently
Flw)NB(z,e) C F(v) + 7|lv —7||.B Vv € B(v,0) N domF. (36)

The property that F'is calm at v to Z is also termed as pseudo-upper Lipschitz continuity
of F at (v,Z) by J.J. Ye [25] and locally upper Lipschitz continuity of F' at (¢, Z) by D. Klatte
[12].

The following theorem gives a sufficient condition for the existence of a -error bound
for the system (31).

Theorem 4.4. Suppose U = (0f) 2(0) #0, 2 € U and ¢ is nondecreasing. If the inverse
mapping (0f) L is ¢-calm at (0,%), namely there exist € > 0 and § > 0 such that

¢(d(z,U)) < [lvll« (37)
for all v and x satisfying
[oll« <6, [lo — || < 26, v € Of(x) # 0.
Then the system (31) has a 1-error bound property
P(d(z,U)) < f(z) —inf f VzeB(Z,e) (38)

where ¢ is a function satisfying ¥ (0) = 0 and for each t € (0,¢] there exists A < t such that
P(t) < Ap(t — A).
Proof. Set C := (0f)~(0) in Theorem 2.1 O

Corollary 4.5. Suppose U = (0f)"1(0) # 0, € U and k > 0. If the inverse mapping
(0f)~ is calm of order k at (0,Z), namely there exist e >0, § >0 and 7 > 0 such that

[d(z, U)]" < 7llvfl (39)
for all v and x satisfying
[olls <6, ||z — 2| < 2e,v € 0f(x) # 0.
Then the system (31) has an error bound of order k + 1
[d(z,U)]""! < o[f(z) —inf f] V€ B(z,e) (40)

where 0 = 7(k + 1)1 /K~



228 ROXIN ZHANG

Proof. In Theorem 4.4, choose ¢(t) :=t*/7, X\ :=t/(x + 1) and
P(t) = At — N) = 65"/ (1(k + 1)) = "1 /o
We conclude the proof. O

Corollary 4.6. Suppose U = (0f) 1(0) # 0 and T € U. If the inverse mapping (0f) ! is
calm at (0,%), namely there exist e >0, § > 0 and 7 > 0 such that

d(z,U) < 7lloll. (41)
for all v and x satisfying
[oll« <6, lo — || < 26, v € Of(x) # 0.
Then the system (31) has a quadratic error bound property
[d(z,U)]* < 47[f(z) —inf f] YV € B(Z,e). (42)
Proof. In Corollary 4.5, set kK = 1, we have o = 47. O

In the following corollary, we will show that if the set of subdifferential df(x) near U is
bounded away from 0 by a constant, a linear error bound exists for the system (31).

Corollary 4.7. Suppose U = (0f)~1(0) # 0, z € U and there exist 4 >0, >0 and § > 0
such that

[oll« = (43)
for all v and x satisfying
lol« <9, |l —Z|| <2,vedf(z)#0,z¢U.
Then the system (31) has a linear error bound
d(z,U) < p '[f(z) —inf f] V€ B(Z,e). (44)

Proof. In Theorem 4.4, set ¢(t) = p for t > 0 and ¢(0) = 0 and choose ¥(t) := ut. O

Nonlinear Weak Sharp Minima

Consider a lower semicontinuous function f that is bounded from below. Let E be the set
of all minimizers of f: E:={z € X : f(z) < f(2')Va' € X}. We assume E # ().
Given a function ¢ : Ry — Ry with 4(0) = 0.

Definition 5.1. Let & € E. The function f is said to have -weak sharp minima around T
if there exists € > 0 such that

flx) = f(@) 2 4(d(z, E)) VaeBz,e).

We say E is the set of 1»-weak sharp minima of f if the above is satisfied with B(Z,€) replaced
by X.

For ¢(t) = at” for some constants a > 0 and x > 0, we have the following definitions of
weak sharp minima of order k.
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Definition 5.2. Let £ € E. For a given constant k > 0. The function f is said to have
weak sharp minima of order k around T if there exist € > 0 and a > 0 such that

f(x) = f(7) > a[d(z, E)]" V& eB(T,e). (45)

We say E is the set of weak sharp minima of f of order k if the above is satisfied with
B(Z,¢e) replaced by X. The weak sharp minima of order one corresponds to the usual notion
of weak sharp minima.

Notice that in the definitions above, k£ needs not to be an integer.

Ever since the notions of weak sharp minima was first extensively explored by M.C.
Ferris [11] and J. Burke and M.C. Ferris [5], there has been an explosive amount of interests
among researchers on the subject. The property of weak sharp minima plays important
roles in nonsmooth mathematical programming, the finite termination of the proximal point
algorithms is just one of them. Nonlinear order weak sharp minima have been studied by
J.-F. Bonnans and A.-D. Ioffe [3], M. Studniarski and Ward [22] and J. Burke and S. Deng

[6].
Now we provide a sufficient condition for the existence of 1)-weak sharp minima for a
lower semicontinuous function f defined on the Banach space X.

Theorem 5.3. Let T € E. Suppose there exists € > 0 and a function ¢ : R = R nonde-
creasing on [0, 2¢] such that

¢(d(z, E)) <|lll« Vv edf(z), Vo € B(Z,2¢). (46)

Then for any function ¢ : Ry — Ry satisfying ©(0) = 0 and for each t € (0,€] there exists
A <t such that

P(t) < Ap(t = N), (47)
f has Y-weak sharp minima around T:
f(x) = f(@) 2 4(d(z, E)) VaeBz,e). (48)
Proof. Set C := E in Theorem 2.1. O
Corollary 5.4. Let T € E. Suppose there exist € > 0, u > 0 and k£ > 0 such that
pld(z, E)]® < |lv|l« Vvedf(x), Vo e B(z,2e).
Then f has weak sharp minima of order k + 1:
f(@) — 1(3) > old(@, B Va ¢ B(z,2). (49)
where o = pk" /(K + 1)" 1.
Proof. In Theorem 5.3, select ¢(t) := pt™, A :=t/(k + 1) and
D(t) = pr™ (5 + 1)< HLgR L

The conclusion is apparent. O
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@ Conclusion

Our main focus is to study the existence of nonlinear error bounds for systems involving a
lower semicontinuous function. We first established several theorems dealing with the error
bounds for an arbitrary subset C' C X based on the properties of a function defined on X.
Our results are mainly in terms of any subdifferential or directional derivative satisfying a set
of basic assumptions. By applying these theorems to a functional system g(z) < 0 and the
subdifferential stationary set {z € X : 0 € df(z)}, we were able to derive various sufficient
conditions for error bounds of these systems. We have also presented several necessary
conditions for error bounds of a convex functional inequality system. We discovered that a
number of conditions on error bounds existed in the literature are special cases of our results.
Applying our main theorems to a set of all minimizers of a lower semicontinuous function
we obtained some sufficient conditions for the existence of a general type of nonlinear weak
sharp minima.
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