Rty Py, ” P

i} Yokohama Publishers pusite 4 ORI s

2l /SSN 1349-8169 ONLINE JOURNAL No-QgPeL 7 ) A

A
0w

Singe 199

THE LEGENDRE TRANSFORM OF CORRESPONDENCES

JEAN-PAUL PENOT

Dedicated to Terry Rockafellar on his seventieth birthday.

Abstract: We introduce a notion of conjugacy for relations between a normed vector space and the real
field. When the correspondence is a Legendre function, one recovers the Legendre transform.

Key words: conjugacy, correspondence, duality, jet, Legendre transform, multifunction, nonsmooth anal-
yYSis

Mathematics Subject Classification: 49J52, /9J53, 90C26, 53D05, 3TK25

Introduction

In many cases of interest in mathematics, set-valued functions have to replace single-valued
functions. Since a problem depending on a parameter w does not always have a unique
solution, one is led to the study of the multifunction S whose value at w is the set S(w) of
solutions of the problem for the parameter w. Of course, such a fact makes the study more
difficult and mathematicians have just started to devise tools to deal with such questions.
They often play a role in practical problems. For instance, a consumer wishing to buy some
good has often the choice between different proposals with different prices; also, a firm may
have different processes of production whose costs may range in some interval. Therefore,
multifunctions with values in R have an interest.

In nonlinear analysis, the search of critical (or stationary) points often replaces the search
of minimizers or maximizers. In doing so, one replaces the optimization problem with an
equation or an inclusion. Reciprocity or duality relationships may thus bring a precious
insight on the models of many nonlinear phenomena. A systematic treatment has been
proposed by Ekeland [9], [10]. It departs from other more classical generalized convexity
approaches to duality ([20], [25], [30], [32], [33] and their references). Still his approach
enables to treat convex duality, Toland’s duality, duality in the calculus of variations in
a single framework. In [26] we introduced a slight extension of the Ekeland transform in
order to obtain a scheme which fully encompasses the Legendre-Fenchel conjugacy for lower
semicontinuous convex functions; we applied it to the study of characteristics associated
with an Hamilton-Jacobi equation, relating the recent and beautiful global convex theory of
Rockafellar and Wolenski ([31]) to the classical approach.

In the present paper we extend this scheme to multifunctions from a normed vector space
(n.v.s.) X toR. While in [9], [10] Ekeland studied the case of the transform of a function or a
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Lagrangian submanifold, here we start with an arbitrary multifunction. We use elementary
tools from set-valued analysis and nonsmooth analysis, while most arguments of [9] rely
on tools from differential topology. In [26] the attention is focused on the case the Ekeland
transform of a function is again a function; in general, the Ekeland transform of a function is
a multifunction. Although here we do not pursue such an aim, we give conditions ensuring
that the transform of a multifunction is a function. Our motivation lies in the fact that
duality is particularly useful when the dual problem is simpler than the primal problem.

As in [26], we endeavour to extend the transform in order to fully encompass the case of
the Fenchel transform. Thus, instead of looking for a restricted class of well behaved convex
functions as in [28, Chapter 26], we consider a framework which encompasses all lower
semicontinuous convex functions and classical Legendre functions. As mentioned above, it
even goes beyond functions. We also evoke some extensions of classical geometrical concepts
to nonsmooth situations. These situations occur in important fields such as mathematical
programming. Among these concepts is a one-sided version of the notion of jet called the
subjet or hypergraph of the multifunction and a notion of contact subset. It is shown that
the hypergraph of a multifunction is a contact subset, in a sense introduced in section 2
which is again a one-sided version of the notion of Lagrangian submanifold in the sense of
[9].

Because the Ekeland transform, as defined in [9], [10] does not preserve the contact
structure, we introduce a variant of it. However, in order to preserve the notion of conjugate,
we adopt a definition which is compatible with the notions of [9], [10], [26]. The price to be
paid is that the correspondence between the hypergraph of the conjugate and the transform
of the hypergraph is not as natural as one would like. This surprising fact concerning the
change of signs may be related to the way the Fenchel conjugate of a convex function is
defined: it is a tangential way, through affine functions whose graphs are below the graph
of the function or are tangent to it.

We devote some attention to the subjet of a convex function on a Hilbert space, bringing
some additional information about its structure of Lipschitzian submanifold as displayed in
[29].

In [9] and [10] a duality is defined in terms of perturbations for the problems of looking
for critical points. It is applied to various problems, such as eigenvalue problems, Toland’s
duality and problems of the calculus of variations. We do not deal with such applications
here. We refer to these references for that and to [27] for an application to the Clarke duality.
We hope that the development of set-valued analysis will lead to some more applications.

Contact Subsets and Liouville Subsets

In the sequel X and Y are two n.v.s. in duality via a coupling function (-,-).If F: S =3 T is a
correspondence (or multifunction, or multimapping or relation) between two sets we denote
its graph by G(F) := {(s,t) € Sx T : ¢t € F(s)}. Although the identification of F' with G(F’)
would not cause ambiguities in what we have in view, we avoid it here. The inverse of F is
the correspondence F~! characterized by G(F~!) := {(t,s) € T x S:t € F(s)}.

We use the concept of tangent cone T(E,z) (or contingent cone) to a subset E of a
n.v.s. X at « € cl E (the closure of E): it is the set of v € X such that there is a sequence
((tn,vn)) = (04,v) in R x X satisfying = + t,v, € E for each n € N. It is known (see [21],
[30]) that when E C X x R is the epigraph Ey := {(z,7) € X x R:r > f(z)} of a function
f:X = Re := RU {oo} finite at z, the tangent cone to E := Ef at zy := (z, f(z)) is the
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epigraph of the function df (x,-) given by

df (z,u) := liminf %(f(a:%—tv)—f(m)).

(t,’u)—>(0+ 7”)

The normal cone N(E,z) to E at x is the polar cone to the tangent cone:
N(E,z) = (T(E,z))" :={y €Y : (v,y) <0Vv e T(E,z)}.

The coderivative at (z,w) € G(F) of a multimapping F': X =2 W between two n.v.s. paired
with Y and Z respectively is the multimapping D*F(z,w) : Z = Y given by

y € D*F(z,w)(z) & (y,—2) € N(G(F), (z,w)).

If f: X = Ry :=RU{oo} is finite at x, the (directional or Dini-Hadamard, Hadamard or
contingent) subdifferential 0f(z) of f at z is given by

yedf(x) e (y,—1) e N(Er,zy) @Vue X (y,u) <df(z,u),

where Ey is the epigraph of f and zy := (z, f(x)). Thus 9f(z) = D*Ef(zxs)(1) with zy :=
(z, f(z)). Other subdifferentials could be used, with the related concepts of normal cones.
In [10] the Clarke subdifferential is used in the locally Lipschitzian case; several results
below (in particular Lemma 5 and Proposition 6) would not be valid with that choice. The
same can be said for the limiting subdifferential; however, since Definitions 1, 3 and 4 can
be reformulated in terms of normal cones, the limiting subdifferential could be used as a
variant of the concepts introduced below.

The following concept seems to be new, but it is closely related to classical notions.
Recall that if f: U — V is a differentiable mapping between two open subsets of n.v.s. its
first order jet is the set

J'f = {(, f'(2), f()) :x € U}.

Such a notion can be extended to manifolds and to higher order jets (see [6, § 12], [19,
Chapter 4] for instance). In nonsmooth analysis, a one-sided version is in order (see [14],
[23] for instance).

Definition 1 The subjet J~F (or hypergraph) of a multifunction F : X = R is the corre-
spondence J"F : X xY 3 R given by

J F:={(z,y,2) e X xY xR:(z,2) € G(F), y € D*F(z,2)(1)}.

Let us relate the subjet J~f of a function f : X — R to the subjet of its associated
graph G := G(f) or epigraph E;. Although the first equivalence below is simple and worth
of notice, we have not been able to find it in the literature.

Proposition 2 Given a lower semicontinuous (l.s.c.) function f : X — R := RU{—00, 00}
with graph Gy and epigraph E; and v € X such that z := f(z) € R, one has

(z,y,2) € JTGy & (z,y,2) € JTE; &y € 0f (x).

Proof. The last equivalence is just a rewriting of the equivalence of the relations (y, —1) €
N(Ey,(z,2)) and y € Jf(x). The first equivalence amounts to (y,—1) € N(Gy, (z,2)) if,
and only if, (y, —1) € N(Ey, (z, 2)).
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Since Gy is contained in Ej, one has N(Ey,(z,z)) C N(Gy,(z,z)). Thus it remains
to prove that if y € X* is such that (y,—1) € N(Gy,(z,2)) then one has (y,—1) €
N(Ey,(z,2)). Let (u,r) € T(Ey,(z,2)). Let us first observe that setting p := df (z,u) :=
inf{s € R : (u,s) € T(Ey,(z,2))}, we cannot have p = —oo. Otherwise we can find a
sequence ((tn,un)) = (04,u) with

1
Pn = (f(z + thu,) — f(x)) — —oc.
Without loss of generality we may assume that ¢, := —p,, > 0 for each n € N and since f is

Ls.c. and (x+tnu,) — x we have 0 > limsup,, (f(x + thun) — f(2)) > liminf,, (f(z + t,un)
—f(z)) > 0, hence (t,p,) — 0. Then (g, 'u,) — 0 and

0,—1) = li
(0,-1) m =

[(@ + tagn (@, un), (@ + taun)) — (@, f(2))] € T(Gy, (x,2))

and we get the contradiction 1 = ((y,—1),(0,—1)) < 0. Thus p > —oo and since p < 7, p
is finite. Since (u,p) € T(Gy, (z,2)) as (t,;* [(z + totn, f(2 + thuy)) — (2, f(2))]) = (u,Dp),
we have

<(y7 _1)7 (’U‘)T» = <y,’LL> -r S <y)u> —pP= <(y) _1)) (U,p)> S 0
and, since (u,r) is arbitrary in T(Ey, (z,2)), we get (y, —1) € N(Ey, (z, 2)). O

The following concepts are nonsmooth and unilateral versions of the notion of Lagrangian
submanifold in the sense of [9, Def. 1.1]. As for the latter notion, they use the differential
1-form w defined as follows:

w: ((z,y,2); (u,v,w)) = w— (y,u).

Such a differential form could be defined on the product 7*V x R of the cotangent bundle
T*V of a differentiable manifold V' with R by using the Liouville 1-form 6 on T*V (given
by 6(z,y)(u,v) = (y,u) when V' is an open subset of a n.v.s.) and the 1-form dt on R and
setting w = dt — 6, with an obvious abuse of notation consisting in identifying one-forms
with their pull-backs on T*V x R. Our choice of the terminology is justified in Example 1
below.

Definition 3 A subset M of X x Y x R is said to be a contact subset (resp. a co-contact
subset) of X x Y x R if for any (x,y,z) € M and for any (u,v,w) € T(M, (z,y, z)) one has
w — (y,u) >0 (resp. w— (y,u) <0).

Definition 4 Let M be a subset of X XY X R and let P be its projection on X x R. The
set M will be called a Liouville subset of X xY x R if for any (x,y,z) € M and for any
(u,w) € T(P,(x,z)) one has w — (y,u) > 0.

Note that M is a contact subset of X x Y x R if, and only if, for any (z,y,z) € M one
has (y,0,—1) € N(M, (z,y,z)) and that M is a Liouville subset of X x Y x R if, and only
if, for any (z,y,2) € M one has (y,—1) € N(P,(z, z)). The following statement contributes
to the clarification of the relationships between the two notions.

Lemma 5 (a) Any Liouville subset of X XY X R is a contact subset.
(b) M is a Liouville subset if, and only if, M is contained in the subjet J~ P of P.
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(c) If M is a contact subset of X x Y x R and if for every (x,y,z) € M the projection
mapping Dm(x,y, 2) : (u,v,w) = (u,w) maps T (M, (z,y,2)) onto T(P,(x,z)), then M is a
Liouwille subset of X xY x R.

(d) X is finite dimensional, if M is a contact subset and if for any (x,y,z) € M
there exist ¢ > 0, a neighborhood V of (z,z) and a mapping h : VNP — Y such that
[|h(z', 2") —y|| < c|l(2',2") — (z,2)|| and (z',h(z',2"),2") € M for each (z',2") € VNP, then
M is a Liouville subset.

Proof. (a) Let m : M — P be the projection given by 7w(z,y,2) := (z,z) and let P :=
w(M). Since for any (z,y,2) € M and for any (u,v,w) € T(M, (z,y,2)) one has (u,w) =
' (z,y,z)(u,v,w) € T(P,(z,z)), we see that any Liouville subset is a contact subset.

(b) The observation preceding the statement shows that M is a Liouville subset if,
and only if, for every (z,y,z) € M one has (y,—1) € N(P,(z,z)), or, in other terms,
y € D*P(x,z)(1) or, by Definition 1, (z,y,z) € J~P.

Assertion (c) is an obvious consequence of the definitions.

It remains to prove the last assertion. In fact, using the assumption, one can show that
for any (z,y,z) € M, (u,w) € T(P,(z,z)) there exists some v € Y such that (u,v,w) €
T(M, (z,y,z)) : it suffices to take for v a limit point of a sequence (t;'(h(x + t,un,z +
thwn) —y)) where (¢,) — 01, (un) = u, (w,) = w with (z + t,un, 2z + taw,) € P for each

n. Such a limit point exist by the compactness of balls in Y. O
Because

T(A,xz) CT(B,z) for AC B, x € cl(A), (2.1)

T(AUB,z)=T(A,z)UT(B,x) for z € cl(AU B), (2.2)

we observe that the intersection of a family of Liouville subsets is a Liouville subset and
the union of a finite family of Liouville subsets is a Liouville subset. Similar results hold for
contact subsets. Such simple assertions would not be valid in the smaller class of Liouville
submanifolds without transversality or regularity conditions.

A fundamental example is given in the following statement. Note that here we cannot
apply Lemma 5 b) because we do not know whether G(F) is the projection of J~F (in
general this is not the case, even when F' is a function).

Proposition 6 The subjet J~F of a correspondence F' : X =3 R is a Liouville subset of
X xY xR

Proof. Clearly, the projection P of M := J~F is contained in G(F). Let (z,y,2) € M and
let (u,w) € T(P,(x,z)) C T(G(F),(x,z)). The construction of M ensures that (y,—1) €
N(G(F),(z,z)). Thus we have

<u)y> —w= <(’LL,U)), (yv _1)> <0,
so that M 1is a Liouville subset of X x Y x R. O

Another example of contact subset deals with a relatively smooth situation, close to the
one considered in [9].

Example 1. Let M be a subset of X x Y x R which is smooth, i.e. such that for each
m € M the tangent cone T'(M,m) is a vector subspace (this obviously occurs when M is a
differentiable submanifold). Then M is a contact subset iff for each m € M the linear form
W () is null on T'(M, m). In [9] submanifolds satisfying that property are called Lagrangian
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submanifolds; however this terminology is not in accordance with the usual one in symplectic
geometry (see [1]-[4], [8], [11], [18], [34]-[38] for instance), so that we substitute a new one
for which no ambiguity may (hopefully) occur. O

The following example deals with a situation familiar in mathematical programming in
which constraints are defined by equalities and inequalities. It is inspired by [9, Lemma 3.1]
in which a finite number of equalities are considered and a qualification condition (linear
independence of the derivatives) is assumed. Here M is a nonsmooth subset.

Example 2. Let X, be an open subset of X, let Y = X* andlet f: Xg =2 R, g: Xo — Z
be mappings of class C'', where Z is some n.v.s. Given a convex subset C of Z, let

M = {(z, f'(z) + 2" 0 g (2), f(x)) : x € g71(C), z* € N(C,g(2))}.

Let us check that M is a Liouville subset of X x Y xR. We first observe that the projection P
of M on X x R is just the graph of the restriction of f to g~(C). Given m := (z,y,2) € M
and (u,w) € T(P,(z,z)) we have, for some z* € N(C,g(x)), y = f'(z) + 2* o g'(x), hence

w—(y,u) = f'(@)u = (f'(x) + 2" o g'(z),u) = =(z", ' (x)u) > 0

since g'(z)u € T(C,g(z)) as u € T(g~*(C),z). In the case of a classical mathematical
programming problem, one has X = R", Z = R™, C' = —R7} and 2* € N(C,g()) if, and
only if its components z} are nonnegative and such that zg;(z) = 0. a

Example 3. Let X, W be n.v.s., let Xy be an open subset of X and let h: Xg = W be a
differentiable mapping. Given a Liouville subset N of W x W* x R, let

M :={(z,z",r) e X x X* xR:Jw* €e W*, 2" = w* o h'(z), (h(z),w",r) € N}.

Then M is a Liouville subset of X x X* x R. In fact, given (u,s) € T(P,(z,r)), where
P is the projection of M on X x R, we have (h'(z)u,s) € T(Q, (h(z),r)), where Q is the
projection of N on W x R, as easily checked. Therefore s — (z*,u) = s — (h'(z)T (w*),u) =
s — (w*, h'(x)u) > 0.

This example encompasses the preceding one, as one can see by taking W := X x Z,
h) = (=, g(2)),

N :={(z,z,z*,2*r): * = f'(z), r = f(z), z€ C, 2* € N(C, 2)},
which is a Liouville subset of X x Z x X* x Z* x R. O

Example 4. Let X be a Hilbert space and let f : X — R be a closed proper convex function.
Then, the subjet J~ f in the sense of convex analysis is a Liouville subset of X x Y x R
since the Fenchel-Moreau subdifferential coincides with the subdifferential we use here, so
that Proposition 6 applies. We will study this example in more details in the next section.

The Subjet of a Convex Function

The subjet of a nonsmooth function is not a smooth submanifold in general. However, in
some special cases it enjoys a pleasant structure. We devote the present section to the
case of the subjet M := J~ f of a lower semicontinuous convex function f : X — RU{oo}
which is proper (i.e. which takes at least one finite value). Some other special cases, such
as the class of piecewise smooth functions, would deserve some attention. We refer to [9,
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Sections 1,2] for a study of conditions ensuring that conversely a Lagrangian submanifold is
(at least locally) a subjet. In the present section X is a Hilbert space identified with its dual
space. When X is finite dimensional, it is shown in [31] (see also [29]) that this subjet has a
Lipschitzian bijective parametrization whose inverse is also Lipschitzian. Our purpose here
is to show that M can be given the structure of a Lipschitzian submanifold of X x X x R in
the following (stronger) sense which extends the finite dimensional situation studied in [12]
and [17].

Definition 7 A subset M of a normed vector space Z is a Lipschitzian submanifold of Z
if for each m € M there exists a decomposition of Z into a direct sum Z = Zy X Zy of
closed vector subspaces, neighborhoods U of m in Z, V. = Vi x Vo of (0,0) in Z; X Zs
and a lipeomorphism (i.e. a Lipschitzian bijection with Lipschitzian inverse called a chart)
¢ :U =V such that (U N M) =V; x {0}.

The mapping v; — ¢~ (v1,0) then yields a local Lipschitzian parametrization of M with
Lipschitzian inverse. On the other hand, one cannot assert that a Lipschitzian parametriza-
tion yields a chart ¢ as above since the inverse mapping theorem is not available in this
context (or hardly available through some substitutes). Thus, the lack of an inverse mapping
theorem for Lipschitzian mappings justifies the more precise definition given above. It also
gives an easy way to extend a locally Lipschitzian function on M to a neighborhood of M.
It may also be helpful for dealing with notions of measure zero subsets.

The following example shows that if M is locally the graph of a Lipschitzian mapping,
then M is a Lipschitzian submanifold and not just the image of a parametrization.

Example 5. Let G be the graph of a Lipschitzian mapping g from an open subset X, of X to
some normed space W. Then G is a Lipschitzian submanifold of X x W, the lipeomorphism
p: Xo x W — X x W being given by p(u,w) = (u,w — g(u)). Its inverse is given by
e Hu',w') = (u',w' + g(u')) and ¢ maps G onto Xp x {0}. O

Example 6. By the preceding example, the one-jet J'f := {(z, f'(x), f(z)) : = € X}
of a CY! map f : X — W between two n.v.s. is also a Lipschitzian submanifold since
by definition of a C'' map as a differentiable function whose derivative is Lipschitzian,
g := (f', f) is Lipschitzian and J'f is just the graph of g. O

This example is extended to the subjet of a convex function in the next proposition.

Note that in the preceding definition it suffices to require that the mappings ¢ and ¢~
are locally Lipschitzian since the condition is local. In the case of the subjet of a convex
function we have an intermediate situation: ¢ and ¢! are boundedly Lipschitzian, i.e. their
restrictions to bounded sets are Lipschitzian; moreover a single chart suffices. Since X is
not assumed to be finite dimensional, the proof of [31, 6.5] which relies on the Rademacher
theorem is no more valid.

1

Proposition 8 Let f : X — RU{oo} be a proper lower semicontinuous convex function
on a Hilbert space X and let M be its subjet (or characteristic manifold). Then M has a
structure of Lipschitzian submanifold of X x X x R. Moreover, a single chart suffices.

Proof. For a convex function, the contingent subdifferential coincides with the Fenchel-
Moreau subdifferential so that

M ={(z,y, f()) : y € 0f(x)}.

Set T :=0f,and let ¢ : X x X=X x X and ¢ : X x X X R =X x X X R be the linear
isomorphisms given by ¢(z,y) := (x + y,—x + y), ¥ := ¢ x I. Then one shows as in [30,
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12.15] that ¢(G(T)) is the graph of the mapping u — (P(u), Q(u)) from X into X x X x R,
where P := (I +0f)~! and Q := I — P; in fact

(u,v) € p(G(T)) & Iz,y) EGT): u=z+y, v=—x+y
S3(z,y) EGT): ue T+T)(z), v=u—2x€ (I =2IT+T)"")(u)

The maps P,Q are known to be nonexpansive, P(u) = argmin, (f(:n) + 3z - u||2) and
thus ¢(G(T)) is the graph of the Lipschitzian map S := I — 2(I + T)~!. Setting R(u) :=
f(P(u)) we get as in [31] that (M) is the graph of the mapping g : u — (S(u), R(u)) from
X to X x R. Let us show that R : u — f(P(u)) is boundedly Lipschitzian. Given u,u' in
the ball B(0,r) with center 0 and radius r, we have ||[P(u)|| < a +r, ||P(u')]| < a+r with
a := ||P(0)]|, hence

R = B < (1P + 5 1P — I ) = 3 1PG) - I - F(P)

< 5(Pw) = P | Plu) — ' + P(u!) o)
=l 1P|+ 1PN + 2 ) < (4 +20) e — ]

A

IN

Interchanging the roles of u and u', we get that R is Lipschitzian on B(0,r) with rate
2(2r + a).

Since the graph G of the Lipschitzian mapping ¢ := (S, R) from X to W := X x R
is a Lipschitzian submanifold of X x W, by the preceding example it is mapped by the
lipeomorphism 6 : X x W — X x W given by 6(u,w) = (u,w — g(u)) onto X x {0}. Then,
taking ¢ := 6 o 1), we get the required chart from X x X x R onto X x W sending M onto
X x {0}. O

The preceding result can be extended to paraconvez (or semiconvex) functions, i.e. func-

tions f : X — R U {oo} such that there exists some ¢ € R} for which ¢ := f + %c||||2 is
convex.

Proposition 9 The subjet M := J~ f of a proper lower semicontinuous paraconvez function
f:X = RU{oo} on a Hilbert space X is a Lipschitzian submanifold of X x X x R.

Proof. Let ¢ € Ry be such that g := f + %c||||2 is convex. Then, for each € X, one
has df(xz) = 0g(x) — cx. Therefore, the mapping 1 : X x X x R X x X x R given by
n(z,y,z) = (x,y + cx,z + $c ||lz||?) applies J~ f onto J~g and has for inverse the mapping
given by n~t(z',y,2") = (2',y' —ecx', 2" — %c ||:r’||2) which is also boundedly Lipschitzian. It
follows that J~ f is also a Lipschitzian submanifold. O

The Ekeland Transform of a Relation

We first define the Ekeland mapping as in [9] and a variant of it. We will apply it to
correspondences and justify the choice of signs later on.

Definition 10 The Ekeland mapping is the mapping E : X XY xR =-Y x X X R given by
E(.’E, Y, Z) = (ya T, <CE, y> - Z)
The tilted Ekeland mapping is the mapping E:XxYxR-Y x X xR given by

E(xvyaz) = (y7 -,z = (m,y)).
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Note that this last mapping involves the symplectic operator

(o Iy
[0, .

Remark. The preceding definition can be extended to the case of a partial Ekeland trans-
form when two variables are present but the transform is performed on one of them only. In
fact it can be set in the framework of vector bundles. Given a vector bundle p : V' — B with
base B and the dual bundle p* : V* — B, one can define E as a vector bundle morphism
from V xp V* xR to V* xp V x R, assuming that the fibers are reflexive Banach spaces or
n.v.s. in duality (here V' xp V* stands for {(v,v*) € V x V* : p(v) = p*(v*)}); in a bundle
trivialization it reads as

(ba z,y, Z) = (b) Y, 7z, <£L’, y> - Z)
However, it is not our purpose to deal with such extensions here. O

On the difference with E, the tilted Ekeland mapping E is no more an involution; however
(with an obvious abuse of notation) E o E = (—Ixxy) X Iz and the inverse E~! of E has a
similar expression: Eil(y’,m’,z’) = (—2',y', 2" — (2/,y")). The presence of the minus signs
from E to E evokes the passage from the concave conjugate of a function to its convex
conjugate.

The Ekeland mapping satisfies the following striking property (Proposition 11) in which
w and w' are the differential 1-forms on X XY x R and Y x X x R respectively given by

w ((Z’,y,Z), (U,’U,’LU)) = w — <y)u>7

wl : ((yl’wl’zl); (vlaulawl)) = wl - <ml7vl>‘

This property is an analogue of [9, Thm 2.2] in which E is used. By analogy with the notion
of contact manifold, we call contact space a n.v.s. endowed with a differential 1-form such
as the pair (X x Y x R,w).

Proposition 11 The tilted Ekeland transform is an isomorphism between the contact spaces
(X xY xRyw) and (Y x X X R,w') in the sense that it is a C°-diffeomorphism such that
the pull-back E*(w') of w' by E is w. Moreover E*(w') = —w.

Proof. Clearly E is a C*°-diffeomorphism. Moreover, for any ((z,y, ), (u,v,w)) € (X x Y x
R) x (X x Y x R) the pull-back E*(w') of w' by E is given by

B () ((2,9,2); (w,0,0)) 1= o' (B, 2); B (@,9,2) (w,v,w))

=u' ((y) —Ty,z = <1‘,y>), (’U, —u,w — <’U,,y> - <£L’,’U>))
(w = (u,y) = (@,v)) = (~a,0)
=w-— (u,y) =w ((ZU,y,Z); (u,v,w)) '

The proof of the second assertion is similar and is given in [9, Thm 2.2]. d

The next statement reveals a troubling fact.

Proposition 12 If M is a contact subset of X x Y x R, then its tilted Ekeland transform
E(M) is a contact subset of Y x X x R and its Ekeland transform E(M) is a co-contact
subset of Y x X x R.
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Proof. Let (y’,w',z')NE E(M), so that (z,y,2) € M for x := -2, y:=y', 2 := 2" — (', y').
Let (v/,u',w") € T(E(M), (y',2', 2")). By definition of the tangent cone, there exist sequences
(tn) = 04, ((ul,, vl ,wh)) = (u',v',w') such that
(', @', 2") + tn(v),u!, w') € E(M) for each n € N,
Then, for each n € N, one has
(T Un, 2n) = (=2 = tyul, y' + tyv),, 2" + thw), — (2" + thul,,y' + tyvy,)) € M
so that
(—u' v w' — (x',v) — (u',y')) = lirrlntgl(a:n — T, Yn —Y,2n — 2) ET(M,(2,y, 2)).
Since M is a contact subset, one has
(w' = (2, 0") = (u,y')) — (=u',y) > 0

or w' — (z/,v') > 0. This shows that E(M) is a contact subset of ¥ x X x R. The proof of
the second assertion is similar. O

The preceding result gives some incentive to adopt the following definition. It may appear
as intricate. In fact we do not know whether E(J~ F) is an hypergraph nor a Liouville subset,
so that in general we cannot find a multifunction G : Y = R whose hypergraph is E(J~F).

Definition 13 The Ekeland transform of a multifunction F' : X = R is the multifunction
FF .Y =3 R given by

FE(y) = {(z,y) — 2 : (v,y,2) € J_F}.

Thus, in spite of the fact that E(J~F) is not a Liouville subset, nor a contact subset,
we treat it as if it were an hypergraph:

ZeFPy) & FreX: z:=(a,y) -2 € F(x), y € D*F(x,2)(1)
& JreX:(y,x,2)e E(JF).

Let us first check the compatibility of this definition with the one for an Ekeland function
given in [26]. There, a function f : X — RU{oo} is said to be an Ekeland function if for
any y € Y and any z € (0f) *(y) the number (z,y) — f(z) does not depend on the choice
of z in (0f) (y); then fE(y) is defined as that value.

Lemma 14 If f is an Ekeland function, and if F' is the multifunction whose graph is the
graph of f, i.e. F(-)={f(")}, then F¥(-) = {f*()}.

If F is the epigraph of a function f, i.e. F(-) = {f(:)+Ry}, then FE(y) = {{z,y)— f(z) :
z € (0f) ()}

Proof. Given y € Y, we have z' € F¥(y) if, and only if, there exists some z € X such that
(y,—1) € N(F,(z,z)) and 2’ = (x,y) — z, with z = f(x). In view of Proposition 2 this means
that y € 0f(z) and 2' = (z,y) — f(z) for some x € X, hence, that 2’ = f¥(y).

The second assertion stems from the fact that when y € D*F(z,2)(1), i.e. (y,—1) €
N(F,(z,z)), then z = f(z) since otherwise (0,—1) € T(F,(z, z)) and one gets the contra-
diction ((0,—1),(y,—1)) > 0. Thus one has 2z’ € F¥(y) if, and only if, there exists z € X
such that y € 0f(x), 2z’ = (z,y) — f(z). O
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Example 7. Let F be given by F(z) := [-$a?,+00) for z € R. Then F¥(y) = {—1y?} for
y€R a

Next, we give a reversibility property. In the statement, we say that a mapping g : U — V'
between two metric spaces (U,dy), (V,dy) is open at a linear rate at © € U onto its image
if there exist some neighborhood W of g(z) and some ¢ > 0 such that for each w € Wng(U)
there exists some u € U such that g(u) = w and dy(u, z) < cdy (w, g(z)). Equivalently, g is
open at a linear rate at z € U onto its image if there exist some ¢,rg > 0 such that for each
r € (0,79) one has

B(g(x),r) Ng(U) C g(B(z,cr)).

This is a variant of a property which has been widely studied; in particular, it has been
shown that it amounts to a pseudo-Lipschitz property of the inverse g—* of g (see [13], [22]
for instance).

Proposition 15 Let f : Xo — R be a Fréchet differentiable function on an open subset Xy
of X. Under one of the following two conditions f is a selection of fPF .= (fF)F .

(a) for each xog € Xo the mapping f' : Xo = Y := X* is injective and open at a linear
rate at o onto its image;

(b) for each o € Xo the mapping x — (f'(z), (f'(z),z) — f(x)) from Xo into Y X R is
open at a linear rate at xo onto its image.

Proof. We first observe that assumption (a) implies assumption (b), so that we suppose
assumption (b) holds. We have to show that (z, f(z)) € G(FF) for each € X, where
F := fFf .Y = R In other terms, given z € X, we have to find some (y,2) € F
such that (z,—1) € N(F,(y,2)) and f(z) = (z,y) — 2. It suffices to show that (y,z) :=
(f'(x),(y,z) — f(x)) is such that (z,—1) € N(F,(y,z)). In order to do so, we pick some
(v',2") € T(F,(y, z)). There exist sequences (t,) = 04, (y,) = ¢, (z},) = 2z’ such that

(y,2) +ta(yl,zh) EF  VneN

In view of assumption (b) there exist some ¢ > 0 and a sequence (z,) in Xy such that
l|zn — z|| < ct,, and

(Y + tan, 2 + tnzy) = (f (@0), (f'(2n), 2n) — f(2n))

Let 2!, ==t (xn — @), €, := ;! (f(zn) — f(x) — tuf'(z)x),), so that ||z,|| < ¢ for each n,
(€n) = 0 and

tnz, = (f'(zn),2n) = f(2n) = (v, 2) — f(2))
= (Y + tnn, 2y + (Y + taty, tnzy,) — (n(f' (), 27,) + tnen) — (y, 7)

!

Thus z,, = (yl,z) + t.(y,,x,) — €, and taking limits we get 2z’ — (y',z) = 0, so that
(CC,—I)EN(F,(y,Z)). g

The following local consequence incorporates [9, Prop. 2.6]. It makes a connection with
the classical theory of Legendre transform. Here we say that a function f : Xg — R on an
open subset Xg of a n.v.s. X is a classical Legendre function if it is of class C? on X, and if
its derivative f' is a diffeomorphism from X, onto an open subset Yy of Y. The assumption
of the following statement are slightly less restrictive.
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Corollary 16 Let Xy be an open subset of a reflexive Banach space X and let f : Xg — R
be a function of class C* on Xo. Suppose that for some o € Xo the Hessian f"(xo) of f at
xo s an isomorphism from X ontoY := X*. Then, there exist neighborhoods U,V of x¢ and
Yo := f'(z0) respectively such that, for W :=U x V x R, one has E(J-fNW) = J g for
some function g of class C* on'V called the classical Legendre transform fL of f. Moreover
one has E(J=g)NW = J~ fNW and, for each (z,y) € U XV,

y=f'(x) &z=4(y),
9" W =—g'" (f"(@) (g W) ifz=g'(y), veY.

Proof. The inverse mapping theorem yields neighborhoods U,V of zy and yo := f'(zo)
respectively such that f' | U is a C* diffeomorphism from U to V. Thus f | U is a classical
Legendre function of class C2. It can be shown that g given by g(y) = (y, (f' | U)"" (y)) —
FU(f 1 U)" (y)) is in fact of class C% on V (see [26] for instance) and ¢' = (f' | U)™". The
last formula is obtained by differentiating the left-hand side of the relation ¢'(y) o f'(g(y)) =
Ix fory e V. O

When F' is a convex multifunction (i.e. when its graph is convex) one has a surprising
property: F¥ is a function. Of course, this property is reminiscent of the definition of the
usual Fenchel conjugate; but it is in contrast with the fact that the Ekeland transform of a
function is usually a multifunction.

Lemma 17 If F is a conver multifunction, and if 2’ € F¥(y) then one has 2’ = sup{(z,y)—
z:x € X, z€ F(x)}. Thus F¥ is a function on dom F¥ = {y € Y : 3(x,2) € F, (y,-1) €
N(F, (2, )},

Moreover, if for each © € X the set F(x) is closed and if f given by f(z) := inf F(z) is
proper, then, for each y € dom F¥ one has F¥(y) = {f*(v)}.

Proof. By what precedes, when 2z’ € F¥(y) there exists some 2y € X such that zg := (20, y)—
2" € F(xy), y € D*F(x9, 20)(1). This last relation means that (y, —1) € N(F, (x¢, 20)) or,
in view of the convexity of F,

(x —zo,y) — (2 —20) <0 V(z,2) € F,

or in turn (z,y) — z < (xo,y) — 20 = 2’ for any (z,z) € F. Taking the supremum over F,
and observing that it is attained for (z,z) = (xo, 20), we get the announced equality.
The proof of the second assertion is similar to the proof of Lemma 14. O

Example 8. Suppose X is reflexive and Y = X* (or, more generally, that X and Y are

in metric duality). Let F be given by G(F) := {(z,2) € X x R : 2z > ||z||*}. Then
3

FE(y) = {3 1lyII"}- O

A general explanation can be given by using the concepts of Ekeland set and Ekeland
multifunction introduced in [26]. Recall that a subset E of a Banach space is called an
Ekeland set if its indicator function tg is an Ekeland function, i.e. if for any z1,zo € E
and any y € N(E,z;) N N(E,z2) one has (z1,y) = (z2,y). A multimapping F' between two
n.v.s. is said to be an Fkeland multimapping if its graph G(F') is an Ekeland subset of the
product space. In particular, any convex multimapping is an Ekeland multimapping.

Proposition 18 If F: X = R is an Ekeland multifunction, then its FEkeland transform is
a function.
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Proof. By definition, F : X =% R is an Ekeland multifunction if, and only if, for any
(y,w) € Y x R and any (z;,2;) € G(F) for i = 1,2 such that y € D*F(x;,z;)(w) one
has (x1,y) — wz; = (22,y) — wzs. In particular when (z;,2;) € G(F) for i = 1,2 are such
that y € D*F(z;,2;)(1) for i = 1,2, one gets (z1,y) — 21 = (¥2,y) — 22. Therefore F¥ is
single-valued. O

Such a simple situation may appear in nonconvex cases.

Lemma 19 Suppose X is reflexive. Let g: Y = X* — R be a twice differentiable function
and let F : X = R be given by

F(r):={zc€R:3peY, z=4g(p),z=hp) :=(g'(),p) -9} z € X.

If for each p € Y the mapping ¢g"(p) : Y — X is surjective, then the Ekeland transform F¥
of F is a mapping which coincides with g on its domain dom FF.

Proof. Let (y',2') € F¥. By definition, there exists some (x,y,2) € J~F such that y' =y
and z' = (x,y) — 2. Now (z,y,2) € J~F means that (y,—1) € N(F,(z,2)) and z € F(z).
Let p € Y be such that z = ¢'(p), z = h(p) = {¢'(p),p) — g(p). Since for each v € Y one
easily checks that

% ((¢'(p + tv), h(p + tv) = (¢'(p), h(p))) = (9" (P)v, (¢" (P)v, D)),

one has (¢"(p)v, (¢"(p)v,p)) € T(F, (2,z)). Thus

(9" (P)v,y) — (g" (p)v,p) = ((¢" (P)v, (¢" (P)v,p)), (y, —1)) <O.

Since g¢"(p) is surjective, we get p = y(= y'). Therefore 2’ = (z,y) — 2 = (¢'(p),y) —
(9" (p),p) — 9(p)) = 9(p) = 9(¥/). O

When the surjectivity assumption of the second derivative does not hold, the conclusion
may fail.

Example 9. Let F': R = R be given by:

3
F(z):={2€R:3IpeR, z=p° - 3p, z:Zp2(p2—2)}.

Then F' has the shape of a swallow tail which is symmetric with respect to {0} x R

and has singular points (—2,—2),(2,-3),(0,%). For z € R the set F(z) consists in one
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point for |z| >
One has N(F
N(F,(0,7)) =

, two points for € {—2,0,2} and three points for x €] — 2,0[U]0, 2.
( 2 )) - {(7" S) r+s S 0}7 N(Fa(Qa_%)) = {(T,S) 1-r+s S 0} and
{0}.T herefore

FP = {2+ 3w S B U{20+ ) 1y > ~1}ULly, 9267 = 6)) -y # 1,0, 1.

Note that the two half lines are tangent to the main curve at the points (—1,—-2), (1, -2)

respectively. Thus, while the two cusps of F no more appear in its transform FF, two
smooth bifurcation points show up. O

Example 10. Let F': R = R be given by:
Flz):={z€R:3FpeR, z=2p(p+1)2p+1), z=p(p+1)(3p" +p)}.

Its graph is the semi-algebraic set appearing in relation (2.55) of [9]; it is the projection on
R? of a smooth submanifold of R?. It is represented in [9] and a similar analysis can be done.

O
Question: Under which conditions does the following implication hold?

y € D*F(z,2)(1) = = € D*FF(y,2)(1) with 2" := (z,y) —

Such a property is the analogue of the fundamental property of the Legendre transform.

Legendre Transform

Asin the case of functions, we introduce an extension of the Ekeland transform. Our purpose
is to recover the usual convex conjugacy. For that reason, we use a closure process.

Definition 20 The Legendre transform of a multifunction F : X = R is the multifunction
FL .Y = R given by

The conditions we impose aim at restricting the graph of F' as much as possible. Clearly,
the graph of F'X contains the graph of F¥ (take (yn,z,.) = (y,2)) and is contained in its
closure cl F¥.

Proposition 21 If f is a classical Legendre function considered as a multifunction F, then
FL coincides with the graph of the Legendre transform fL of f as defined in Corollary 16.

Proof. Since the graph of fl is F¥ it is contained in FL. Conversely, given (y,2) in
the graph of F¥, taking a sequence (Z,,yn,rs) in J~F and (z,) as in Definition 20, we
have z, = (f¥)' (yn), 20 = f"(ya) and since f* is continuously differentiable, we get
z=1lim f (y,) = f"(y). 0

Proposition 22 If F is the epigraph of a convex function f, then F' is contained in the
epigraph of the conjugate function f* of f and contains the graph of f*.

Proof. Let (y,z) be in the graph of F” and let (x,,y.,7,) be a sequence of J~F as in
Definition 20. In particular, as observed before, r,, = f(z,), so that z,, = (n,yn) — f(z,) =
f*(yn), and z = lim, z, > f*(y) since f* is lower semicontinuous. Thus (y,z) is in the
epigraph of f*.
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Now, for each (y, z) in the graph of f*, using the consequence of the Bronsted-Rockafellar
theorem given in [24, Prop. 1.1] applied to f*, one can find some sequence ((yn,,2»)) in the
graph of 9f* such that (f*(yn)) = f*(y) and ((zn,yn —y)) — 0. Setting z, := f*(yn),
T = (Tn,Yn) — 2n We have (Tpn,Yn,mn) € J F and (yn,2n) — (y, 2). Therefore z € FL(y).

a
Final remarks. 1) A Lagrangian subset of X x Y could be defined as a subset L of X x Y’
such that do((z,y); (u,v), (u',v")) = 0 for any (z,y) € L and (u,v), (v ,v") € T(L, (z,y)),
where df is the differential 2-form defined by

da((xvy)7 (U,U), (U’Iavl)) = <u7vl> - <ulav>7

dropping the condition that T'(L, (z,y)) is a vector subspace isomorphic to X. To the best
of the author’s knowledge, such a condition has not been used much in nonsmooth analysis
(see [16] however). It would be interesting to explore the possibility of its uses.

2) Some attempts have been devised in order to detect whether a multifunction F' : X =
X* is the subdifferential of a function (see [5], [7], for instance). Using such criteria, one
could introduce a transform g : X* — RU{oo} of a function f : X — RU{oo} by integrating
the multifunction (8f)~! : X* = X. Then a comparison with the Ekeland transform would
be in order.
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