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� Introduction

In many cases of interest in mathematics� set�valued functions have to replace single�valued
functions� Since a problem depending on a parameter w does not always have a unique
solution� one is led to the study of the multifunction S whose value at w is the set S�w� of
solutions of the problem for the parameter w� Of course� such a fact makes the study more
di�cult and mathematicians have just started to devise tools to deal with such questions�
They often play a role in practical problems� For instance� a consumer wishing to buy some
good has often the choice between di�erent proposals with di�erent prices� also� a �rm may
have di�erent processes of production whose costs may range in some interval� Therefore�
multifunctions with values in R have an interest�

In nonlinear analysis� the search of critical �or stationary� points often replaces the search
of minimizers or maximizers� In doing so� one replaces the optimization problem with an
equation or an inclusion� Reciprocity or duality relationships may thus bring a precious
insight on the models of many nonlinear phenomena� A systematic treatment has been
proposed by Ekeland 	
�� 	��� It departs from other more classical generalized convexity
approaches to duality �	��� 	���� 	��� 	���� 	��� and their references�� Still his approach
enables to treat convex duality� Toland�s duality� duality in the calculus of variations in
a single framework� In 	��� we introduced a slight extension of the Ekeland transform in
order to obtain a scheme which fully encompasses the Legendre�Fenchel conjugacy for lower
semicontinuous convex functions� we applied it to the study of characteristics associated
with an Hamilton�Jacobi equation� relating the recent and beautiful global convex theory of
Rockafellar and Wolenski �	���� to the classical approach�

In the present paper we extend this scheme to multifunctions from a normed vector space
�n�v�s�� X to R� While in 	
�� 	�� Ekeland studied the case of the transform of a function or a
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Lagrangian submanifold� here we start with an arbitrary multifunction� We use elementary
tools from set�valued analysis and nonsmooth analysis� while most arguments of 	
� rely
on tools from di�erential topology� In 	��� the attention is focused on the case the Ekeland
transform of a function is again a function� in general� the Ekeland transform of a function is
a multifunction� Although here we do not pursue such an aim� we give conditions ensuring
that the transform of a multifunction is a function� Our motivation lies in the fact that
duality is particularly useful when the dual problem is simpler than the primal problem�

As in 	���� we endeavour to extend the transform in order to fully encompass the case of
the Fenchel transform� Thus� instead of looking for a restricted class of well behaved convex
functions as in 	��� Chapter ���� we consider a framework which encompasses all lower
semicontinuous convex functions and classical Legendre functions� As mentioned above� it
even goes beyond functions� We also evoke some extensions of classical geometrical concepts
to nonsmooth situations� These situations occur in important �elds such as mathematical
programming� Among these concepts is a one�sided version of the notion of jet called the
subjet or hypergraph of the multifunction and a notion of contact subset� It is shown that
the hypergraph of a multifunction is a contact subset� in a sense introduced in section �
which is again a one�sided version of the notion of Lagrangian submanifold in the sense of
	
��

Because the Ekeland transform� as de�ned in 	
�� 	�� does not preserve the contact
structure� we introduce a variant of it� However� in order to preserve the notion of conjugate�
we adopt a de�nition which is compatible with the notions of 	
�� 	��� 	���� The price to be
paid is that the correspondence between the hypergraph of the conjugate and the transform
of the hypergraph is not as natural as one would like� This surprising fact concerning the
change of signs may be related to the way the Fenchel conjugate of a convex function is
de�ned� it is a tangential way� through a�ne functions whose graphs are below the graph
of the function or are tangent to it�

We devote some attention to the subjet of a convex function on a Hilbert space� bringing
some additional information about its structure of Lipschitzian submanifold as displayed in
	�
��

In 	
� and 	�� a duality is de�ned in terms of perturbations for the problems of looking
for critical points� It is applied to various problems� such as eigenvalue problems� Toland�s
duality and problems of the calculus of variations� We do not deal with such applications
here� We refer to these references for that and to 	��� for an application to the Clarke duality�
We hope that the development of set�valued analysis will lead to some more applications�

� Contact Subsets and Liouville Subsets

In the sequel X and Y are two n�v�s� in duality via a coupling function h�� �i� If F � S � T is a
correspondence �or multifunction� or multimapping or relation� between two sets we denote
its graph by G�F � �� f�s� t� � S�T � t � F �s�g� Although the identi�cation of F with G�F �
would not cause ambiguities in what we have in view� we avoid it here� The inverse of F is
the correspondence F�� characterized by G�F��� �� f�t� s� � T � S � t � F �s�g�

We use the concept of tangent cone T �E� x� �or contingent cone� to a subset E of a
n�v�s� X at x � clE �the closure of E�� it is the set of v � X such that there is a sequence
��tn� vn��� ��� v� in R �X satisfying x� tnvn � E for each n � N� It is known �see 	����
	��� that when E � X � R is the epigraph Ef �� f�x� r� � X � R � r � f�x�g of a function
f � X � R� �� R � f�g �nite at x� the tangent cone to E �� Ef at xf �� �x� f�x�� is the
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epigraph of the function df�x� �� given by

df�x� u� �� lim inf
�t�v������u�

�

t
�f�x� tv�� f�x�� �

The normal cone N�E� x� to E at x is the polar cone to the tangent cone�

N�E� x� �� �T �E� x��
�
�� fy � Y � hv� yi 	  
v � T �E� x�g�

The coderivative at �x�w� � G�F � of a multimapping F � X �W between two n�v�s� paired
with Y and Z respectively is the multimapping D�F �x�w� � Z � Y given by

y � D�F �x�w��z� � �y��z� � N�G�F �� �x�w���

If f � X � R� �� R � f�g is �nite at x� the �directional or Dini�Hadamard� Hadamard or
contingent� subdi�erential �f�x� of f at x is given by

y � �f�x�� �y���� � N�Ef � xf �� 
u � X hy� ui 	 df�x� u��

where Ef is the epigraph of f and xf �� �x� f�x��� Thus �f�x� � D�Ef �xf ���� with xf ��
�x� f�x��� Other subdi�erentials could be used� with the related concepts of normal cones�
In 	�� the Clarke subdi�erential is used in the locally Lipschitzian case� several results
below �in particular Lemma � and Proposition �� would not be valid with that choice� The
same can be said for the limiting subdi�erential� however� since De�nitions �� � and � can
be reformulated in terms of normal cones� the limiting subdi�erential could be used as a
variant of the concepts introduced below�

The following concept seems to be new� but it is closely related to classical notions�
Recall that if f � U � V is a di�erentiable mapping between two open subsets of n�v�s� its
�rst order jet is the set

J�f �� f�x� f ��x�� f�x�� � x � Ug�

Such a notion can be extended to manifolds and to higher order jets �see 	�� x ���� 	�
�
Chapter �� for instance�� In nonsmooth analysis� a one�sided version is in order �see 	����
	��� for instance��

De�nition � The subjet J�F �or hypergraph� of a multifunction F � X � R is the corre�
spondence J�F � X � Y � R given by

J�F �� f�x� y� z� � X � Y � R � �x� z� � G�F �� y � D�F �x� z����g�

Let us relate the subjet J�f of a function f � X � R to the subjet of its associated
graph Gf �� G�f� or epigraph Ef � Although the �rst equivalence below is simple and worth
of notice� we have not been able to �nd it in the literature�

Proposition � Given a lower semicontinuous �l�s�c�� function f � X � R �� R�f����g
with graph Gf and epigraph Ef and x � X such that z �� f�x� � R� one has

�x� y� z� � J�Gf � �x� y� z� � J�Ef � y � �f�x��

Proof� The last equivalence is just a rewriting of the equivalence of the relations �y���� �
N�Ef � �x� z�� and y � �f�x�� The �rst equivalence amounts to �y���� � N�Gf � �x� z�� if�
and only if� �y���� � N�Ef � �x� z���
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Since Gf is contained in Ef � one has N�Ef � �x� z�� � N�Gf � �x� z��� Thus it remains
to prove that if y � X� is such that �y���� � N�Gf � �x� z�� then one has �y���� �
N�Ef � �x� z��� Let �u� r� � T �Ef � �x� z��� Let us �rst observe that setting p �� df�x� u� ��
inffs � R � �u� s� � T �Ef � �x� z��g� we cannot have p � ��� Otherwise we can �nd a
sequence ��tn� un��� ��� u� with

pn ��
�

tn
�f�x� tnun�� f�x��� ���

Without loss of generality we may assume that qn �� �pn �  for each n � N and since f is
l�s�c� and �x�tnun�� x we have  � lim supn �f�x� tnun�� f�x�� � lim infn �f�x� tnun�
�f�x�� � � hence �tnpn�� � Then �q��n un��  and

����� � lim
n

�

tnqn

�
�x � tnqn�q

��
n un�� f�x� tnun��� �x� f�x��

�
� T �Gf � �x� z��

and we get the contradiction � � h�y����� �����i 	 � Thus p � �� and since p 	 r� p

is �nite� Since �u� p� � T �Gf � �x� z�� as
�
t��n 	�x� tnun� f�x� tnun��� �x� f�x���

�
� �u� p��

we have

h�y����� �u� r�i � hy� ui � r 	 hy� ui � p � h�y����� �u� p�i 	 

and� since �u� r� is arbitrary in T �Ef � �x� z��� we get �y���� � N�Ef � �x� z��� �

The following concepts are nonsmooth and unilateral versions of the notion of Lagrangian
submanifold in the sense of 	
� Def� ����� As for the latter notion� they use the di�erential
��form � de�ned as follows�

� � ��x� y� z�� �u� v� w�� �� w � hy� ui�

Such a di�erential form could be de�ned on the product T �V � R of the cotangent bundle
T �V of a di�erentiable manifold V with R by using the Liouville ��form � on T �V �given
by ��x�y��u� v� � hy� ui when V is an open subset of a n�v�s�� and the ��form dt on R and
setting � � dt � �� with an obvious abuse of notation consisting in identifying one�forms
with their pull�backs on T �V � R� Our choice of the terminology is justi�ed in Example �
below�

De�nition � A subset M of X � Y � R is said to be a contact subset �resp� a co�contact
subset� of X �Y �R if for any �x� y� z� �M and for any �u� v� w� � T �M� �x� y� z�� one has
w � hy� ui �  �resp� w � hy� ui 	 ��

De�nition � Let M be a subset of X � Y � R and let P be its projection on X � R� The
set M will be called a Liouville subset of X � Y � R if for any �x� y� z� � M and for any
�u�w� � T �P� �x� z�� one has w � hy� ui � �

Note that M is a contact subset of X � Y � R if� and only if� for any �x� y� z� �M one
has �y� ���� � N�M� �x� y� z�� and that M is a Liouville subset of X � Y � R if� and only
if� for any �x� y� z� �M one has �y���� � N�P� �x� z��� The following statement contributes
to the clari�cation of the relationships between the two notions�

Lemma � �a� Any Liouville subset of X � Y � R is a contact subset�
�b� M is a Liouville subset if� and only if� M is contained in the subjet J�P of P�
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�c� If M is a contact subset of X � Y � R and if for every �x� y� z� � M the projection
mapping D��x� y� z� � �u� v� w� �� �u�w� maps T �M� �x� y� z�� onto T �P� �x� z��� then M is a
Liouville subset of X � Y � R�

�d� X is �nite dimensional� if M is a contact subset and if for any �x� y� z� � M

there exist c � � a neighborhood V of �x� z� and a mapping h � V  P � Y such that
kh�x�� z��� yk 	 c k�x�� z��� �x� z�k and �x�� h�x�� z��� z�� �M for each �x�� z�� � V P� then
M is a Liouville subset�

Proof� �a� Let � � M � P be the projection given by ��x� y� z� �� �x� z� and let P ��
��M�� Since for any �x� y� z� � M and for any �u� v� w� � T �M� �x� y� z�� one has �u�w� �
���x� y� z��u� v� w� � T �P� �x� z��� we see that any Liouville subset is a contact subset�

�b� The observation preceding the statement shows that M is a Liouville subset if�
and only if� for every �x� y� z� � M one has �y���� � N�P� �x� z��� or� in other terms�
y � D�P �x� z���� or� by De�nition �� �x� y� z� � J�P�

Assertion �c� is an obvious consequence of the de�nitions�
It remains to prove the last assertion� In fact� using the assumption� one can show that

for any �x� y� z� � M � �u�w� � T �P� �x� z�� there exists some v � Y such that �u� v� w� �
T �M� �x� y� z�� � it su�ces to take for v a limit point of a sequence �t��n �h�x � tnun� z �
tnwn�� y�� where �tn� � �� �un�� u� �wn�� w with �x � tnun� z � tnwn� � P for each
n� Such a limit point exist by the compactness of balls in Y� �

Because

T �A� x� � T �B� x� for A � B� x � cl�A�� �����

T �A � B� x� � T �A� x� � T �B� x� for x � cl�A �B�� �����

we observe that the intersection of a family of Liouville subsets is a Liouville subset and
the union of a �nite family of Liouville subsets is a Liouville subset� Similar results hold for
contact subsets� Such simple assertions would not be valid in the smaller class of Liouville
submanifolds without transversality or regularity conditions�

A fundamental example is given in the following statement� Note that here we cannot
apply Lemma � b� because we do not know whether G�F � is the projection of J�F �in
general this is not the case� even when F is a function��

Proposition � The subjet J�F of a correspondence F � X � R is a Liouville subset of
X � Y � R�

Proof� Clearly� the projection P of M �� J�F is contained in G�F �� Let �x� y� z� � M and
let �u�w� � T �P� �x� z�� � T �G�F �� �x� z��� The construction of M ensures that �y���� �
N�G�F �� �x� z��� Thus we have

hu� yi � w � h�u�w�� �y����i 	 �

so that M is a Liouville subset of X � Y � R� �

Another example of contact subset deals with a relatively smooth situation� close to the
one considered in 	
��

Example �� Let M be a subset of X � Y � R which is smooth� i�e� such that for each
m � M the tangent cone T �M�m� is a vector subspace �this obviously occurs when M is a
di�erentiable submanifold�� Then M is a contact subset i� for each m �M the linear form
�m��� is null on T �M�m�� In 	
� submanifolds satisfying that property are called Lagrangian
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submanifolds� however this terminology is not in accordance with the usual one in symplectic
geometry �see 	���	��� 	��� 	���� 	���� 	����	��� for instance�� so that we substitute a new one
for which no ambiguity may �hopefully� occur� �

The following example deals with a situation familiar in mathematical programming in
which constraints are de�ned by equalities and inequalities� It is inspired by 	
� Lemma ����
in which a �nite number of equalities are considered and a quali�cation condition �linear
independence of the derivatives� is assumed� Here M is a nonsmooth subset�

Example �� Let X� be an open subset of X� let Y � X� and let f � X� � R� g � X� � Z

be mappings of class C�� where Z is some n�v�s� Given a convex subset C of Z� let

M �� f�x� f ��x� � z� � g��x�� f�x�� � x � g���C�� z� � N�C� g�x��g�

Let us check thatM is a Liouville subset of X�Y �R� We �rst observe that the projection P
of M on X �R is just the graph of the restriction of f to g���C�� Given m �� �x� y� z� �M

and �u�w� � T �P� �x� z�� we have� for some z� � N�C� g�x��� y � f ��x� � z� � g��x�� hence

w � hy� ui � f ��x�u� hf ��x� � z� � g��x�� ui � �hz�� g��x�ui � 

since g��x�u � T �C� g�x�� as u � T �g���C�� x�� In the case of a classical mathematical
programming problem� one has X � R

n � Z � R
m � C � �Rm� and z� � N�C� g�x�� if� and

only if its components z�i are nonnegative and such that z�i gi�x� � � �

Example �� Let X� W be n�v�s�� let X� be an open subset of X and let h � X� � W be a
di�erentiable mapping� Given a Liouville subset N of W �W � � R� let

M �� f�x� x�� r� � X �X� � R � �w� � W �� x� � w� � h��x�� �h�x�� w�� r� � Ng�

Then M is a Liouville subset of X � X� � R� In fact� given �u� s� � T �P� �x� r��� where
P is the projection of M on X � R� we have �h��x�u� s� � T �Q� �h�x�� r��� where Q is the
projection of N on W � R� as easily checked� Therefore s� hx�� ui � s� hh��x�T �w��� ui �
s� hw�� h��x�ui � �

This example encompasses the preceding one� as one can see by taking W �� X � Z�

h�x� �� �x� g�x���

N �� f�x� z� x�� z�� r� � x� � f ��x�� r � f�x�� z � C� z� � N�C� z�g�

which is a Liouville subset of X � Z �X� � Z� � R� �

Example �� LetX be a Hilbert space and let f � X � R be a closed proper convex function�
Then� the subjet J�f in the sense of convex analysis is a Liouville subset of X � Y � R

since the Fenchel�Moreau subdi�erential coincides with the subdi�erential we use here� so
that Proposition � applies� We will study this example in more details in the next section�

� The Subjet of a Convex Function

The subjet of a nonsmooth function is not a smooth submanifold in general� However� in
some special cases it enjoys a pleasant structure� We devote the present section to the
case of the subjet M �� J�f of a lower semicontinuous convex function f � X � R�f�g
which is proper �i�e� which takes at least one �nite value�� Some other special cases� such
as the class of piecewise smooth functions� would deserve some attention� We refer to 	
�



THE LEGENDRE TRANSFORM OF CORRESPONDENCES ���

Sections ���� for a study of conditions ensuring that conversely a Lagrangian submanifold is
�at least locally� a subjet� In the present section X is a Hilbert space identi�ed with its dual
space� When X is �nite dimensional� it is shown in 	��� �see also 	�
�� that this subjet has a
Lipschitzian bijective parametrization whose inverse is also Lipschitzian� Our purpose here
is to show that M can be given the structure of a Lipschitzian submanifold of X�X�R in
the following �stronger� sense which extends the �nite dimensional situation studied in 	���
and 	����

De�nition � A subset M of a normed vector space Z is a Lipschitzian submanifold of Z
if for each m � M there exists a decomposition of Z into a direct sum Z � Z� � Z� of
closed vector subspaces� neighborhoods U of m in Z� V � V� � V� of �� � in Z� � Z�

and a lipeomorphism �i�e� a Lipschitzian bijection with Lipschitzian inverse called a chart�
� � U � V such that ��U M� � V� � fg�

The mapping v� � ����v�� � then yields a local Lipschitzian parametrization ofM with
Lipschitzian inverse� On the other hand� one cannot assert that a Lipschitzian parametriza�
tion yields a chart � as above since the inverse mapping theorem is not available in this
context �or hardly available through some substitutes�� Thus� the lack of an inverse mapping
theorem for Lipschitzian mappings justi�es the more precise de�nition given above� It also
gives an easy way to extend a locally Lipschitzian function on M to a neighborhood of M�

It may also be helpful for dealing with notions of measure zero subsets�
The following example shows that if M is locally the graph of a Lipschitzian mapping�

then M is a Lipschitzian submanifold and not just the image of a parametrization�

Example �� Let G be the graph of a Lipschitzian mapping g from an open subsetX� ofX to
some normed space W� Then G is a Lipschitzian submanifold of X �W� the lipeomorphism
� � X� � W � X� �W being given by ��u�w� � �u�w � g�u��� Its inverse is given by
����u�� w�� � �u�� w� � g�u��� and � maps G onto X� � fg� �

Example �� By the preceding example� the one�jet J�f �� f�x� f ��x�� f�x�� � x � Xg
of a C��� map f � X � W between two n�v�s� is also a Lipschitzian submanifold since
by de�nition of a C��� map as a di�erentiable function whose derivative is Lipschitzian�
g �� �f �� f� is Lipschitzian and J�f is just the graph of g� �

This example is extended to the subjet of a convex function in the next proposition�
Note that in the preceding de�nition it su�ces to require that the mappings � and ���

are locally Lipschitzian since the condition is local� In the case of the subjet of a convex
function we have an intermediate situation� � and ��� are boundedly Lipschitzian� i�e� their
restrictions to bounded sets are Lipschitzian� moreover a single chart su�ces� Since X is
not assumed to be �nite dimensional� the proof of 	��� ���� which relies on the Rademacher
theorem is no more valid�

Proposition � Let f � X � R�f�g be a proper lower semicontinuous convex function
on a Hilbert space X and let M be its subjet �or characteristic manifold�� Then M has a
structure of Lipschitzian submanifold of X �X � R� Moreover� a single chart su�ces�

Proof� For a convex function� the contingent subdi�erential coincides with the Fenchel�
Moreau subdi�erential so that

M � f�x� y� f�x�� � y � �f�x�g�

Set T �� �f� and let � � X � X�X � X and 	 � X � X � R �X � X � R be the linear
isomorphisms given by ��x� y� �� �x � y��x � y�� 	 �� � � I� Then one shows as in 	��
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������ that ��G�T �� is the graph of the mapping u �� �P �u�� Q�u�� from X into X �X �R�
where P �� �I � �f��� and Q �� I � P � in fact

�u� v� � ��G�T ��� ��x� y� � G�T � � u � x� y� v � �x� y

� ��x� y� � G�T � � u � �I � T ��x�� v � u� �x � �I � ��I � T �����u�

The maps P �Q are known to be nonexpansive� P �u� � argminx

�
f�x� � �

� kx� uk
�
�
and

thus ��G�T �� is the graph of the Lipschitzian map S �� I � ��I � T ���� Setting R�u� ��
f�P �u�� we get as in 	��� that 	�M� is the graph of the mapping g � u �� �S�u�� R�u�� from
X to X � R� Let us show that R � u �� f�P �u�� is boundedly Lipschitzian� Given u� u� in
the ball B�� r� with center  and radius r� we have kP �u�k 	 a � r� kP �u��k 	 a� r with
a �� kP ��k � hence

R�u���R�u� 	

�
f�P �u�� �

�

�
kP �u�� u�k

�
�
�

�

�
kP �u��� u�k

�
� f�P �u��

	
�

�
�P �u�� P �u�� j P �u�� u� � P �u��� u��

	 ku� u�k �kP �u�k� kP �u��k� � ku�k� 	 ��r � �a� ku� u�k �

Interchanging the roles of u and u�� we get that R is Lipschitzian on B�� r� with rate
���r � a��

Since the graph G of the Lipschitzian mapping g �� �S�R� from X to W �� X � R

is a Lipschitzian submanifold of X � W� by the preceding example it is mapped by the
lipeomorphism � � X �W � X �W given by ��u�w� � �u�w � g�u�� onto X � fg� Then�
taking � �� � � 	� we get the required chart from X �X � R onto X �W sending M onto
X � fg� �

The preceding result can be extended to paraconvex �or semiconvex� functions� i�e� func�

tions f � X � R � f�g such that there exists some c � R� for which g �� f � �
�c k�k

�
is

convex�

Proposition 	 The subjetM �� J�f of a proper lower semicontinuous paraconvex function
f � X � R�f�g on a Hilbert space X is a Lipschitzian submanifold of X �X � R�

Proof� Let c � R� be such that g �� f � �
�c k�k

�
is convex� Then� for each x � X� one

has �f�x� � �g�x� � cx� Therefore� the mapping 
 � X � X � R �X � X � R given by


�x� y� z� � �x� y � cx� z � �
�c kxk

�� applies J�f onto J�g and has for inverse the mapping

given by 
���x�� y�� z�� � �x�� y�� cx�� z�� �
�c kx

�k
�
� which is also boundedly Lipschitzian� It

follows that J�f is also a Lipschitzian submanifold� �

� The Ekeland Transform of a Relation

We �rst de�ne the Ekeland mapping as in 	
� and a variant of it� We will apply it to
correspondences and justify the choice of signs later on�

De�nition �
 The Ekeland mapping is the mapping E � X � Y �R �Y �X �R given by

E�x� y� z� �� �y� x� hx� yi � z��

The tilted Ekeland mapping is the mapping eE � X � Y � R �Y �X � R given by

eE�x� y� z� �� �y��x� z � hx� yi��
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Note that this last mapping involves the symplectic operator

J ��

�
 IY
�IX 

	
�

Remark� The preceding de�nition can be extended to the case of a partial Ekeland trans�
form when two variables are present but the transform is performed on one of them only� In
fact it can be set in the framework of vector bundles� Given a vector bundle p � V � B with
base B and the dual bundle p� � V � � B� one can de�ne E as a vector bundle morphism
from V �B V ��R to V ��B V �R� assuming that the �bers are re�exive Banach spaces or
n�v�s� in duality �here V �B V � stands for f�v� v�� � V � V � � p�v� � p��v��g�� in a bundle
trivialization it reads as

�b� x� y� z� �� �b� y� x� hx� yi � z��

However� it is not our purpose to deal with such extensions here� �

On the di�erence with E� the tilted Ekeland mapping eE is no more an involution� however
�with an obvious abuse of notation� eE � eE � ��IX�Y �� IR and the inverse eE�� of eE has a

similar expression� eE���y�� x�� z�� � ��x�� y�� z� � hx�� y�i�� The presence of the minus signs

from E to eE evokes the passage from the concave conjugate of a function to its convex
conjugate�

The Ekeland mapping satis�es the following striking property �Proposition ��� in which
� and �� are the di�erential ��forms on X � Y � R and Y �X � R respectively given by

� � ��x� y� z�� �u� v� w�� �� w � hy� ui�

�� � ��y�� x�� z��� �v�� u�� w��� �� w� � hx�� v�i�

This property is an analogue of 	
� Thm ���� in which E is used� By analogy with the notion
of contact manifold� we call contact space a n�v�s� endowed with a di�erential ��form such
as the pair �X � Y � R� ���

Proposition �� The tilted Ekeland transform is an isomorphism between the contact spaces
�X � Y � R� �� and �Y �X � R� �� � in the sense that it is a C��di�eomorphism such that

the pull�back eE����� of �� by eE is �� Moreover E����� � ���

Proof� Clearly eE is a C��di�eomorphism� Moreover� for any ��x� y� z�� �u� v� w�� � �X � Y�

R� � �X � Y � R� the pull�back eE����� of �� by eE is given by

eE����� ��x� y� z�� �u� v� w�� �� ��
� eE�x� y� z�� eE��x� y� z��u� v� w��

� �� ��y��x� z � hx� yi�� �v��u�w � hu� yi � hx� vi��

� �w � hu� yi � hx� vi� � h�x� vi

� w � hu� yi � � ��x� y� z�� �u� v� w�� �

The proof of the second assertion is similar and is given in 	
� Thm ����� �

The next statement reveals a troubling fact�

Proposition �� If M is a contact subset of X � Y � R� then its tilted Ekeland transformeE�M� is a contact subset of Y � X � R and its Ekeland transform E�M� is a co�contact
subset of Y �X � R�
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Proof� Let �y�� x�� z�� � eE�M�� so that �x� y� z� � M for x �� �x�� y �� y�� z �� z� � hx�� y�i�

Let �v�� u�� w�� � T � eE�M�� �y�� x�� z���� By de�nition of the tangent cone� there exist sequences
�tn�� �� ��u

�

n� v
�

n� w
�

n��� �u�� v�� w�� such that

�y�� x�� z�� � tn�v
�

n� u
�

n� w
�

n� �
eE�M� for each n � N�

Then� for each n � N� one has

�xn� yn� zn� �� ��x� � tnu
�

n� y
� � tnv

�

n� z
� � tnw

�

n � hx� � tnu
�

n� y
� � tnv

�

ni� �M

so that

��u�� v�� w� � hx�� v�i � hu�� y�i� � lim
n
t��n �xn � x� yn � y� zn � z� � T �M� �x� y� z���

Since M is a contact subset� one has

�w� � hx�� v�i � hu�� y�i�� h�u�� yi � 

or w� � hx�� v�i � � This shows that eE�M� is a contact subset of Y �X � R� The proof of
the second assertion is similar� �

The preceding result gives some incentive to adopt the following de�nition� It may appear
as intricate� In fact we do not know whether E�J�F � is an hypergraph nor a Liouville subset�
so that in general we cannot �nd a multifunction G � Y � R whose hypergraph is E�J�F ��

De�nition �� The Ekeland transform of a multifunction F � X � R is the multifunction
FE � Y � R given by

FE�y� �� fhx� yi � z � �x� y� z� � J�Fg�

Thus� in spite of the fact that E�J�F � is not a Liouville subset� nor a contact subset�
we treat it as if it were an hypergraph�

z� � FE�y� � �x � X � z �� hx� yi � z� � F �x�� y � D�F �x� z����
� �x � X � �y� x� z�� � E�J�F ��

Let us �rst check the compatibility of this de�nition with the one for an Ekeland function
given in 	���� There� a function f � X � R�f�g is said to be an Ekeland function if for
any y � Y and any x � ��f����y� the number hx� yi � f�x� does not depend on the choice
of x in ��f����y�� then fE�y� is de�ned as that value�

Lemma �� If f is an Ekeland function� and if F is the multifunction whose graph is the
graph of f� i�e� F ��� � ff���g� then FE��� � ffE���g�

If F is the epigraph of a function f� i�e� F ��� � ff����R�g� then F
E�y� � fhx� yi�f�x� �

x � ��f����y�g�

Proof� Given y � Y� we have z� � FE�y� if� and only if� there exists some x � X such that
�y���� � N�F� �x� z�� and z� � hx� yi�z� with z � f�x�� In view of Proposition � this means
that y � �f�x� and z� � hx� yi � f�x� for some x � X� hence� that z� � fE�y��

The second assertion stems from the fact that when y � D�F �x� z����� i�e� �y���� �
N�F� �x� z��� then z � f�x� since otherwise ����� � T �F� �x� z�� and one gets the contra�
diction h������ �y����i � � Thus one has z� � FE�y� if� and only if� there exists x � X

such that y � �f�x�� z� � hx� yi � f�x�� �
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Example �� Let F be given by F �x� �� 	� �
�x

����� for x � R� Then FE�y� � f� �
�y

�g for
y � R� �

Next� we give a reversibility property� In the statement� we say that a mapping g � U � V

between two metric spaces �U� dU �� �V� dV � is open at a linear rate at x � U onto its image
if there exist some neighborhoodW of g�x� and some c �  such that for each w �W g�U�
there exists some u � U such that g�u� � w and dU �u� x� 	 cdV �w� g�x��� Equivalently� g is
open at a linear rate at x � U onto its image if there exist some c� r� �  such that for each
r � �� r�� one has

B�g�x�� r�  g�U� � g�B�x� cr���

This is a variant of a property which has been widely studied� in particular� it has been
shown that it amounts to a pseudo�Lipschitz property of the inverse g�� of g �see 	���� 	���
for instance��

Proposition �� Let f � X� � R be a Fr�echet di�erentiable function on an open subset X�

of X� Under one of the following two conditions f is a selection of fEE �� �fE�E �
�a� for each x� � X� the mapping f � � X� � Y �� X� is injective and open at a linear

rate at x� onto its image	
�b� for each x� � X� the mapping x �� �f ��x�� hf ��x�� xi � f�x�� from X� into Y � R is

open at a linear rate at x� onto its image�

Proof� We �rst observe that assumption �a� implies assumption �b�� so that we suppose
assumption �b� holds� We have to show that �x� f�x�� � G�FE� for each x � X�� where
F �� fE � Y � R� In other terms� given x � X� we have to �nd some �y� z� � F

such that �x���� � N�F� �y� z�� and f�x� � hx� yi � z� It su�ces to show that �y� z� ��
�f ��x�� hy� xi � f�x�� is such that �x���� � N�F� �y� z��� In order to do so� we pick some
�y�� z�� � T �F� �y� z��� There exist sequences �tn�� �� �y

�

n�� y�� �z�n�� z� such that

�y� z� � tn�y
�

n� z
�

n� � F 
n � N�

In view of assumption �b� there exist some c �  and a sequence �xn� in X� such that
kxn � xk 	 ctn and

�y � tny
�

n� z � tnz
�

n� � �f ��xn�� hf
��xn�� xni � f�xn��

Let x�n �� t��n �xn � x�� �n �� t��n �f�xn�� f�x�� tnf
��x�x�n� � so that kx�nk 	 c for each n�

��n��  and

tnz
�

n � hf ��xn�� xni � f�xn�� �hy� xi � f�x��

� hy � tny
�

n� xi� hy � tny
�

n� tnx
�

ni � �tnhf
��x�� x�ni� tn�n�� hy� xi

Thus z�n � hy�n� xi � tnhy
�

n� x
�

ni � �n and taking limits we get z� � hy�� xi � � so that
�x���� � N�F� �y� z��� �

The following local consequence incorporates 	
� Prop� ����� It makes a connection with
the classical theory of Legendre transform� Here we say that a function f � X� � R on an
open subset X� of a n�v�s� X is a classical Legendre function if it is of class C� on X� and if
its derivative f � is a di�eomorphism from X� onto an open subset Y� of Y � The assumption
of the following statement are slightly less restrictive�
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Corollary �� Let X� be an open subset of a re
exive Banach space X and let f � X� � R

be a function of class C� on X�� Suppose that for some x� � X� the Hessian f ���x�� of f at
x� is an isomorphism from X onto Y �� X�� Then� there exist neighborhoods U� V of x� and
y� �� f ��x�� respectively such that� for W �� U � V � R� one has E�J�f W � � J�g for
some function g of class C� on V called the classical Legendre transform fL of f� Moreover
one has E�J�g� W � J�f W and� for each �x� y� � U � V�

y � f ��x�� x � g��y��

g���y�v � �g��y�T �f ���x� �g��y�v�� if x � g��y�� v � Y�

Proof� The inverse mapping theorem yields neighborhoods U� V of x� and y� �� f ��x��
respectively such that f � j U is a C� di�eomorphism from U to V� Thus f j U is a classical

Legendre function of class C�� It can be shown that g given by g�y� � hy� �f � j U�
��

�y�i �

f��f � j U��� �y�� is in fact of class C� on V �see 	��� for instance� and g� � �f � j U��� � The
last formula is obtained by di�erentiating the left�hand side of the relation g��y��f ��g�y�� �
IX for y � V� �

When F is a convex multifunction �i�e� when its graph is convex� one has a surprising
property� FE is a function� Of course� this property is reminiscent of the de�nition of the
usual Fenchel conjugate� but it is in contrast with the fact that the Ekeland transform of a
function is usually a multifunction�

Lemma �� If F is a convex multifunction� and if z� � FE�y� then one has z� � supfhx� yi�
z � x � X� z � F �x�g� Thus FE is a function on domFE � fy � Y � ��x� z� � F� �y���� �
N�F� �x� z��g�

Moreover� if for each x � X the set F �x� is closed and if f given by f�x� �� inf F �x� is
proper� then� for each y � domFE one has FE�y� � ff��y�g�

Proof� By what precedes� when z� � FE�y� there exists some x� � X such that z� �� hx�� yi�
z� � F �x��� y � D�F �x�� z������ This last relation means that �y���� � N�F� �x�� z��� or�
in view of the convexity of F�

hx� x�� yi � �z � z�� 	  
�x� z� � F�

or in turn hx� yi � z 	 hx�� yi � z� � z� for any �x� z� � F� Taking the supremum over F �
and observing that it is attained for �x� z� � �x�� z��� we get the announced equality�

The proof of the second assertion is similar to the proof of Lemma ��� �

Example �� Suppose X is re�exive and Y � X� �or� more generally� that X and Y are

in metric duality�� Let F be given by G�F � �� f�x� z� � X � R � �z � kxk�g� Then

FE�y� � f �� kyk
�
g� �

A general explanation can be given by using the concepts of Ekeland set and Ekeland
multifunction introduced in 	���� Recall that a subset E of a Banach space is called an
Ekeland set if its indicator function �E is an Ekeland function� i�e� if for any x�� x� � E

and any y � N�E� x��N�E� x�� one has hx�� yi � hx�� yi� A multimapping F between two
n�v�s� is said to be an Ekeland multimapping if its graph G�F � is an Ekeland subset of the
product space� In particular� any convex multimapping is an Ekeland multimapping�

Proposition �� If F � X � R is an Ekeland multifunction� then its Ekeland transform is
a function�
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Proof� By de�nition� F � X � R is an Ekeland multifunction if� and only if� for any
�y� w� � Y � R and any �xi� zi� � G�F � for i � �� � such that y � D�F �xi� zi��w� one
has hx�� yi � wz� � hx�� yi � wz�� In particular when �xi� zi� � G�F � for i � �� � are such
that y � D�F �xi� zi���� for i � �� �� one gets hx�� yi � z� � hx�� yi � z�� Therefore F

E is
single�valued� �

Such a simple situation may appear in nonconvex cases�

Lemma �	 Suppose X is re
exive� Let g � Y � X� � R be a twice di�erentiable function
and let F � X � R be given by

F �x� �� fz � R � �p � Y� x � g��p�� z � h�p� �� hg��p�� pi � g�p�g x � X�

If for each p � Y the mapping g���p� � Y � X is surjective� then the Ekeland transform FE

of F is a mapping which coincides with g on its domain domFE�

Proof� Let �y�� z�� � FE � By de�nition� there exists some �x� y� z� � J�F such that y� � y

and z� � hx� yi � z� Now �x� y� z� � J�F means that �y���� � N�F� �x� z�� and z � F �x��
Let p � Y be such that x � g��p�� z � h�p� � hg��p�� pi � g�p�� Since for each v � Y one
easily checks that

�

t
��g��p� tv�� h�p� tv�� �g��p�� h�p���� �g���p�v� hg���p�v� pi��

one has �g���p�v� hg���p�v� pi� � T �F� �x� z��� Thus

hg���p�v� yi � hg���p�v� pi � h�g���p�v� hg���p�v� pi�� �y����i 	 �

Since g���p� is surjective� we get p � y�� y��� Therefore z� � hx� yi � z � hg��p�� yi �
�hg��p�� pi � g�p�� � g�p� � g�y��� �

When the surjectivity assumption of the second derivative does not hold� the conclusion
may fail�

Example 	� Let F � R � R be given by�

F �x� �� fz � R � �p � R� x � p� � �p� z �
�

�
p��p� � ��g�

Then F has the shape of a swallow tail which is symmetric with respect to fg � R

and has singular points ����� �
� �� ����

�
� �� ��

�
� �� For x � R the set F �x� consists in one
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point for jxj � �� two points for x � f��� �� �g and three points for x �� � �� ������ ���
One has N�F� ����� �

�
�� � f�r� s� � r � s � �g� N�F� ���� �

�
�� � f�r� s� � �r � s � �g and

N�F� ��� �
�
�� � f�g� Therefore

FE � f�y���y�
	



� � y � �g � f�y� �y �

	



� � y � ��g � f�y�

�



y��y� � ��� � y �� ��� �� �g�

Note that the two half lines are tangent to the main curve at the points ����� �

�
�� ���� �

�
�

respectively Thus� while the two cusps of F no more appear in its transform FE � two
smooth bifurcation points show up �

Example �� Let F � R � R be given by�

F �x� �� fz � R � �p � R� x � �p�p� ����p� ��� z � p�p� ���	p� � p�g�

Its graph is the semi�algebraic set appearing in relation ����� of ���� it is the projection on
R
� of a smooth submanifold of R� � It is represented in ��� and a similar analysis can be done

�

Question� Under which conditions does the following implication hold�

y � D�F �x� z����� x � D�FE�y� z����� with z� �� hx� yi � z�

Such a property is the analogue of the fundamental property of the Legendre transform

� Legendre Transform

As in the case of functions� we introduce an extension of the Ekeland transform Our purpose
is to recover the usual convex conjugacy For that reason� we use a closure process

De�nition �� The Legendre transform of a multifunction F � X � R is the multifunction
FL � Y � R given by

z � FL�y�� ��xn� yn� rn� � J�F� zn � hxn� yni � rn� �yn� zn�	 �y� z�� �hxn� yn � yi�	 ��

The conditions we impose aim at restricting the graph of FL as much as possible Clearly�
the graph of FL contains the graph of FE �take �yn� zn� � �y� z�� and is contained in its
closure clFE 

Proposition �� If f is a classical Legendre function considered as a multifunction F� then
FL coincides with the graph of the Legendre transform fL of f as de�ned in Corollary ���

Proof Since the graph of fL is FE � it is contained in FL� Conversely� given �y� z� in
the graph of FL� taking a sequence �xn� yn� rn� in J�F and �zn� as in De�nition ��� we

have xn �
�
fL

�
�

�yn�� zn � fL�yn� and since fL is continuously di�erentiable� we get
z � lim fL�yn� � fL�y�� �

Proposition �� If F is the epigraph of a convex function f� then FL is contained in the
epigraph of the conjugate function f� of f and contains the graph of f��

Proof Let �y� z� be in the graph of FL and let �xn� yn� rn� be a sequence of J�F as in
De�nition �� In particular� as observed before� rn � f�xn�� so that zn � hxn� yni�f�xn� �
f��yn�� and z � limn zn � f��y� since f� is lower semicontinuous Thus �y� z� is in the
epigraph of f��
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Now� for each �y� z� in the graph of f�� using the consequence of the Bronsted�Rockafellar
theorem given in ��
� Prop ��� applied to f�� one can �nd some sequence ��yn� xn�� in the
graph of �f� such that �f��yn�� 	 f��y� and �hxn� yn � yi� 	 � Setting zn �� f��yn��
rn �� hxn� yni � zn we have �xn� yn� rn� � J�F and �yn� zn�	 �y� z�� Therefore z � FL�y��

�

Final remarks �� A Lagrangian subset of X 
Y could be de�ned as a subset L of X 
Y

such that d���x� y�� �u� v�� �u�� v��� � � for any �x� y� � L and �u� v�� �u�� v�� � T �L� �x� y���
where d� is the di�erential ��form de�ned by

d���x� y�� �u� v�� �u�� v��� � hu� v�i � hu�� vi�

dropping the condition that T �L� �x� y�� is a vector subspace isomorphic to X� To the best
of the author�s knowledge� such a condition has not been used much in nonsmooth analysis
�see ���� however� It would be interesting to explore the possibility of its uses

�� Some attempts have been devised in order to detect whether a multifunction F � X �
X� is the subdi�erential of a function �see ���� ���� for instance� Using such criteria� one
could introduce a transform g � X� 	 R�f�g of a function f � X 	 R�f�g by integrating
the multifunction ��f��� � X� � X� Then a comparison with the Ekeland transform would
be in order
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