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Abstract: In this paper we study the structure of optimal solutions of one-dimensional second order
variational problems arising in continuum mechanics. We are interested in properties of the optimal solutions
which are independent of the length of the interval, for all sufficiently large intervals. The study of these
properties is based on the relation between variational problems on bounded large intervals and a limitimg
problem on [0, c0).
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Introduction

In this paper we analyse the structure of optimal solutions of the variational problems

/ Fw(®),w' (£),w" (£))dt — min (P)
w € W>([0,T7), (w(0),w'(0)) =z and (w(T),w'(T)) =y,

where T > 0, z,y € R%, W>1(]0,T]) C C* is the Sobolev space of functions possessing an
integrable second derivative and f belongs to a space of functions to be described below. The
interest in variational problems of the form (P) stems from the theory of thermodynamical
equilibrium for second-order materials developed in [2, 4, 6-8].

In this paper we also consider the following problem on the half line:

T
inf {thigéf T /0 Flwt),w' (#),w" #))dt - w e W20, oo))} . (Px)

Here W2} ([0,00)) € C' denotes the Sobolev space of functions possessing a locally inte-
grable second derivative and f belongs to a space of functions to be described below.
We are interested in properties of the optimal solutions of the problem (P) which are

independent of the length of the interval, for all sufficiently large intervals. The study of
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these properties is based on the relation between variational problems (P) on bounded large
intervals and the limitimg problem (Ps,) on [0, 00).

Denote by 2 the set of all continuous functions f: R> — R such that for each N > 0 the
function |f(z,y,z)| — oo as |z| = oo uniformly on the set {(z,y) € R*: |z|,|y| < N}. For
the set 21 we consider the uniformity which is determined by the following base:

E(N,e,T) = {(f,9) € A x A |f(z1,22,73) — g(w1,72,23)| < € (1.1)

for each (1,2, 23) € R® such that |z;| < N, i =1,2,3
and (|f(z1, 22, 23)] + 1)(|g(z1, 22, 23)| + 1) € [[71, 1]
for each (z1,72,23) € R such that |z1],|z2| < N},

where N > 0, ¢ > 0, [' > 1. Clearly, the uniform space 2l is Hausdorff and has a countable
base. Therefore 2 is metrizable (by a metric p) [3]. It is not difficult to verify that the
uniform space 2 is complete.

Let a = (a1,as,a3,a4) € R*, a; > 0,4 = 1,2,3,4 and let «, 3, v be positive numbers
such that 1 < 8 < a, 8 < v, v > 1. Denote by M(a, 3,7, a) the set of all functions f € A
such that:

f(w)pa T) Z a1|w|a - a2|p|ﬁ + a3|r|’)’ — Q4 for all (wap) T) € R3; (12)

f, 0f/Op € C?, af/or € C3, 8*f)0r* (w,p,r) > 0 for all (w,p,r) € R?; (1.3)

there is a monotone increasing function My : [0, 00) — [0, 00) such that for every (w,p,r) €
R3
sup{f(w,p,r), |0f [Ow(w,p,7)|, [0f/Op(w,p,r)|, |0f/0r(w,p,r)[} <

M (w] + [pD) (L + [r7). (1.4)

Denote by M(a, 3,7, a) the closure of M(c, B,7,a) in A. We consider the topological
subspace M(a, B,7,a) C 2A with the relative topology. Let f € M(a, B,v,a). Of special
interest is the minimal long-run average cost growth rate

T—~+oco

T
u(f) = inf {lim infT_l/0 Fflw(t),w' (t),w" (t))dt: w € A$} , (1.5)

where
A, = {v e W20, 0)): (v(0),v'(0)) = }.

loc

It is easy to verify that u(f) is well defined and is independent of the initial vector z. A
function w € W, ([0,00)) is called an (f)-good function if the function

T
¢l T — /0 [f(w(t),w'(t),w"(t)) — p(f)ldt, T € (0,00)

is bounded. For every w € W;>!([0,00)) the function ¢/, is either bounded or diverges to

loc

+00 as T — 400 and moreover, if ¢/ is a bounded function, then

sup{|(w(t), w'(t))]: t € [0,00)} < o0
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[14, Proposition 3.5]. Leizarowitz and Mizel [4] established that for every f € M(a, 8,7, a)
satisfying u(f) < inf{f(w,0,s): (w,s) € R*} there exists a periodic (f)-good function. In
[13] it was shown that this resut is valid for every f € M(«, 5,7, a).

Let f € M(a, 3,7, a). For each T > 0 define a function Ujf,: R?> x R?> = R by

T
U%(:n,y) =inf {/0 flw(t),w' (t),w" (t))dt: w € W1([0,TY)),

(w(0),w'(0)) = z and (w(T),w'(T)) = y}. (1.6)

In [4], analyzing problem (P..) Leizarowitz and Mizel studied the function UZ: R? x R? —
R, T > 0 and established the following representation formula

Ul(z,y) = Tu(f) +© (x) — 7/ (y) + 04(2,y), 2,y € R*, T >0, (1.7)

where 7. R?> - R and (T, z,y) — Gé(x,y), z,y € R?, T > 0 are continuous functions,

T—oco

T
(@) :inf{liminf /0 [F(w(t), w' (8), 0" (8) — u(f)]dt:
w € W2L(0, 50)) and (w(0), w'(0)) = x} ve R, (18)

Gé(x,y) > 0 for each T > 0, and each z,y € R?, and for every T > 0, and every =z € R?
there is y € R? satisfying 87.(x,y) = 0.

Leizarowitz and Mizel established the representation formula for any integrand f €
M(a, 8,7, a), but their result also holds for every f € M(a, B,7,a) without change in the
proofs.

Denote by | - | the Euclidean norm in R™. For 7 > 0 and v € W2([0,7]) we define
X,:[0,7] = R? as follows:

X, (t) = (v(t),v'(t)), t €[0,7].

We also use this definition for v € W, ([0, 00)) and v € W} (R).
Put - -
Djt:Djt(a{7/67fy7 a)’ m: m(O{’ﬂ”Y’a)'

We consider functionals of the form

T
IN(Ty, Ty, v) = ; fu(t),v'(t),v" (t))dt, (1.9)

DTy, Ty, 0) = I(T1, To,0) = (Tz = TOu(f) — o/ (Xo(T)) + 7/ (X (T)), (1.10)
where —oo < T} < Tz < +00, v € W2 ([T1,Ts]) and f € 9.
We denote by mes(E) the Lebesgue measure of a measurable set £ C R and by int(D)

the interior of a subset D of a metric space.
If v € W2 ([0,00)) satisfies

sup{| X, ()] : t €[0,00)} < 00,
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then the set of limiting points of X, (¢) as ¢t — oo is denoted by Q(v).
Denote by Card(A) the cardinality of the set A. If f € M, J = [T}, T] with Ty, > T},
v € W2L([T1,Ts]), then we set

I/ (J,v) =TTy, Ty, v).

The main results in this paper deal with the so-called turnpike properties of the varia-
tional problems (P). To have this property means, roughly speaking, that the approximate
solutions of the problems (P) are determined mainly by the integrand, and are essentially
independent of the choice of interval and endpoint conditions.

Turnpike properties are well known in mathematical economics. The term was first
coined by Samuelson in 1948 (see [12]) where he showed that an efficient expanding economy
would spend most of the time in the vicinity of a balanced equilibrium path (also called a von
Neumann path). This property was further investigated for optimal trajectories of models
of economic dynamics (see, for example, [5, 11] and the references mentioned there).

The turnpike properties of problem (P) were studied in [9, 10, 14, 15]. In [15] we
established the existence of an everywhere dense Gs-subset F C M such that each integrand
f € F has the following turnpike property:

There exists a nonempty compact set H(f) C R? depending only on the function f
such that for any € > 0 there exist constants L, L» > 0 which depend only on |z|,|y| and
e such that for each optimal solution v of problem (P) and each 7 € [Ly,T — L] the set
{(v(t),v'(t)) : t €[r,7+ Lz} is equal to the set H(f) up to € in the Hausdorff metric.

In [9, 15] we considered certain important subspaces of the space 9t equipped with
natural uniformities and showed that each of them contains an everywhere dense G5 subset
such that each its element f has the following two properties:

The problem (P, ) has a unique up to translation periodic minimizer w.

Let T, > 0 be a period of w. For any ¢ > 0 there exists a constant L > 0 which
depends only on |z|, |y| and € such that for each optimal solution v of problem (P) and each
T €[L, T —L—T,] there exists s € [0,T,,) such that

[(v(T + 1), (T + 1)) — (w(s + t),w'(s + t))] < e for each t € [0, T

The results of [9, 15] establish that most integrands (in the sense of Baire’s categories)
have the turnpike properties. Since the space 9t and its subspaces considered in [9, 15] con-
tain integrands which do not have the turnpike properties these results cannot be essentially
improved. Nevertheless, some questions are still open. It is very important and interesting
to obtain some knowledge about the structure of extremals of problem (P) with arbitrary
integrand f € 9.

In this paper we show (see Theorem 2.1) that for each integrand f € 9 the following
property holds: For each pair of positive numbers ¢,[ there exists a constant L > [ which
depends only on |z|,|y|,! and e such that for each optimal solution v of problem (P) and
each closed subinterval D € [0,T] of length L there exists a closed subinterval Dy C D of
length [ and a periodic minimizer w of problem (P.,) such that

[(v(t),v'(t)) — (w(t),w'(t))| < € for each t € D;.

Main Results

Let f € 9. Denote by o(f) the set of all w € T/Vlicl (R) which have the following property:
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There is T, > 0 such that
w(t + Ty) = w(t) for all t € R and I7(0, Ty, w) = pu(f)T- (2.1)

In other words o(f) is the set of all periodic minimizers of (P,,). By Theorem 4.1 of

[13], o(f) # 0.

The following result established in [9, Lemma 3.1] describes the structure of periodic
minimizers of (Px).

Proposition 2.1. Let f € 9. Assume that w € o(f),
w(0) = inf{w(t) : t € R}

and w'(t) # 0 for some t € R. Then there exist 7 (w) > 0 and 7(w) > 71 (w) such that the
function w is strictly increasing on [0, 7 (w)], w is strictly decreasing in [1(w), T(w)],

w(m (w)) =sup{w(t) : t € R} and w(t + 7(w)) = w(t) for all t € R.

Corollary 2.1. Let f € M, to € R, w € o(f),
w'(t) # 0 for some t € R and w(ty) = inf{w(t) : t € R}.

Then there exist T (w) > 0 and T(w) > 71 (w) such that the function w is strictly increasing
in [to, to + 71 (w)], w is strictly descreasing in [ty + T (w),to + T(w)],

w(ty + 71 (w)) = sup{w(t) : t € R} and w(t + 7(w)) = w(t) for all t € R.

Let f € M. By Corollary 2.1, each w € o(f) which is not a constant has a minimal
period which will be denoted by 7(w). Put

o(f,0) ={w € o(f) : wis a constant}. (2.2)
For each T' > 0 set
o(f,T)=0(f,0)U{w € o(f) : w is not a constant and 7(w) < T'}. (2.3)

The following theorem is our main result.

Theorem 2.1. Let f € M and let I, Mo, My, € be positive numbers. Then there exist L > 1
and a neighborhood U of f in I such that for each g € U, each T > L and each v €
W2L([0,T)) which satisfies

|(0(0),v"(0))1, |(v(T),v"(T))| < Mo,

19(0,T,v) < Up((0(0),v'(0)), (v(T),v"(T))) + My

the following property holds: For each s € [0,T — L] there are s € [s,s+ L—1] and w € o(f)
such that

[(v(s1 +t),v'(s1 + 1) — (w(t),w'(t))] <€ for all t €]0,1]. (2.4)

Theorem 2.1 will be proved in Section 5.
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The next theorem which will be proved in Section 6 describes the structure of good
functions.

Theorem 2.2. Let f € MM and let I, e be positive numbers. Then there exist L > | and
a neighborhood U of f in M such that for each g € U and each (g)-good function v €
W2’1([0,oo)) there exist Ty > 0 such that the following property holds: For each s > Ty

loc

there are s1 € [s,s+ L —1] and w € o(f) such that inequality (2.4) is valid.

The next two results which will be proved in Section 7 describe the structure of approx-
imate solutions of problem (P.,).

Theorem 2.3. Let f € M, 1, e be positive numbers and let v € W2’1([0,oo)) satisfy

loc

limsup 77117(0, T, v) = u(f)

T—oo
and
sup{|(v(t),v'(t))| : t €[0,00)} < 0. (2.5)
Then there exists Lo > [ such that the following assertion holds: For each ~v > 0 there is
T, > Lo such that for each T' > T, there are a finite number of closed intervals Ji, ..., Jq,
such that
ar <17, (2.6)
mes(J;) < Lo, i=1,...,qr, (2.7)
int(J;) Nint(J,) = 0 for each pair of integers
i,p € {1,...,qr} such that i # p, (2.8)
and if
s €10,T — Lo] and [s,s + Lo]NJ; =0 for alli=1,...,qr, (2.9)

then there are s1 € [s,s + Lo — ] and w € o(f) such that (2.4) is valid.

Theorem 2.4. Let f € M, [, € be positive numbers and let v € VVlQOCI([O, 00)) satisfy (2.5).
Assume that there ezists a strictly increasing sequence of positive numbers {1;}52, such that
lim; o T; = oo and

lim T, 17(0, T;,v) = u(f). (2.10)

i—00
Then there exists Ly > 1 such that the following assertion holds: For each vy > 0 there is a
natural number j., with T; > Lo such that for each integer j > j. the inequality T; > Lo
holds and there are a finite number of closed intervals Jy,. .., J,, such that
q; < T, mes(J;) < Lo for alli=1,...,q;,
int(J;) Nint(J,) = 0 for each pair of integers
i,p € {1,...,q;} such that i # p,

and if
s €[0,T; — Lo] and [s,s+ LolNJ; =0 for all i =1,...,4q;,

then there are s1 € [s,5 + Lo — 1] and w € o(f) such that (2.4) is valid.
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Concretization of the Main Results

In [9, Lemma 3.2] it was proved the following result.
Proposition 3.1. Let f € I satisfy

wu(f) <inf{f(¢,0,0): t € R}.

Then no element of o(f) is a constant and sup{r(w): w € o(f)} < 0.

Let f € 9 satisfy
u(f) <inf{f(¢,0,0): t € R}.

We can choose [ in Theorems 2.1-2.4 as

[ =ksup{r(w): weoa(f)}

where k is a large natural number. Let L > [ be as guaranteed by Theorem 2.1. If an
approximate solution v of problem (P) satisfies conditions of Theorem 2.1, then for each
closed subinterval D € [0,T] of length L there exists a closed subinterval Dy C D of length
Esup{r(w) : w € o(f)} and a periodic minimizer w of problem (P) such that

[(v(t),v'(t)) — (w(t),w'(t))| < € for each t € D;.

Clearly, the restriction of v to interval D; is a good approximation of the periodic mini-
mizer w.

If u(f) = inf{f(¢,0,0) : ¢ € R}, then there is a periodic minimizer w € o(f) which is
a constant and Proposition 3.1 does not hold. Namely, the set {r(w) : w € o(f)} can be
unbounded. In this case the turnpike property in Theorems 2.1-2.4 (see inequality (2.4))
does not provide sufficient information about the periodic minimizer w if its period is larger
than [.

Now we state the main result of this section which will be proved in Section 9. This
result is a concretization of Theorem 2.1.

Theorem 3.1. Let f € 9 and let My, My, €,y be positive numbers. Then there exists h > I
such that the following assertion holds: For each | > h there are L > 1 and a neighborhood
U of f in I such that for each g € U, each T > L, each v € W*([0,T]) satisfying

|(0(0),v"(0))], [(v(T),v(T))] < Mo,
19(0, T, v) < Up((0(0),v'(0)), (v(T),v'(T))) + My (3.1)

and each s € [0,T — L] there is s1 € [s,s + L — ] such that at least one of the following
properties holds:
(i) there exists w € o(f, h) such that

(W51 +1),0'(51 + 8)) — (w(t), w! ()] < € for all t € [0,1]; (3:2)
(ii) for each T € [s1,s1 + 1 — h] there are 7y € [T,7 +h —ly] and & € o(f,0) such that

[(v(my +t),v" (11 + 1)) — (£(0),0)| < e for all t € ]0,1o]. (3.3)
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The next theorem is a concretization of Theorem 2.2. It will be proved in Section 10.

Theorem 3.2. Let f € M and let ly, e be positive numbers. Then there exists h > ly such
that the following assertion holds: For each l > h there are L > | and a neighborhood U of f
in M such that for each g € U, each (g)-good function v € Wli’cl([O, 00)) and each sufficiently
large number s there is sy € [s,s + L — 1] such that at least one of the properties (i) and
(ii) of Theorem 3.1 holds.

The next two theorems describe the structure of approximate solutions of problem (Ps.).
They will be proved in Section 11.

Theorem 3.3. Let f € 9 and v € W21 ([0,00)) satisfy

sup{|(v(t),v'())] : t € [0,00)} < o, (3.4)
lijryjup T7117(0,T,v) = p(f). (3.5)

Assume that €,y are positive numbers. Then there exists h > ly such that for each | > h
there is L > | for which the following assertion holds: For each v > 0 there is T, > L such

that for each T > T, there are a finite number of closed intervals Jy, ..., J; such that
q <7, (3.6)
mes(J;) <L, i=1,...,q, (3.7)
int(J;) Nint(J,) = 0 for each pair of integers
i,p € {1,...,q} satisfying i #p (3.8)
and if
sef0,T—1L], [s,s+LINnJ;=0,i=1,...,q, (3.9)

then there is sy € [s,s + L — 1] such that at least one of the properties (i), (ii) of Theorem
3.1 holds.

Theorem 3.4. Let f € M, v € W2([0,00)) satisfy (3.4) and let {T;}>, be a strictly

loc
increasing sequence of positive numbers such that lim;_, ., T; = oo and

lim T, 17(0, Ty, v) = u(f). (3.10)
71— 00
Assume that € > 0, lg > 0. Then there exists h > ly such that for each | > h there is L > 1
such that the following assertion holds: For each v > 0 there is a natural number i, such

that T;, > L and that for each integer i > i~ there are a finite number of closed intervals
Ji,...,Jq such that

q <1, (3.11)

(3.7), (3.8) hold and that for each number s satisfying (3.9) there is s1 € [s,s + L —1] for
which at least one of the properties (i), (ii) of Theorem 3.1 holds.
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Preliminary Results

In the sequel we use the following result [15, Proposition 5.1].

Proposition 4.1. Let f € 9. Then there exist a neighborhood U of f in M and a number
S > 0 such that for every g € U and every (g)-good function v,

| X, (t)] < S for all large enough t.

Proposition 4.2. Let f € M and let My, Ms,c be positive numbers. Then there exist a
neighborhood U of f in M and S > 0 such that the following assertion holds: If g € U,
Ty >0, Ty > Ty +cand if v e WHH([Ty, Tz]) satisfies

|Xo(T1)], |Xo(T)| < My and I9(Th, To,v) < Ug, 7, (Xo(T1), Xo(T2)) + Mo,

then
| X, (8)| < S for all t € [Ty, Ts].

For this result we refer the reader to [4] (see the proof of Proposition 4.4).
The next two results were obtained in [15, Propositions 3.1 and 3.2].

Proposition 4.3. Let f € M and let 0 < ¢y < 2 < 00, ¢3 > 0, € € (0,1). Then there
exists a neighborhood V' of f in 9 such that for every g € V', every T € [c1,¢2], and each
x,y € R? satisfying |x|, y| < c3, the inequality |U%(w,y) — Ud(x,y)| < € holds.

Proposition 4.4. Let f € M and let 0 < ¢ < ¢z < o0, € >0, D > 0. Then there
exists a neighborhood V' of f in O such that for every g € V, every T € [c1,c2], and every
w € W20, T] satisfying

min{I7(0,T,w), (0, T,w)} < D
the inequality |I7(0,T,w) — I9(0,T,w)| < € holds.
The next useful result was proved in [9, Lemma 2.6].

Proposition 4.5. Let f € 9. Then for every compact set E C R? there exists a constant
M > 0 such that for every T > 1

Ul(z,y) < Tu(f) + M for all z,y € E.
Proposition 4.5 implies the following proposition.

Proposition 4.6. Assume that f € M, v € Wli’cl([o,oo)), the set {X,(t) : t € [0,00)} is
bounded and that there is My > 0 for which

17(0,T,v) <UL(X,(0), X,(T)) + My for all T > 0.

Then v is (f)-good.

In the sequal we also use the following auxiliary results.
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Proposition 4.7.[10, Proposition 2.3] Let f € 9 and let w € W2 ([0, 00)) be an (f)-good

loc

function. Let {&x}52, C (0,00) be a sequence such that § — oo as k — oo and let uy,
k=1,2,... be the functions given by
uk(t) = w(t + &), (=& <t < o00).

Then there exists a subsequence {uy, }32, of {ur}y>, and u € W27 (R') such that

(ur;,up,) = (w,u') as i — oo uniformly on [—T,T] for all T > 0,
up, — u'" as i — oo weakly in LY[=T,T] for all T >0,
LTy, Ty,u) = 0 for each Ty € R, Ty > Tt;
{(u(t),d'(t)) : t € R} C Qv).

Note that the parameter v was introduced in Introduction and LY[—T,T] is the space of
all Lebesgue measurable functions z(t), t € [-T,T] for which there exists a finite integral

[T () dt.

Proposition 4.8. /9, Lemma 2.8] Let f € M and Ty > Ty and let wy, w2 € W3H([Ty, T3))
satisfy
Ff(Tl,TQ,’LUl) = Ff(Tl,TQ,U)Q) = 0

If there is T € (T1,T2) such that X, (T) = Xy, (T), then wy = wy in [Ty, Ts].

Proposition 4.9. [9, Lemma 2.5] Let f € MM, v € Wli’cl([O, o0)) be an (f)-good function and
let € € Q(v). Then there is u € W2 (R') such that

loc
X.(t) € Q) for allt € R, X,(0) =&, DY (=T,T,u) =0 for all T > 0.
Proposition 4.10. [10, Lemma 3.6] Assume that f € M and v € Wli’cl([O, 00)) satisfies
sup{| X, (1) ¢ € [0,00)} < o5,
17(0,T,v) = UL(X,(0), X, (T)) for all T > 0.
Then there is w € o(f) such that Q(w) C Q(v).

Proposition 4.11. Assume that f € M, v € W2'([0,0)),

loc
sup{| X, (¢)| : t €[0,00)} < 00 (4.1)
and that there is My > 0 such that
17(0,T,v) < UL(X,(0), X,(T)) + My for all T > 0. (4.2)

Then there are a sequence of positive numbers {&;}52, such thatlim;_, & = o0 and u € o(f)
such that the sequence of functions {u;}52, defined by

ui(t) =v(t+ &), (=& <t <o) (4.3)
has the following property:
(wi,ul) = (u,u') as i — oo uniformly on [-T,T],
ul = ' asi — oo weakly in LV[—T,T) (4.4)

for all T > 0.
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Proof. By Proposition 4.6, (4.1) and (4.2) the function v is (f)-good. In view of Proposition
4.9 there is vy € Wfocl (R) such that

Ff(Tl,Tg,vl) =0foreach Ty € R, T, > T} (4.5)

and
X, (t) € Qv) for all t € R.

Clearly, Q(vy) C Q(v). Proposition 4.10 and (4.5) imply that there is u € o(f) for which
Qu) C Qv).

It is not difficult to see that Q(u) C Q(v). There exists a sequence {{;}32, C (0,00) such
that lim; . & = oo and

lim X, (&) = Xu(0). (4.6)

i—00

Consider a sequence of functions {u;}$2, defined by (4.3). It follows from Proposition 4.7
that there are a subsequence {u;, }32, of {u;}32, and @ € W' (R) such that

(wiy,uj, ) = (@,0") as k — oo uniformly on (=7, T) for all T > 0, (4.7)

ug, — " as k — oo weakly in LY[-T,T] for all T > 0

and

/(=T,T,i) =0 for all T > 0. (4.8)
By (4.7), (4.6) and (4.3),

Xa(0) = lim X, (&) = X (0). (4.9)

Since u € o(f) it follows from (4.8), (4.9) and Proposition 4.8 that v = @ on R. The
proposition is proved. O

Proof of Theorem 2.1

Assume that Theorem 2.1 does not hold. Then for each natural number n there exist f,, € M
such that

p(f, fn) < 1/n, (5.1)

a number
T, >n+1, (5.2)
a function v, € W%(]0,T,]) which satisfies

X0, (O 12, (T0)] < M, (5.3)

17 (0, T, v0) < U (Xo, (0), Xo, (Tn)) + M (5.4)
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and
sn €10, T, —n—1] (5.5)
such that
sup{|X,, (s +1t) — Xy(t)| : t €[0,1]} > € (5.6)

for each w € o(f) and each s € [s,,, sn, + n].
By Proposition 4.2 and (5.1)-(5.4) there is a constant M > 0 such that

| X, (t)] < Ms for all t € [0,T),] and all natural numbers n. (5.7)
For each natural number n define u,, € W20, n + [] by
Un(t) = vp(sn +1t), t€[0,n+1] (5.8)
(see (5.5)). Relations (5.7) and (5.8) imply that
| Xu, (t)] < M, t € [0,n+1] and all natural numbers n. (5.9)
In view of (5.8) and (5.4)
(0,1 + Ly, ug) < U, (X4, (0), X, (0 + 1)) + M. (5.10)

It follows from (5.8) and from the inequality (5.6) which holds for each w € o(f), each
S € [Sn, Sn + n] and all natural numbers n that

sup{| X, (1 +1t) — Xu(t)|: t €[0,1]} > € (5.11)

for each w € o(f), each T € [0,n] and all natural numbers n.
Let k be a natural number. By (5.9) and the continuity of U,{ there is my > 0 such that

|U,{(Xun (0), X4, (k)| < my, for all integers n > k. (5.12)
In view of (5.9), (5.1) and Proposition 4.3
Ul (X4, (0), X, (k) = U™ (X4, (0), X, (k) = 0 as n — . (5.13)

Relations (5.12) and (5.13) imply that the sequence {U,f" (Xu, (0), X, (k) }oo, is bounded.
Together with (5.10) this implies that

sup{I/*(0,k,u,) : n is an integer and n > k} < oo. (5.14)
It follows from (5.14), (5.1) and Proposition 4.4 that

lim [I7(0, k,u,) — I (0, k,u,)] = 0. (5.15)

n—oo

Relations (5.15) and (5.14) imply that the sequence {I7(0,k,u,)}>°, is bounded from
above. Combined with (5.9) and the growth condition (1.2) this implies that the sequence

{ fok [ul (£)]7dt}>2 ., is bounded. Since this fact holds for any natural number & it follows
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from (5.9) that there exist a subsequence {u,,}32, of {u,}52, and u. € W} ([0, 00)) such
that for each natural number &

!
n;

(tn; 1!, ) = (ug,ul) as i — oo uniformly on [0, k], (5.16)

u,. — ul, as i — oo weakly in L7[0, k]. (5.17)

By (5.16), (5.17) and the lower semicontinuity of integral functionals [1] for each natural
number k

I7(0, k,u,) < liminf I7(0, &, u,,). (5.18)
71— 00

In view of (5.16) and (5.9)

| X, ()] < Ms for all t € [0, 00). (5.19)

It follows from (5.18), (5.15), (5.10),(5.13), (5.16) and the continuity of U,f that for each
natural number &

I7(0, kyuy) < lim inf 170, kyuy,,) = lim inf I (0, kyup,)
< liminf UL (1, (0), 12, (0)), (u, (K), iy, (K))) + M)
= lim inf[U7 ((un, (0), up,,(0)), (un, (k), up,, (k)] + My
= U} (X (0), X (F)) + M.
Thus
170, k,u.) < UJ (X, (0), X, (k) + M, for each natural number k. (5.20)

By (5.16) and (5.11) which holds for each w € o(f), each 7 € [0,n] and all natural numbers
n7

sup{| X, (T +1t) — Xyu(t)] : t €[0,1]} > €/2 (5.21)

for each 7 € [0, 00) and each w € o(f).

On the other hand it follows from (5.19), (5.20) and Proposition 4.11 that there exist a
sequence of positive numbers {£;}3°, such that lim; , § = o0 and w € o(f) such that the
sequence of functions

halt) = ua(t + &) (=& < t < o0)

satisfies
(hi, h}) = (w,w") as i = oo uniformly on [T, T] for all T' > 0,

B! — w'" as i — oo weakly in L”[-T,T] for all T > 0.
This implies that there is a natural number j such that for all ¢ € [0, 1]
€/4 2 |Xn; (1) — Xou(t)] = | Xu. (t + &) — Xu(t)].

This contradicts (5.21). The contradiction we have reached proves the theorem.
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@ Proof of Theorem 2.2

By Proposition 4.1 there exist a neighborhood U, of f in 9t and a number My such that
for every g € U and every (g)-good function v

| X, ()] < My for all large enough ¢. (6.1)

Set M; = 1. Let L > [ and a neighborhood i of f in 9t be as guaranteed by Theorem 2.1.
We may assume that

U CU. (6.2)

Let g e/ and v € Wfoj([o, 00)) be a (g)-good function. By (6.2) and (6.1) there is tg > 0
such that

|Xv(t)| S MO for all ¢ Z to. (63)
Since v is (g)-good there is Ty > to such that for each S; > Tp, Sy > 51
I9(S1,S2,v) S U§, g, (Xo(S1), Xo(S2)) + L. (6.4)

Let s > Ty and consider the function v : [s,s + L] — R. Inequalities (6.3) and (6.4) imply
that

| Xu(8)], | Xu(s + L)| < My and I'(s,s + L,v) < U (X,(s), Xo(s + L)) + 1.

By these inequalities, the choice of L, &/ and Theorem 2.1, there is s; € [s,s + L — ] and
w € o(f) such that
| Xy (51 +t) — Xy(t)] <eforalltel0,l].

This completes the proof of Theorem 2.2.

Proofs of Theorems 2.3 and 2.4

It is not difficult to prove the following auxiliary result.

Proposition 7.1. Assume that f € M and v € W' ([0,00)) satisfies

sup{|X,(t)| : t €]0,00)} < o0, (7.1)

I7(0,n,v) < oo for any natural number n. (7.2)

Then there exist a strictly increasing sequence t;, i € J where J = {0,1,2,...} or J =
{0,...,q} with an integer ¢ > 0 such that:

to =0 and T (t;,tix1,v) = 1 for each integer i > 0 satisfying i + 1 € J;

if J=10,...,q}, then Ff(tq,t,v) <1 for all t > tg;
for each T >0 the set [0, TN {t; : i € J} is finite.
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Note that the sequence t;, i € J in Proposition 7.1 is constructed by induction.

Proposition 7.2. Let f € I, [, € be positive numbers and let v € T/VZQOCI([O, 00)) satisfy (7.1)
and (7.2). Then there exists Lo > I such that the following assertion holds: Assume that
v>0,T > Ly and

T7'17(0,T,v) < /4. (7.3)

Then there are a finite number of closed intervals Ju,...,J,, such that
qr <7, (7.4)
mes(J;) < Lo, i=1,...,qr, (7.5)

int(J;) Nint(J,) = 0 for each pair of integers

i,p € {1,...,qr} such that i # p, (7.6)
and if
s €10,T — Lo] and [s,s + Lo]NJ; =0 for alli=1,...,qr, (7.7)
then there are s1 € [s,s + Lo — 1] and w € o(f) such that

| Xy (51 + 1) — Xy (t)] <€ for all t € [0,1]. (7.8)

Proof. Let a sequence t;, i € J be as guaranteed by Proposition 7.1. Set M; = 1. By (7.1)
there is M, such that

sup{|X.(t)| : t € [0,00)} < M. (7.9)
Let L > [ and a neighborhood i/ of f in 9t be as guaranteed by Theorem 2.1. Set
Lo =2L. (7.10)
Assume that v > 0, T' > Ly and (7.3) holds. There is an integer ¢ > 0 such that
ty <T, {t;: i€ J}N(t,T)=0. (7.11)

By (7.3) and the definition of t;, i € J (see Proposition 7.1),

=

Tvy/4>T70,T,v) >y T/ (ti,tiv1,v) =q. (7.12)

2

Q

Il
<)

Set
A={ieJ: i+1<q, tiv1 —t; < Lo} (7.13)
and consider the collection of closed intervals

[ti,ti+1], i e A (714)
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Note that this collection may be empty. In view of (7.13) and (7.12)

tiy1 —t; < Lo for all i € A, Card(A) < ¢ <Tv/4,

(tiystiye1) N (tiy, tinr1) = O for each 41,45 € A such that iy # is. (7.15)
Now assume that
s €[0,T — Lo], [s,5 + Lo] N [ti,tix1] = O for each i € A. (7.16)
There is j € {0, ..., ¢} such that
tj <sand (tj,s)N{t;: i€ J}=0. (7.17)

We have the following cases:
(1) Jj =g
(2) j <q,[s,s+ Lo] C [tj, tj41];
(3) 4 <4, [s;s+ Lol \ [tj, tj1] #0,j + 1 =g;
(4) j+1<q,[s,s+ Lol \ [tj, tj41] # 0.

Consider the case (1) with j = ¢. By (7.17) and (7.16), [s,s + Lo] C [t4,T]. Combined
with (7.11) and the definition of ¢;, i € J (see Proposition 7.1) this inclusion implies that

T/ (s,s + Lo,v) < T (t,,T,v) < 1.
This inequality implies that
I (s, s + Lo,v) < U} (Xu(5), Xo(s + Lo)) + L. (7.18)
It follows from (7.18), (7.9), (7.10), the choice of L,U and Theorem 2.1 that there are
s1 €ls,s+L—1]and w € o(f)

such that (7.8) holds.
Consider the case (2). Then by the definition of ¢;, i € J (see Proposition 7.1)

Ff(S,S + Lg,v) < Ff(t]',tj+1,1)) =1.

This inequality implies (7.18). It follows from (7.18), (7.9), (7.10), the choice of L and U
and Theorem 2.1 that there are s; € [s,s + L — ] and w € o(f) such that (7.8) holds.

Counsider the case (3). Then by (7.17), (7.11) and (7.16),
ti<s<tjp1=t; <s+ Ly <T. (7.19)
It follows from (7.19) and (7.10) that there is sg € [s,s + L] such that
either [sg,so + L] C [tj,tj41] or [so, S0 + L] C [tj+1,T] = [tq, T
In both cases it follows from (7.11) and the definition of ¢;, i € J (see Proposition 7.1) that

T/ (50,50 + L,v) < max{TY (t;,t;11,v), T (t,,T,v)} < 1.
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This inequality implies that
I’ (s0,50 + L,v) < UL (X, (50), Xu(s0 + L)) + 1. (7.20)

It follows from (7.20), (7.9), the choice of L and ¢ and Theorem 2.1 that there are s; €
[s0,50 + L — 1] and w € o(f) such that (7.8) holds.

Consider the case (4). By (7.17)
t;j <s<tjp1 <s+ Lo. (7.21)
Inequality (7.21) implies that
[s,8 + Lol N [tj,tj+1] # 0, [s,5+ Lol N [tj41,tj42] # 0.
Combined with (7.16) these relations imply that
Jj+1l¢g A

Together with (7.13) this relation implies that

tjt1 —t; > Lo, tjyo —tjy1 > Lo. (7.22)

In view of (7.22) and (7.21)
[S, s+ Lo] C [tj,tj+2].

Since Ly = 2L (see (7.10)) there is s € [s,s + L] such that
either [so, o + L] C [t;,tj+1] or [so, S0 + L] C [tj+1,tj+2].
In both cases it follows from the definition of ¢;, i € .J (see Proposition 7.1) that
T/ (so, 50 + L,v) < max{T7(t;,t;11,v), T (tj11,tj10,v)} = 1.

This inequality implies (7.20). It follows from (7.20), (7.9), the choice of L and U and
Theorem 2.1 that there are s; € [sg, 50 + L — 1] and w € o(f) such that (7.8) holds. This
completes the proof of the proposition. O

Proof of Theorem 2.3. It follows from (2.5) that

limsup T-'T7(0,T,v) < limsup T~ [I7(0,T,v) — Tu(f) — 7 (X,(0)) + 77 (X, (T))]

T—oo T—o0
<limsup T[I7(0,T,v) — Tu(f)] =0
T—o0
and
lim 7-'T7(0,T,v) = 0. (7.23)
T—o0

Let Ly > [ be as guaranteed by Proposition 7.2. Let v > 0. By (7.23) there is T%, > Ly
such that for each 7" > T,

7(0,T,v) < Tvy/4. (7.24)

Let T > T. Then (7.24) holds and the assertion of Theorem 2.3 follows from the choice
of Ly and Proposition 7.2. O
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Proof of Theorem 2.4. It follows from (2.10) and (2.5) that

lim T,7'T9(0,T;,v) = lim T, ' [I7(0, Ti,v) — p(£)T; — 7 (X, (0)) + 77 (X, (T7))]

i—00 2—>00
= lim T; ' [I7(0, T, w) — u(f)T;] = 0.
71— 00
Thus
lim T, 'T7(0,T;,v) = 0. (7.25)
1—> 00

Let Lo > [ be as guaranteed by Proposition 7.2. Let v > 0. By (7.25) there exists a natural
number j, such that T; > Lo and that for each integer j > j.,

T; > Lo, TY(0,T;,v) < 4T /4. (7.26)

Let an integer j > j,. Then (7.26) holds and the assertion of Theorem 2.4 follows from
the choice of Ly and Proposition 7.2. O

Auxiliary Results for Theorem 3.1

Lemma 8.1. Let f € 9 and let €,h, M be positive numbers. Then there is hg > h such
that the following assertion holds: Assume that v € W21([0, ho)),

X, (8)] < M, t € [0, hol, (8.1)
r7(0, ho,v) =0, (8.2)
either v'(t) > 0 for all t € [0, ho] or v'(t) <0 for all t € [0, ho]. (8.3)

Then there are s € [0,hg — h] and &€ € o(f,0) such that
| X, (s +t) — (£(0),0)| < € for all t € [0, h]. (8.4)

Proof. Let us assume the converse. Then for each natural number n there is v,, € W>([0,n+
h]) such that

X (D] < M, £ € [0,h+ ], (8.5)
7 (0,n+ h,v,) =0, (8.6)
either v'(t) > 0 for all t € [0,h +n] or v'(t) <0 for all t € [0,n + h) (8.7)

and that for each s € [0,n] and each £ € o(f,0)
sup{|X,, (s +t) — (£(0),0)| : t €[0,h]} > e. (8.8)
Let k be a natural number. By (8.6) for each natural number n > k
17 (0,k,v) = U} (X4, (0), Xu, (k). (8.9)

Since the function U,f is continuous it follows from (8.9) and (8.5) that the sequence
{I7(0, k,v,)}2, is bounded. Combined with (8.5) and (1.2) this implies that the sequence
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{ fok [oll (¢)|7dt}22 . is bounded. Since this fact holds for all natural numbers % it follows from

(8.5) that there are a subsequence {vy,, }32, of {v,}52, and v, € W' ([0,00)) such that for
each natural number %

!

(Vn;s vni) = (Vs v,

*

) as i — oo uniformly on [0, k],

v, — v as i — oo weakly in L0, k]. (8.10)
By (8.10) and the lower semicontinuity of integral functionals [1] for each natural number k

17(0, k,v,) < liminf I7(0,k,v,,). (8.11)

1—> 00

It follows from (8.11), (8.10) and (8.6) that for each natural number k
T/ (0, k,v.) = I7(0, b, 0) = kpa(f) = 77 (X, (0)) + 77 (X, (0))
< liminf I7(0, k,v,,) — ku(f) — lim 7/ (X, (0))

i—00 N

1—> 00

+ lim (X, (k) < lim inf r/(0,k,v,,) =0
and
I/(0,k,v,) = 0 for all natural numbers k. (8.12)
Relations (8.10) and (8.5) imply that
| X, (t)] < M, t €]0,00). (8.13)
In view of (8.10) and (8.8) for each s € [0, 00) and each £ € o(f,0),
sup{|X., (s +t) — (£(0),0)] : t € [0,h]} > €/2. (8.14)
By (8.10) and (8.7),
either v} () > 0 for all ¢ € [0, 00) or v, (t) < 0 for all ¢ € [0, c0). (8.15)
It follows from (8.13) and (8.15) that there exists

do = tllg)lo v (t). (8.16)

In view of (8.16) and Proposition 4.7 Q(v.) = (do,0) and u(f) = f(do,0,0). This contradicts
(8.14). The contradiction we have reached proves Lemma 8.1. O

Lemma 8.2. Let f € M and let €, h be positive numbers. Then there is hy > h such that
for each w € o(f) \ o(f,0) satisfying T(w) > hy the following property holds:
(C1) For each s € R there are s; € [s,s + hy — h] and £ € o(f,0) such that

| Xw(s1 +1) — (£(0),0)| <€ for allt € [0,h].
Proof. By Proposition 4.1 there is M > 0 such that

|Xw(t)] < M forall t € R and all w € o(f). (8.17)
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Let hg > h be as guaranteed by Lemma 8.1. Put
hi = 8he. (8.18)
Assume that
w € a(f)\o(f,0)and 7(w) > hy. (8.19)

We show that (C1) hods for any s € R. Evidently, it is sufficient to show that (C1) holds
for any s € [0, T(w)].

Let
s € [0, 7(w)]. (8.20)
There is to € [0, 7(w)) such that
w(to) = inf{w(t) : ¢t € R}. (8.21)
By Corollary 2.1 there is 7, € (0, 7(w)) such that

w is strictly increasing on [to, to + 71] and strictly decreasing on

[to + 71, to + T(w)]. (8.22)
Relations (8.20) and (8.19) imply that
[s,8 + h1] C [to — T(w), to + 27(w)]. (8.23)
Set
I =Is,s +h]N[to — T(w), to — 7(w) + 7],
L =Is,s +M]N[to — 7(w) + 71, o],
I3 = [s,s + hi] N [to, to + 71],
Iy =[s,s + ] N [to + 11, t0 + T(w)],
Is = [s,5s + ] N [to + T(w), to + 7(w) + 7],
Is = [s,s + ] N[to + 7(w) + 71, to + 27(w)]. (8.24)

By (8.23) and (8.24),
[s,s + hi] C U?Zlfj

and there is p € {1,2,3,4,5,6} such that
mes(I,) > hy/6 = 4ho/3. (8.25)
In view of (8.24) and (8.22)
either w'(t) > 0 for all ¢t € I, or w'(t) <0 for all ¢ € I,. (8.26)
Inequality (8.17) implies that
| Xw(t)] < M forall t € I,,. (8.27)
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Since w € o(f) we have
r/(1,,w) =0. (8.28)

It follows from (8.25), (8.26), (8.27), (8.28), the choice of hy and Lemma 8.1 that there are
a number s; and & € o(f,0) such that

[81,81 —+ h] C Ip,

| Xw(s1 +1) — (£(0),0)] <efor all t €[0,h].

Lemma 8.2 is proved. O

@ Prooof of Theorem 3.1

By Lemma 8.2 there is h > [y such that the following property holds:
(C2) For each w € o(f) \ o(f,0) satisfying 7(w) > h and each s € R there are s; €
[s,s +h —1lo] and £ € o(f,0) such that

| Xw(s1 +t)— (£(0),0)] <e/4 for all ¢ € [0,1p]. (9.1)

Let [ > h. By Theorem 2.1 there exist L > [ and a neighborhood I/ of f in 9t such that the
following property holds:
(C3) For each g € U, each T > L, each v € W21([0,T]) which satisfies

X, (0,1, (T)] < Mo, 9.2)

19(0, T, v) < UR(Xy(0), Xo(T)) + My (9:3)
and each s € [0,T — L] there are s; € [s,s + L — 1] and w € o(f) such that
| Xy(s1 4+ 1) — Xy(t)] <e/4 for all t €[0,1]. (9.4)

Assume that g € U, T > L, v € W>'([0,T]) satisfies (9.2), (9.3) and s € [0,T — L]. By
property (C3) there are

s1 €[s,s+L—1] and w € o(f) (9.5)

such that (9.4) is valid. If w € o(f, h), then property (i) of Theorem 3.1 holds.
Assume that w € o(f, h). Then w is not a constant and

T(w) > h. (9.6)
Let
T € [s1,81 +1—hl. (9.7)
In view of (9.5), (9.6) and property (C2) there exist
t1 €1 — 51,7 — 51+ h—lo] (9.8)
and

£ea(f,0) (9.9)
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such that
| Xow(ts +t) — (£(0),0)] < €/4 for all ¢ € [0, o). (9.10)
Set
T = t1 + s1. (9.11)
Relations (9.8) and (9.11) imply that

T=T-—81+81 St1+81:7'1 ST—Sl-l-h—lo-f-Sl :T+h—l0,

1 E[T,T+h—l0]. (912)
Let
t € [0,1o]. (9.13)

We show that
| X (m1 +¢) — (£(0),0)] <.

It follows from (9.13), (9.12) and (9.7) that
m+te[r,T+h] Clsi,s1 +1]. (9.14)
Combined with (9.4) this inclusion implies that
| Xo(m1 +1) = Xo(1 +t = 51)] < e/4. (9.15)

By (9.11)
T1 +t—81 :t1 + t.

Combined with (9.13) and (9.10) this equality implies that
| Xw(m + 1t —s1) = (£(0),0)] < €/4.
Together with (9.15) this inequality implies that
| Xy (m1 +1) = (£(0),0)] < €/2. (9.16)

We have shown that for each 7 satisfying (9.7) there are 71 satisfying (9.12) and £ € o(f,0)
such that (9.16) holds for all ¢ € [0, lo].
Therefore property (ii) of Theorem 3.1 holds. Theorem 3.1 is proved.

Proof of Theorem 3.2

By Proposition 4.1 there exist a neighborhood U, of f € M and a number M, such that
for every g € U and every (g)-good function v

| X, (t)| < My for all large enough t. (10.1)

Set M; = 1. Let h > ly be as guaranteed by Theorem 3.1.
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Let [ > h. By the choice of h and Theorem 3.1 there exist L > [ and a neighborhood ¢
of f in 9 such that for each g € U, each T > L, each v € W>1([0,T]) satisfying

| X0 (0)], | X (T)] < Mo,
19(0,T,v) < UL(X,(0), X,(T)) + 1 (10.2)

and each s € [0,T — L] there is 51 € [s,s+ L — 1] such that at least one of properties (i) and
(ii) of Theorem 3.1 holds.
We may assume that

UCUs. (10.3)

Let g € U and let v € W2 ([0,00)) be a (g)-good function. By (10.3) and (10.1) there is
to > 0 such that

| X, (t)] < My for all ¢t > t. (10.4)
Since v is (g)-good there is Ty > to such that for each s; > Ty, s2 > s1
I9(s1,80,v) <UI(X,(s1), Xu(s2)) + 1. (10.5)

Let s > Ty and consider the function v : [s, s+ L] = R. Inequalities (10.4) and (10.5) imply
that

| Xou(s)], | Xu(s+ L) < My and I9(s,s + L,v) < U (X,(s),Xo(s+ L)) + 1.

It follows from these inequalities and the choice of L and U that there is s; € [s,s + L — ]
such that at least one of properties (i) and (ii) of Theorem 3.1 holds. Theorem 3.2 is proved.

Proofs of Theorems 3.3 and 3.4

Proposition 11.1. Let f € 9 and let €,y be positive numbers. Then there is h > ly such
that for each v € W2 ([0, 00)) satisfying

loc
sup{|X,(t)| : t €]0,00)} < o0, (11.1)

I7(0,n,v) < oo for any natural number n (11.2)

and each | > h there is L > 1 such that the following assertion holds:
(A1) Assume thaty >0, T > L and

T='T7(0,T,v) < v/4. (11.3)
Then there are a finite number of closed intervals Ju,...,J; such that
q <7, (11.4)
mes(J;) <L, i=1,...,q, (11.5)
int(J;) Nint(J,) = 0 for each pair of (11.1)
integers i,p € {1,...,q} such that i #p (11.6)
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and if
s€[0,T—L]and[s,s+LINJ;=0,i=1,...,q, (11.7)

then there is sy € [s,s + L — 1] such that at least one of properties (i), (i) of Theorem 3.1
holds.

Proof. By Lemma 8.2 there is h > lp such that property (C2) holds (see Section 9). Let
v € W2E([0,00)) satisfy (11.1) and (11.2) and let [ > h. By Proposition 7.2 there exists
L > [ such that the following property holds:

(C4) For each v > 0, T > L satisfying (11.3) there are a finite number of closed intervals
Ji,...,Jy such that (11.4), (11.5) and (11.6) hold and if a number s satisfies (11.7), then
there are s1 € [s,s + L — ] and w € o(f) such that

| X, (51 +t) — Xo(t)] < e/4 for all t € [0,1]. (11.8)

Now assume that v > 0 and T' > L satisfy (11.3). Let J, ..., J, be a finite number of closed
intervals as guaranteed by property (C4).

To complete the proof of the proposition we only need to show that for each s satisfying
(11.7) there is s; € [s,s+ L — ] such that at least one of properties (i) and (ii) of Theorem
3.1 holds.

Assume that s satisfies (11.7). By property (C4) there are
s1 €[s,s +L—1] and w € o(f) (11.9)

such that (11.8) is valid.
If w € o(f,h), then property (i) of Theorem 3.1 holds.

Assume that w € o(f, h). Then w is not a constant and
r(w) > h. (11.10)
Let
T € [s1,s1 +1—h]. (11.11)

By (11.9), (11.10) and property (C2) (see section 9) there exist

ty € [T — 51,7 — 81 +h —lo] (11.12)
and
£ea(f,0) (11.13)
such that
| Xo(ts +1) — (€(0),0)] < e/4, t € [0,1o]. (11.14)
Set

T =1t + 1. (11.15)
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Relations (11.15) and (11.12) imply that

T=7T—81+s1<t1+s1 <7 <7—8+h—1yg+s;

o, (11.2)
71 € [1,7 +h—1l]. (11.16)

Let
t € [0, 1]. (11.17)

We show that | X, (m +t) — (£(0),0)] <e. In view of (11.16) and (11.11)
T+t e[r,T+h] Clsi,s1 +1]. (11.18)
Combined with (11.8) this inclusion implies that
|Xo(m1 4+ 1) — Xo(m +t—s1)] < €/4 (11.19)

By (11.15)
T +t—s1 =t +1t.

Combined with (11.14) and (11.17) this equality implies that
| Xw(m + 1t —s1) = (£(0),0)] < €/4.
Together with (11.19) this inequality implies that
| Xo (1 +1) = (£(0),0)] < €/2. (11.20)

We have shown that for each 7 satisfying (11.11) there are 7 satisfying (11.16) and & €
o(f,0) such that (11.20) holds for all ¢ € [0,lp]. Thus property (ii) of Theorem 3.1 holds.
Proposition 11.1 is proved. O

Proof of Theorem 3.3. By (3.4) and (3.5)

limsup 7T/ (0,T,v) = limsup T [I7(0,T,v) — u(f)T — 77 (X,(0)) + 77 (X (T))]

T—o0 T—o0
=limsup T '17(0,T,v) — u(f) =0
T—oc0
and
limsup T~'T/(0,T,v) = 0. (11.21)
T—oco

Let h > Iy be as guaranteed by Proposition 11.1. Let I > h. By the choice of h and
Proposition 11.1 there is L > [ such that Assertion (A1) of Proposition 11.1 holds.

Let v > 0. By (11.21) there is T, > L such that for each T' > T.,,
T='17(0,T,v) < /4. (11.22)

Let T > T.,. Then (11.22) holds and the assertion of the theorem follows from assertion
(A1) of Proposition 11.1. O
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Proof of Theorem 3.4. By (3.4) and (3.10)
lim 7,7'T7(0, T;,v) = lim T, [I7(0,T;,v) — p(f)T; — 78 (X, (0)) + 77 (X, (T}))]

1—> 00 1—> 00

= lim T, '[I7(0,T;,v) — u(f)Ti] = 0. (11.23)

i—00

Let h > Iy be as guaranteed by Proposition 11.1. Let [ > h. By the choice of h and
Proposition 11.1 there is L > h such that Assertion (A1) of Proposition 11.1 holds.

Let v > 0. By (11.23) there is a natural number i, such that T; > L and

T,7'T7(0,Ti,v) < /4 for all integers i > i-. (11.24)
Let i > i, be an integer. Then (11.24) is valid and the assertion of the theorem follows from
assertion (A1) of Proposition 11.1. O
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