A3 Py, 6,

% Yokohama Publishers

omewCll _/SSN 1349-8169 _ONLINE JOURNAL

Yok(%

STATISTICAL INFERENCE FOR STOCHASTIC
PROGRAMMING

JINDE WANG

This paper is dedicated to Professor R.T. Rockafellar on the occasion of his T0th birthday.*

Abstract: In many practical problems available are only some sample points, not the full distribution
information, of the random variables involved in the given stochastic programming problems. Then a
sample problem can be formed. The optimal solution = of this sample program is a point estimation of the
unknown “true” optimal solution z* of the original stochastic program. Then we have to make a statistical
inference for the true solution. The methods of making statistical inference in classical statistics do not
apply for stochastic programs. In this paper we study how this kind of statistical inference can be made.
We will construct the confidence regions (including confidence intervals) for * and the linear form v'z*.
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Introduction
Suppose we have the following stochastic program

min Ef(x,¢) (1)
st. €S CR",

where ¢ is a random vector and
S={z:g9i(x) <0,i=1,...,p; hj(x) =0, j=p+1,...,q}.

Denote by z* the unique optimal solution and by (A\*,u*) the corresponding Lagrangian
multipliers of program (1).
In practice it is quite often that we do not have the full information on the probability

distribution of &, but only some sample points of £ are available. Let tq,...,ty be the sample
points of £&. Then we can form a sample program of (1) as
. 1N
min N-'3°, f(z,tx) (2)
s.t. x €S

*Prof. R.T. Rockafellar (coauthored with Alan King) investigated the asymptotic distribution of the
optimal solution of stochastic programming. Their result is a foundation of statistical inference for stochastic
programming.
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Denote the optimal solution of (2) by xnx and the associated Lagrangian multiplier vector
by (An,un). The solution (zn, An, ) is & point estimator of the unknown true solution
(z*,\*,u*). The next step is to infer, based on (zxy,An,pun), where the “true” solution
could be.

Several authors have done some work on the statistical problems of stochastic programs.
For example, Dupacova and Wets (1988) and Wets (1991) showed that xy is a consistent
estimator of z* and N2 (zny — ) is approximately normal under some regular conditions;
King (1986) and King and Rockafellar (1993) pointed out that usually N (zy — 2*) is not
approximately normal, but is approximately piecewise normally distributed. They proved
that N2 (zny —a*) converges in distribution to the optimal solution of a stochastic quadratic
program. Similar results are given also by Shapiro (1988, 1993). Zhao (1997) obtained a
similar but more direct result that N%(zy — z*) converges in distribution to the optimal
solution z* of the following stochastic quadratic program:

min  $z'Hz + 2’y
s.t. ze€D CR",
where 7 has normal distribution N (0, K) with K = cov L(z*, ), where
L(z,&) = f(z,8) + Ng(x) + p'h(),
H = EV;,L(z",€) = B[V, f(z",€) + \'Vi,g9(a") + p"' Vi h(z")],
D={z2:V,0:(z%)2<0,i €I ;V,g:(z*)2=0, i€l
Vehi(z*)2=0, j=p+1,...,q},
Im={i:gi(z")=0, A\ =0,i=1,...,p},
It ={i:gi(z*) =0, \f >0,i=1,...,p},
A ={AL AT
AN = {AN1s - AN )

As n has a symmetric distribution, the distribution of z is the same as that of the optimal
solution of the program

min 32'Hz —2'n (3)
s.t z€D.

In classical statistical problems, having the estimator and the associated (approximate)
distribution is enough for making statistical inference. However it is not the case in making
statistical inference for stochastic programs. The main causes for that are as follows: Firstly,
since there is no explicit formula of optimal solutions of quadratic programs and the index
subsets I= and I'™ are unknown (they are related to the unknown solution z*), we do not
know the distribution of z*; secondly, as IV 3 (zn — z*) is piecewise normally distributed, we
do not know which piece of the distribution of N2 (zy — z*) should be used for the given
data; thirdly it is not known how to treat constraints in the problems. These points are not
considered in the classical statistics. Thus we have to find ways to solve these problems.
That is the purpose of this article.

This paper is organized as follows. In Section 2 we give the explicit expression of the
asymptotic distribution of N%(a:N — z*) in each possible case. Section 3 is devoted to
constructing confidence intervals and for linear forms v'z* under the assumption that the
constraints in program (1) are linear. The confidence region for z* is constructed in Section 4.
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The Representation of Asymptotic Distribution

To obtain the (approximate) distribution of Nz (zy — z*) is the most important step for
making statistical inference on z*. As mentioned in section 1, it has been proved that
Nz (zy—z*) converges in distribution to the optimal solution z* of the program (3). However
the theory of quadratic programming does not provide an explicit formula for the optimal
solutions. Thus the distribution of z* is still not ready. Here we go another way to solve
this problem.

For simplicity of notation, denote the matrix (V,g;(z*),i € I=) by V.g=, (V.gi(z*),i €
IT) by V,g" and V,hj(z*), j=p+1,...,q by V,h. Let

H V.9t V.h
Hy = (Vog™) 0 0 ,

(Vb)Y 00

H Vegt Vaegi - Vaugi, Vih
(Vaeg™) 0 - 0
(nggl) .
H; . = , (4)
(Vagi) 0 . 0
(Vzh) 0 - 0
where i1,...,ix € I~. We assume H is positive definite. Then Hy and Hj;, .. ; are invertible

under the linear independence assumption on Vg; and Vh;. Partition H; ' and H; llk as
follows

Mo Rg So

Mil. ik Ril...zk Szl ik
_ R, A A _
Hy' = o T (Hiya) '=| R, Bx Bogs (5)
Sy Azr  Asz

!
" Bss Bs;

where My and M are n X n-matrices,the column numbers of Ry and Sy correspond to the
column numbers of Vgt and V,h respectively, R and S are similarly defined. As H is
symmetric,so are Hy and H;, ;, and their inverses. Thus (5) is a reasonable form of a
partition of Hy ' and (H;,. ;).

Obviously the optimal solution of program (3) lies either in the relative interior or on
the relative boundary of the feasible solution set D. The relative boundary of D consists of
its faces and their intersections. Denote by Dy, D;; and Dj, . j, the relative interior, faces
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and the intersections of faces, respectively. Thus
Do ={2:V,gi2<0,i €I ;V,gi2=0,i€I";V,hjz=0, j=p+1,...,q}
D;, ={2:V,giz <0, i € I~ \'ij; Vagiz =0, i € I Uij; Vohiz=0,j=p+1,...,q}
Dj i =4{2:Va.gi2<0,ieI=\{ji,l=1,...,k};
Vegiz =0, i€ ITU{ji,l=1,...,k=vhiz=0, j=p+1,...,q}.
The distribution of z* in each part of D can be given below.
Theorem 1. Assume H is positive definite and the vectors {V,g;, i € I= UI";V,h;, j =
p+1,...,q} are linearly independent. Then
1) z* in Dg has the expression z* = Myn;

2) z* on D, .. ;, has the expression z* = M;, ;1.

Proof. By the Kuhn-Tucker conditions the points z in Dy being optimal to program (3)
must satisfy the equations

q
Hz—n+ Z Aingi + Z ,uijhj =0,
iel+ j=p+1
V.giz =0, iel",
Vzh;ZZO, Jj=p+1,...,q

The matrix form of this equation system can be written as

z 7
Ho{ AN ) =10
I 0

The solution of this system is
Z=Mon,  A=Ry,  fi= Sy

This is derived from the necessary optimality condition. The objective function of program
(3) is a positive definite quadratic function, thus Z is the optimal solution in Dy of (3) if
and only if the following feasibility conditions can be satisfied, i.e.,

Vegi? =VegiMon <0, i€I=,  N=Rm>0, iel". (6)

The expression Z = My is the first assertion of the theorem.

If, for some sample values of 1, Myn can not satisfy the constraints (6), the optimal
solution must lie on the relative boundary of D. Let us find the expression of the optimal
solution on the face D;, ;. By the Kuhn-Tucker conditions the optimal solution of program
(3) located on Dy, . j, must satisfy the equations

q
HZ_U"‘ Z szwgz'F Z ,Ujvxhj:():

i€ltUiq,...,ix j=p+1
Voglz=0, i€ItUi,... is (7)
Vohiz =0, j=p+1,...,q.
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The solution (2, \, i) of system (7) can be expressed as

z U
N -1
>\ = Hlllk 0 )
i 0
where = (pp+1,..-,Hy)", Or equivalently,
zZ= Mi1...ik77) 5‘ = R;]-n) p= Silzkn (8)

As H is positive definite, program (3) is a convex program. Then Z in (8) is the optimal
solution and A, i are the corresponding Lagrangian multipliers if and only if the following
feasibility conditions are satisfied:

Vmgq{lezanO, iEI:\{il,...,ik},
Ri, ;,n>0, i€ It U{ij, ... i)

Then the optimal solution of program (3) on D;, ;, has the expression z* = M;, ;1. Thus
the proof of Theorem 1 is completed. O

The results in Theorem 1 are one-step further than earlier results because the explicit
expressions of the asymptotic distribution of z* in each part is available now. But these
results are still not enough for making statistical inference because the index sets I, I~ are
still unknown (since the true solution z* is unknown). The next section is devoted to show
how to overcome this difficulty.

Statistical Inference for a Linear form v'z*

In this paper we will investigate two types of statistical inference on x*. One is that for
the linear form v'z* of x*, this is the usual form in statistics and if the objective function
is linear in z, the confidence bounds for v'2* is just the confidence bounds for the optimal
value of program (1). The other is the confidence region for z*. The latter may be of
more interest for stochastic programming, because it asserts how far the z* can be from the
obtained estimator xn (in probabilistic sense).

In this section we make statistical inference for a linear form v’ z* under the contemporary
assumption that the constraints in program (1) are linear (in fact, nonlinearity does not cause
essential difficulty. Here we impose linearity assumption just for technical simplicity). Then
the interested programs take the following form

min  Ef(z,¢§)
s.t. xe€S={x:Ax <b, Cx=d}, (9)

where A is an m X n-matrix and C is an m; X n-matrix,

N
min Nt Zf(a:,ti)
i=1
s.t. x €S, (10)
and
min §ZIHZ —2'n

st ze€D={Al2<0,iel; Alz=0,iel"; Cz=0}, (11)



184 JINDE WANG

which correspond to programs (1), (2) and (3) respectively. Their optimal solutions are
again denoted as z*, xn and z* respectively. We will construct the confidence intervals.

Confidence Intervals of v'z*

Suppose the optimal solution znx and the associated Lagrangian multiplier vector Ay have
been calculated. We try to give an interval estimation of v'z*, where v is a given vector in
R™. We study this problem in two different cases: z is in the relative interior or is on the
boundary of S.

3] oy e

In this case it holds that

Alzn < b, i=1,...,m,
C:L’N =d.

Then for any i € {IT UI=} = {i: Ajz* = b;} we have

AiN%(mN —z*) <0,
C’N%(mN —z")=0.

This implies that N2 (zy — 2*) is in the relative interior Dy of D.

As zy converges in distribution to z*, then v'zy converges in distribution to v'z*. By
Theorem 1 the optimal solution z* in Dy is distributed as Mon. Thus v’z is approximately
distributed as v’ Mgyn, i.e., normally distributed.

For a given confidence level a we can find a critical value ¢, such that

P(|v'Mon |[€ ta) =1 - a. (12)

Since 7 is a normal random vector, the critical value ¢, can be found easily. Then approxi-
mately we have the following probability statement

P(|v'N2(zy —2*) |[<ty) =1—a. (13)
From (15) a (1 — @)100%-confidence interval for v'z* can be constructed as
v'eny — N3¢, <v'z* Sv'wN—l-N_%ta. (14)

However this interval estimation is not ready for use. The reason for this is: the inferred z*
must be a feasible point of program (11) and thus ¢, and v can not be chosen arbitrarily.
Now we study how large the critical value ¢, can be and what kind of vectors v should be.

From (15) we see that t, is the bound of /N2 (zy — 2*) with z* in set S. Let L be the
segment restricted in S of a line,going through zn with direction v. Assume the contours
VN2 (zy — %) = u intersects L at z*(u). The point z*(u) on L can be expressed as
2*(u) = xn + 7v. Then the bound of 7 determines the bound of v' N2 (zy — z*). In order
to keep z*(u) feasible, we should have

Cv=0, |7|<7= min 7, (15)
1<i<m

iR Ao
' 00, if A'v=0.
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Therefore, as the bound of VN3 (xn — 2%), to should satisfy
to = max | v'N%(a:N —z%) | = max | V' N2ty | < N%i’H vl]?.
Without loss of generality we assume that || v ||= 1. Thus we should restrict ¢, in (16) by
ta < NZ7, (16)
where 7 is defined by (17) and v must satisfy Cv = 0.

zy €08

In this case xx may be on a face or on a intersection of some faces of S. We study our
inference problem in detail only for the case that xx is on a face of S. The problem for
other cases can be solved in a similar way. Without loss of generality we assume

Arzy = by,
Ail‘N<bi, 1=2,...,m (17)
CCUN =d.

To construct confidence intervals for v'z*, we have to further distinguish two subcases
that Ay, > 0 or Ay, =0, where Ay is the Lagrangian multiplier corresponding to A;xn =
by.

The case A\y; = 0. In this case all nonnegative numbers are possible values of Aj. This
implies that both cases
All'* = b1 and All’* < b1

are possible. Hence we can make statistical inference for a linear form v'2* for those v such
that Ajv <0.

Note that A{v < 0 implies that the angle between direction v and the inward normal of
Az = by is an acute angle. Again in order to see the distribution of v'Nz (zy — z*) with z*
in S, it is enough to know the distribution of v' N2 (zx — z*) with 2* on the segment L of
the line starting from zx with direction v restricted in S. The point on L can be expressed
as

*

* =zy+T10, T>0. (18)

Then (under the assumption Cv = 0) for i € I(z*) (note that 1 ¢ I(z*), because Ajz* =
Az + T7ALv < b; by (19) and (20)), it holds that

AiN%(iL’N — :L’*) <0,

CN%(.TN —z*) =0.
Thus in this case it still holds that zy = N%(mN —z*) € Dy. Then by Theorem 1 v'zy is
approximately distributed as v’ Myn is. It should be noticed that under the condition z* € L

(t > 0in (20)). v'zn is approximately distributed as v’ Mon under the condition v' Mgy < 0.
For a given probability level «, we can find ¢, such that

P(|v'Mon | < to, v'Monp <0)=1-a.
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Then approximately we have
P(|v'Nz(zy —2*) | <ta|2*€L)=1-a. (19)

From the probability statement (21) a (1 — a)100%-confidence interval for v'z* can be given
by

vy <v'zt <vay + N%ta, (20)
ta <1,

where ¢/, is the bound of ¢, determined, as in 3.1.1, by

5
t, =Nz2),
T=min{7, i =2,...,m},
bifA;wN . ’ .
o | === |, if Ajv #0;
T N .
00, if Alv=0.

The case My, > 0. As Nz(\4 — A3) is bounded in probability, thus in the present
case most of possible values of A%, are positive. This implies that Ajz* = by and then
ZN = N3 (zn — z*) will be on the face P, of the limit set D. Then the confidence interval
for v'z* can be of interest only for those v such that A}v = 0, which implies that the segment
L of the line through zx with direction v restricted in S lies on the hyperplane Ajz = b;.
For any z* on L we have the expression

¥ =xN + V.
Hence
AlN%(mN —z*) =0,
AiN3(zy —2*) <0, ieltUul=\{1}.

Thus 2y = N2 (zn—x*) is on the face P; and, by Theorem 1, 2 is approximately distributed
as Min. Then approximately we can have

P(|v'N3(zy —2") | <t,) =1—a, (21)
where « is a probability level and ¢!, satisfies
P(|v'Min| <t)=1-a.

From (23) a (1 — a)100% confidence interval for v'z* can be made as

v'en — N73t, <o'a* <v'ay + N3t (22)
to <o,
where 7, = N2# and
b — Alxn

[, i=2,...,m, Alv #0}.

7 = min{| =

!
Alv

For any other cases of x the confidence intervals can be obtained in a similar way based
on the distribution of 2* on the corresponding parts of D. The details will be omitted.
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Hypothesis Test

With the obtained confidence intervals it is easy to get rejection principles for testing linear
hypothesis
Hy:v'2" =a.

For example, in the case zx € S°, we will accept Hy if
vy — N*%ta <a<v'ay+ N*%ta,

and reject Hy otherwise. Under this rejection principle we may make first type of mistake
with probability a.
In the case Ajzn = by and N}, = 0 we will accept hypothesis
Hy:v'z* =a
with Ajv <0 if
vy <a<vzy+ N*%ta,

and reject, Hy otherwise.
In the case Ajzny = by and Xy, = 0 we will accept hypothesis

H,:Vz*=a
with Afv = 0 if
v'ay — N73¢t <a<v'zhy + N3¢,

and reject Hy otherwise.
The t,, t!, used here are the same as that defined in 3.1 in the corresponding cases.

Confidence Regions of z*

In many practical problems constructing confidence regions for the unknown solution z*
would be of more interest, because the decision makers want to know how far the true
solution x* is from the sample solution x with an acceptable probability level 1 — . Here
we do it for general nonlinear estimation problems. Again we distinguish two cases: xn is
in the relative interior or on the relative boundary of S.

I‘NGSO

In this case we have
gl(mN)<07 izl:"'apa
h]'(xN):O: ]:p+]—7>q
Thus under continuous differentiability of g; and hj, it holds that
0> gi(zn) = gi(a*) + Vagi(@®) (xn — 2*) +o(l|lzn — z*|)),
0= hj(zn) = hyj(z*) + Vhj(e*) (zn — 2") + o(l|lzn — z*|)),
1=1,...,p; j=p+1,...,q.



188 JINDE WANG

As the remainders in these expansions are of higher order of infinitesimal compared with
[lzn — 2*|| and ||xn — x*|| by consistency of zn, (see Wets (1991)), we must have
Vegi(zny —2*) <0, i=1,...,p,
Vohi(zn —2%) =0, j=p+1,...,q. (23)
Thus N2 (zxy —=*) is an interior point of D in program (3). Then by Theorem 1 N2 (zy —z*)
is approximately distributed as M.
__ Note that Mon is a normal vector, distributed on the n — ¢ + p dimensional manifold
M ={z:Vhiz=0, j=p+1,...,q}. Then there is a matrix @) such that (QMon)'(QMon)

has a y2-distribution of freedom (n —q+p). For a given probability level « there is a number
rq such that

P{(QMon) (Q@Mon) <r.} =1-a.
Then approximately we have
P{N(Q(zw — 27)(Qan —2%) <ra} =1 -0

From this probability statement we see that the confidence region R; at probability level
1 — «a can be constructed as

Ry ={x:N(zy —2")'Q'Q(zny —z") < 1u}. (24)
In order to guarantee z* in (26) is inside S, o, must be restricted by
ro <7 =min{r(i) =d(zn,P;), i=1,...,p},

where P; is the surface P; = {z : g;(z) = 0}.

The Case that xy is on 05

We study the problem in the following case that only one constraint is active at zn:

gl(xN) :0)
gi(zn) <0, i=2,...,p;

Further we distinguish two subcases that A3, > 0 and Ay, = 0.

The case Ay, > 0. In this case most of possible values of Aj; should be positive and
this implies that for most of possible values of z* it holds that ¢;(z*) = 0. Then zy =
N3 (zny —z*) will be on the face Py of the set D. Hence zy is approximately distributed as
Min and zy is an n — ¢ + p — 1-dimensional random vector. There is a matrix R such that
N(zy —z*)' R'R(zn — x*) has a x? distribution of freedom n —q+p — 1. With a probability
level v one can find a critical value ¢! such that

P{N(zny —2")R'R(zny —2*) <t} =1-q.
Then the confidence region R, in this case can be constructed as

Ry ={(x: N(zy —z)R'R(zn — z) < th}. (25)
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The case Ay, = 0. By boundedness in probability of Nz (zy — z*) the most of possible
values are around zy, but they can be in the interior Do or P;, according to gi My is less
than zero or not, as shown in Theorem 1. Thus by the analysis made above for a given
probability level a one can find positive numbers r(a), ¢,, such that

(8%

1
P{N(Q(n —2"))'Qan —2%) <r(a), i(2") <0} = 5(1 —a),
1
P{N(zn —2*)R'R(zy —z*) < tl, g1(2*) =0} = 5(1 —a).
Thus the confidence region of z* in this case can be constructed as

Ry = {z:N(any —2)QQ(zn —2) <r(a), g1(z) <0}
U {z:N(zy —z)RR(zy —z) <tl, g1(z) =0}. (26)

The confidence region in other subcases of zx € 9S can be obtained in a similar way. We
omit the details. We see that in different cases the confidence regions have different shapes.
This kind of confidence regions is a generalized version of the usual confidence intervals in
classical statistics. This kind of inference directly give the indication of where z* could be
under a given probability level. It is of more practical interest for stochastic programming
problems.

Remark. In the discussion on the inference we need H and the distribution of 7. However
as pointed out in section 1, H and the covariance matrix cov L(z*,£) of n depend on the
unknown solution z*. This situation seems to cause an obstacle in making statistical infer-
ence on x*. But this obstacle can be removed by replacing H = EH (z*,£), and cov L(z*, &)
by N='S" H(xn,t;), and

N7t Z[L(ZEN, ti) — N_IL(.TN, ti)][L(.TN, ti) — N_IL(.TN, ti)]l
respectively. This kind of approximation is often used in statistics. The reasonability of
doing so lies in the facts that

lim N 'Y H(zy,t;) = H,

N —o0

lim N1 Z[L(mN,ti) — NﬁlL(mN,ti)][L(mN,ti) - N1 ZL(mN,ti)]’

N —o0

= cov L(z*,¢)

guaranteed by zny — x* and the weak law of large numbers.
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