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Abstract� In many practical problems available are only some sample points� not the full distribution
information� of the random variables involved in the given stochastic programming problems� Then a
sample problem can be formed� The optimal solution xN of this sample program is a point estimation of the
unknown �true� optimal solution x

� of the original stochastic program� Then we have to make a statistical
inference for the true solution� The methods of making statistical inference in classical statistics do not
apply for stochastic programs� In this paper we study how this kind of statistical inference can be made�
We will construct the con�dence regions �including con�dence intervals� for x� and the linear form v

�
x
��
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� Introduction

Suppose we have the following stochastic program

min Ef�x� �� ���

s�t� x � S � Rn�

where � is a random vector and

S � fx � gi�x� � �� i � �� � � � � p � hj�x� � �� j � p� �� � � � � qg�

Denote by x� the unique optimal solution and by ���� ��� the corresponding Lagrangian
multipliers of program ����

In practice it is quite often that we do not have the full information on the probability
distribution of �	 but only some sample points of � are available� Let t�� � � � � tN be the sample
points of �� Then we can form a sample program of ��� as

min N��
PN

k�� f�x� tk� �
�

s�t� x � S�

�Prof� R�T� Rockafellar �coauthored with Alan King� investigated the asymptotic distribution of the
optimal solution of stochastic programming� Their result is a foundation of statistical inference for stochastic
programming�



��� JINDE WANG

Denote the optimal solution of �
� by xN and the associated Lagrangian multiplier vector
by ��N � �N�� The solution �xN � �N � �N � is a point estimator of the unknown true solution
�x�� ��� ���� The next step is to infer	 based on �xN � �N � �N �	 where the �true� solution
could be�

Several authors have done some work on the statistical problems of stochastic programs�
For example	 Dupacova and Wets ����� and Wets ���� showed that xN is a consistent

estimator of x� and N
�
� �xN � x�� is approximately normal under some regular conditions�

King ����� and King and Rockafellar ���� pointed out that usually N
�
� �xN � x�� is not

approximately normal	 but is approximately piecewise normally distributed� They proved
that N

�
� �xN �x

�� converges in distribution to the optimal solution of a stochastic quadratic
program� Similar results are given also by Shapiro ����	 ���� Zhao ���� obtained a

similar but more direct result that N
�
� �xN � x�� converges in distribution to the optimal

solution z� of the following stochastic quadratic program�

min �

�
z�Hz � z��

s�t� z � D � Rn�

where � has normal distribution N���K� with K � covL�x�� ��	 where

L�x� �� � f�x� �� � ��g�x� � ��h�x��

H � Er�
xxL�x

�� �� � E�r�
xxf�x

�� �� � ��
�r�

xxg�x
�� � ��

�r�
xxh�x

����

D � fz � rxgi�x
���z � �� i � I��rxgi�x

���z � �� i � I��

rxhj�x
��
�
z � �� j � p� �� � � � � qg�

I� � fi � gi�x
�� � �� ��i � �� i � �� � � � � pg�

I� � fi � gi�x
�� � �� ��i � �� i � �� � � � � pg�

�� � f���� � � � � �
�
pg�

��N � f��N�� � � � � �
�
Npg�

As � has a symmetric distribution	 the distribution of z is the same as that of the optimal
solution of the program

min �

�
z�Hz � z�� ���

s�t z � D�

In classical statistical problems	 having the estimator and the associated �approximate�
distribution is enough for making statistical inference� However it is not the case in making
statistical inference for stochastic programs� The main causes for that are as follows� Firstly	
since there is no explicit formula of optimal solutions of quadratic programs and the index
subsets I� and I� are unknown �they are related to the unknown solution x��	 we do not

know the distribution of z�� secondly	 as N
�
� �xN �x�� is piecewise normally distributed	 we

do not know which piece of the distribution of N
�
� �xN � x�� should be used for the given

data� thirdly it is not known how to treat constraints in the problems� These points are not
considered in the classical statistics� Thus we have to �nd ways to solve these problems�
That is the purpose of this article�

This paper is organized as follows� In Section 
 we give the explicit expression of the
asymptotic distribution of N

�
� �xN � x�� in each possible case� Section � is devoted to

constructing con�dence intervals and for linear forms v�x� under the assumption that the
constraints in program ��� are linear� The con�dence region for x� is constructed in Section ��
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� The Representation of Asymptotic Distribution

To obtain the �approximate� distribution of N
�
� �xN � x�� is the most important step for

making statistical inference on x�� As mentioned in section �	 it has been proved that
N

�
� �xN�x

�� converges in distribution to the optimal solution z� of the program ���� However
the theory of quadratic programming does not provide an explicit formula for the optimal
solutions� Thus the distribution of z� is still not ready� Here we go another way to solve
this problem�

For simplicity of notation	 denote the matrix �rxgi�x
��� i � I�� by rxg

�	 �rxgi�x
��� i �

I�� by rxg
� and rxhj�x

��� j � p� �� � � � � q by rxh� Let

H� �

�
BBBB�

H rxg
� rxh

�rxg
��� � �

�rxh�
� � �

�
CCCCA �

Hi������ik �

�
BBBBBBBBBBBBBBBBBB�

H rxg
� rxgi� � � � rxgik rxh

�rxg
��� � � � � �

�rxg
�
i�
�

���
���

���
��� � � �

���

�rxg
�
ik
� � � � � �

�rxh�
� � � � � �

�
CCCCCCCCCCCCCCCCCCA

� ���

where i�� � � � � ik � I��We assume H is positive de�nite� Then H� and Hi������ik are invertible
under the linear independence assumption on rgi and rhj � Partition H��

� and H��
i����ik

as
follows

H��
� �

�
BBBBBB�

M� R� S�

R�� A�� A��

S�� A�� A��

�
CCCCCCA
� �Hi����ik �

�� �

�
BBBB�

Mi����ik Ri����ik Si����ik

R�i����ik B�� B��

S�i����ik B�� B��

�
CCCCA ���

where M� and M are n � n�matrices	the column numbers of R� and S� correspond to the
column numbers of rxg

� and rxh respectively	 R and S are similarly de�ned� As H is
symmetric	so are H� and Hi����ik and their inverses� Thus ��� is a reasonable form of a
partition of H��

� and �Hi����ik �
���

Obviously the optimal solution of program ��� lies either in the relative interior or on
the relative boundary of the feasible solution set D� The relative boundary of D consists of
its faces and their intersections� Denote by D�	 Dij and Dj����jk the relative interior	 faces
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and the intersections of faces	 respectively� Thus

D� � fz � rxg
�
iz � �� i � I�� rxg

�
iz � �� i � I�� rxhjz � �� j � p� �� � � � � qg

Dij � fz � rxg
�
iz � �� i � I� n ij � rxg

�
iz � �� i � I� � ij � rxh

�
jz � �� j � p� �� � � � � qg

Dj����jk � fz � rxg
�
iz � �� i � I� n fjl� l � �� � � � � kg�

rxg
�
iz � �� i � I� � fjl� l � �� � � � � k� � �h�jz � �� j � p� �� � � � � qg�

The distribution of z� in each part of D can be given below�

Theorem �� Assume H is positive de�nite and the vectors frxgi� i � I� � I��rxhj � j �
p� �� � � � � qg are linearly independent� Then

�� z� in D� has the expression z
� �M���


� z� on Di����ik has the expression z� �Mi����ik��

Proof� By the Kuhn�Tucker conditions the points z in D� being optimal to program ���
must satisfy the equations

Hz � � �
X
i�I�

�irxgi �

qX
j�p��

�jrxhj � ��

rxg
�
iz � �� i � I��

rxh
�
jz � �� j � p� �� � � � � q�

The matrix form of this equation system can be written as

H�

�
� z

�

�

�
A �

�
� �

�
�

�
A �

The solution of this system is

�z �M��� �� � R���� �� � S����

This is derived from the necessary optimality condition� The objective function of program
��� is a positive de�nite quadratic function	 thus �z is the optimal solution in D� of ��� if
and only if the following feasibility conditions can be satis�ed	 i�e�	

rxg
�
i�z � rxg

�
iM�� � �� i � I�� ��i � R��� � �� i � I�� ���

The expression �z �M�� is the �rst assertion of the theorem�
If	 for some sample values of �	 M�� can not satisfy the constraints ���	 the optimal

solution must lie on the relative boundary of D� Let us �nd the expression of the optimal
solution on the face Di����jk � By the Kuhn�Tucker conditions the optimal solution of program
��� located on Di����jk must satisfy the equations

Hz � � �
X

i�I��i������ik

�irxgi �

qX
j�p��

�jrxhj � ��

rxg
�
iz � �� i � I� � i�� � � � � ik� ���

rxh
�
jz � �� j � p� �� � � � � q�
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The solution ��z� ��� ��� of system ��� can be expressed as�
� �z

��
��

�
A � H��

i����ik

�
� �

�
�

�
A �

where � � ��p��� � � � � �q�
�	 or equivalently	

�z �Mi����ik��
�� � R�ij�� �� � S�i����ik�� ���

As H is positive de�nite	 program ��� is a convex program� Then �z in ��� is the optimal
solution and ��	 �� are the corresponding Lagrangian multipliers if and only if the following
feasibility conditions are satis�ed�

rxg
�
iMi����ik� � �� i � I� n fi�� � � � � ikg�

R�i����ik� � �� i � I� � fij � � � � � ikg�

Then the optimal solution of program ��� on Di����ik has the expression z
� �Mi����ik�� Thus

the proof of Theorem � is completed�

The results in Theorem � are one�step further than earlier results because the explicit
expressions of the asymptotic distribution of z� in each part is available now� But these
results are still not enough for making statistical inference because the index sets I�� I� are
still unknown �since the true solution x� is unknown�� The next section is devoted to show
how to overcome this di�culty�

� Statistical Inference for a Linear form v
�
x

�

In this paper we will investigate two types of statistical inference on x�� One is that for
the linear form v�x� of x�	 this is the usual form in statistics and if the objective function
is linear in x	 the con�dence bounds for v�x� is just the con�dence bounds for the optimal
value of program ���� The other is the con�dence region for x�� The latter may be of
more interest for stochastic programming	 because it asserts how far the x� can be from the
obtained estimator xN �in probabilistic sense��

In this section we make statistical inference for a linear form v�x� under the contemporary
assumption that the constraints in program ��� are linear �in fact	 nonlinearity does not cause
essential di�culty� Here we impose linearity assumption just for technical simplicity�� Then
the interested programs take the following form

min Ef�x� ��

s�t� x � S � fx � Ax � b� Cx � dg� ��

where A is an m� n�matrix and C is an m� � n�matrix	

min N��

NX
i��

f�x� ti�

s�t� x � S� ����

and

min
�



z�Hz � z��

s�t z � D � fA�iz � �� i � I�� A�iz � �� i � I�� Cz � �g� ����
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which correspond to programs ���	 �
� and ��� respectively� Their optimal solutions are
again denoted as x�	 xN and z� respectively� We will construct the con�dence intervals�

��� Con�dence Intervals of v�x�

Suppose the optimal solution xN and the associated Lagrangian multiplier vector �N have
been calculated� We try to give an interval estimation of v�x�	 where v is a given vector in
Rn� We study this problem in two di�erent cases� xN is in the relative interior or is on the
boundary of S�

����� xN � S�

In this case it holds that

A�ixN � bi� i � �� � � � �m�

CxN � d�

Then for any i � fI� � I�g � fi � Aix
� � big we have

AiN
�
� �xN � x�� � ��

CN
�
� �xN � x�� � ��

This implies that N
�
� �xN � x�� is in the relative interior D� of D�

As zN converges in distribution to z�	 then v�zN converges in distribution to v�z�� By
Theorem � the optimal solution z� in D� is distributed asM��� Thus v

�zN is approximately
distributed as v�M��	 i�e�	 normally distributed�

For a given con�dence level � we can �nd a critical value t� such that

P �j v�M�� j� t�� � �� �� ��
�

Since � is a normal random vector	 the critical value t� can be found easily� Then approxi�
mately we have the following probability statement

P �j v�N
�
� �xN � x�� j� t�� � �� �� ����

From ���� a ��� �������con�dence interval for v�x� can be constructed as

v�xN �N� �
� t� � v�x� � v�xN �N� �

� t�� ����

However this interval estimation is not ready for use� The reason for this is� the inferred x�

must be a feasible point of program ���� and thus t� and v can not be chosen arbitrarily�
Now we study how large the critical value t� can be and what kind of vectors v should be�

From ���� we see that t� is the bound of v�N
�
� �xN � x�� with x� in set S� Let L be the

segment restricted in S of a line	going through xN with direction v� Assume the contours
v�N

�
� �xN � x�� � u intersects L at x��u�� The point x��u� on L can be expressed as

x��u� � xN � 	v� Then the bound of 	 determines the bound of v�N
�
� �xN � x��� In order

to keep x��u� feasible	 we should have

Cv � �� j 	 j � �	 � min
��i�m

	i� ����

	i �

�
j
bi�A

�

ixN
A�

i
v

j� if A�v �� ��

	� if A�v � ��



STATISTICAL INFERENCE FOR STOCHASTIC PROGRAMMING ���

Therefore	 as the bound of v�N
�
� �xN � x��	 t� should satisfy

t� � max
x�

j v�N
�
� �xN � x�� j � max

�
j v�N

�
� 	v j � N

�
� �	k v k

�
�

Without loss of generality we assume that k v k� �� Thus we should restrict t� in ���� by

t� � N
�
� �	 � ����

where �	 is de�ned by ���� and v must satisfy Cv � ��

����� xN � 
S

In this case xN may be on a face or on a intersection of some faces of S� We study our
inference problem in detail only for the case that xN is on a face of S� The problem for
other cases can be solved in a similar way� Without loss of generality we assume

A�xN � b��

AixN � bi� i � 
� � � � �m ����

CxN � d�

To construct con�dence intervals for v�x�	 we have to further distinguish two subcases
that ��N� � � or ��N� � �	 where ��N� is the Lagrangian multiplier corresponding to A�xN �
b��

The case ��N� � �� In this case all nonnegative numbers are possible values of ���� This
implies that both cases

A�x
� � b� and A�x

� � b�

are possible� Hence we can make statistical inference for a linear form v�x� for those v such
that A��v � ��

Note that A��v � � implies that the angle between direction v and the inward normal of

A��x � b� is an acute angle� Again in order to see the distribution of v�N
�
� �xN �x�� with x�

in S	 it is enough to know the distribution of v�N
�
� �xN � x�� with x� on the segment L of

the line starting from xN with direction v restricted in S� The point on L can be expressed
as

x� � xN � 	v� 	 � �� ����

Then �under the assumption Cv � �� for i � I�x�� �note that � �� I�x��	 because A�x
� �

A�xN � 	A��v � bi by ��� and �
���	 it holds that

AiN
�
� �xN � x�� � ��

CN
�
� �xN � x�� � ��

Thus in this case it still holds that zN � N
�
� �xN � x�� � D�� Then by Theorem � v�zN is

approximately distributed as v�M�� is� It should be noticed that under the condition x� � L

�	 � � in �
���� v�zN is approximately distributed as v�M�� under the condition v
�M�� � ��

For a given probability level �	 we can �nd t� such that

P �j v�M�� j � t�� v�M�� � �� � �� ��
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Then approximately we have

P �j v�N
�
� �xN � x�� j � t� j x

� � L� � �� �� ���

From the probability statement �
�� a ����������con�dence interval for v�x� can be given
by

v�xN � v�x� � v�xN �N
�
� t�� �
��

t� � �t���

where �t�� is the bound of t� determined	 as in �����	 by

�t�� � N
�
� ���

�	 � minf�	i� i � 
� � � � �mg�

	i �

�
j
bi�A

�

ixN
A�

i
v

j� if A�iv �� ��

	� if A�iv � ��

The case ��N� � �� As N
�
� ���N � ���� is bounded in probability	 thus in the present

case most of possible values of ��N� are positive� This implies that A��x
� � b� and then

zN � N
�
� �xN � x�� will be on the face P� of the limit set D� Then the con�dence interval

for v�x� can be of interest only for those v such that A��v � �	 which implies that the segment
L of the line through xN with direction v restricted in S lies on the hyperplane A��x � b��
For any x� on L we have the expression

x� � xN � 	v�

Hence

A�N
�
� �xN � x�� � ��

AiN
�
� �xN � x�� � �� i � I� � I� n f�g�

Thus zN � N
�
� �xN�x

�� is on the face P� and	 by Theorem �	 zN is approximately distributed
as M��� Then approximately we can have

P �j v�N
�
� �xN � x�� j � t��� � �� �� �
��

where � is a probability level and t�� satis�es

P �j v�M�� j � t��� � �� ��

From �
�� a ��� ������ con�dence interval for v�x� can be made as

v�xN �N� �
� t�� � v�x� � v�xN �N� �

� t��� �

�

t�� � �t���

where �t�� � N
�
� �	 � and

�	 � � minfj
bi �A�ixN

A�iv
j� i � 
� � � � �m� A�iv �� �g�

For any other cases of xN the con�dence intervals can be obtained in a similar way based
on the distribution of z� on the corresponding parts of D� The details will be omitted�
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��� Hypothesis Test

With the obtained con�dence intervals it is easy to get rejection principles for testing linear
hypothesis

H� � v
�x� � a�

For example	 in the case xN � S�	 we will accept H� if

v�xN �N� �
� t� � a � v�x�N �N� �

� t��

and reject H� otherwise� Under this rejection principle we may make �rst type of mistake
with probability ��

In the case A��xN � b� and ��N� � � we will accept hypothesis

H� � v
�x� � a

with A��v � � if

v�xN � a � v�xN �N� �
� t��

and reject H� otherwise�
In the case A��xN � b� and ��N� � � we will accept hypothesis

Ho � v
�x� � a

with A��v � � if

v�xN �N� �
� t�� � a � v�x�N �N� �

� t���

and reject H� otherwise�
The t�	 t

�
� used here are the same as that de�ned in ��� in the corresponding cases�

� Con�dence Regions of x�

In many practical problems constructing con�dence regions for the unknown solution x�

would be of more interest	 because the decision makers want to know how far the true
solution x� is from the sample solution xN with an acceptable probability level ���� Here
we do it for general nonlinear estimation problems� Again we distinguish two cases� xN is
in the relative interior or on the relative boundary of S�

��� xN � S�

In this case we have

gi�xN � � �� i � �� � � � � p�

hj�xN � � �� j � p� �� � � � � q�

Thus under continuous di�erentiability of gi and hj 	 it holds that

� � gi�xN � � gi�x
�� �rxgi�x

����xN � x�� � 
�kxN � x�k��

� � hj�xN � � hj�x
�� �rhj�x

��
�
�xN � x�� � 
�kxN � x�k��

i � �� � � � � p � j � p� �� � � � � q�
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As the remainders in these expansions are of higher order of in�nitesimal compared with
kxN � x�k and kxN � x�k by consistency of xN 	 �see Wets �����	 we must have

rxg
�
i�xN � x�� � �� i � �� � � � � p�

rxh
�
j�xN � x�� � �� j � p� �� � � � � q� �
��

ThusN
�
� �xN�x

�� is an interior point ofD in program ���� Then by Theorem �N
�
� �xN�x

��
is approximately distributed as M���

Note that M�� is a normal vector	 distributed on the n � q � p dimensional manifold
M � fz � rh�jz � �� j � p��� � � � � qg� Then there is a matrix Q such that �QM���

��QM���

has a ���distribution of freedom �n�q�p�� For a given probability level � there is a number
r� such that

Pf�QM���
��QM��� � r�g � �� ��

Then approximately we have

PfN�Q�xN � x�����Q�xN � x��� � r�g � �� ��

From this probability statement we see that the con�dence region R� at probability level
�� � can be constructed as

R� � fx � N�xN � x���Q�Q�xN � x�� � r�g� �
��

In order to guarantee x� in �
�� is inside S	 r� must be restricted by

r� � �r � minfr�i� � d�xN � Pi�� i � �� � � � � pg�

where Pi is the surface Pi � fx � gi�x� � �g�

��� The Case that xN is on 
S

We study the problem in the following case that only one constraint is active at xN �

g��xN � � ��

gi�xN � � �� i � 
� � � � � p�

hj�xN � � �� j � p� �� � � � � q�

Further we distinguish two subcases that ��N� � � and ��N� � ��

The case ��N� � �� In this case most of possible values of ���� should be positive and
this implies that for most of possible values of x� it holds that g��x

�� � �� Then zN �

N
�
� �xN � x�� will be on the face P� of the set D� Hence zN is approximately distributed as

M�� and zN is an n� q � p� ��dimensional random vector� There is a matrix R such that
N�xN �x���R�R�xN �x�� has a �� distribution of freedom n�q�p��� With a probability
level � one can �nd a critical value t��� such that

PfN�xN � x��R�R�xN � x�� � t���g � �� ��

Then the con�dence region R� in this case can be constructed as

R� � f�x � N�xN � x��R�R�xN � x� � t���g� �
��
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The case ��N� � �� By boundedness in probability of N
�
� �xN � x�� the most of possible

values are around xN 	 but they can be in the interior D� or P�	 according to g��M�� is less
than zero or not	 as shown in Theorem �� Thus by the analysis made above for a given
probability level � one can �nd positive numbers r���� t�� such that

PfN�Q�xN � x����Q�xN � x�� � r���� g��x
�� � �g �

�



��� ���

PfN�xN � x���R�R�xN � x�� � t���� g��x
�� � �g �

�



��� ���

Thus the con�dence region of x� in this case can be constructed as

R� � fx � N�xN � x��Q�Q�xN � x� � r���� g��x� � �g

� fx � N�xN � x��R�R�xN � x� � t���� g��x� � �g� �
��

The con�dence region in other subcases of xN � 
S can be obtained in a similar way� We
omit the details� We see that in di�erent cases the con�dence regions have di�erent shapes�
This kind of con�dence regions is a generalized version of the usual con�dence intervals in
classical statistics� This kind of inference directly give the indication of where x� could be
under a given probability level� It is of more practical interest for stochastic programming
problems�

Remark� In the discussion on the inference we need H and the distribution of �� However
as pointed out in section �	 H and the covariance matrix covL�x�� �� of � depend on the
unknown solution x�� This situation seems to cause an obstacle in making statistical infer�
ence on x�� But this obstacle can be removed by replacing H � EH�x�� ��	 and covL�x�� ��
by N��

P
H�xN � ti�	 and

N��
X

�L�xN � ti��N��L�xN � ti���L�xN � ti��N��L�xN � ti��
�

respectively� This kind of approximation is often used in statistics� The reasonability of
doing so lies in the facts that

lim
N��

N��
X

H�xN � ti� � H�

lim
N��

N��
X

�L�xN � ti��N�� �L�xN � ti���L�xN � ti��N��
X

L�xN � ti��
�

� covL�x�� ��

guaranteed by xN � x� and the weak law of large numbers�
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