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Abstract: Based on a comparison of a set with the zero vector with respect to a given convex cone, we
establish five types of alternative theorems for set-valued maps without any convexity assumption, which
are proved by a nonlinear scalarization technique. As an application, we obtain optimality conditions for
vector optimization problems with set-valued maps.
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Introduction

This paper is concerned with alternative theorems for set-valued maps based on a nonlinear
scalarization. Alternative theorems of the Farkas and Gordan types play important roles
in many applications, especially in optimization theory concerning optimality conditions
for nonlinear programming problems and in their duality theory. A generalized Gordan
alternative theorem was given for a vector-valued function by Jeyakumar [9] in 1986, and
its generalization to set-valued maps was proved by Li [12] in 1999 and Yang et al. [22] in
2000. These results rely on certain convexity assumptions like cone-subconvexlikeness in
order to adopt a separation approach; see also [2, 6] for alternative theorems of set-valued
maps. If we look at this approach from a different point of view, we will know that those
proofs are based on a linear scalarization like an inner product. On the one hand, a nonlinear
scalarization for vector-valued functions was introduced and applied to nonconvex separation
theorems by Gerth (Tammer) and Weidner [5] in 1990, and similar approaches have been
taken for several applications in [1, 3, 4, 20, 21] and at the same time we have researched
some fundamental properties of a specific form of those nonlinear scalarizations in [15, 16].
By using special scalarizing functions under this type of nonlinear scalarization, we establish
alternative theorems for set-valued maps without any convexity assumption.

In this paper, based on comparison between a vector and a set in an ordered vector
space, we show five types of alternative theorems for set-valued maps; see also [11] for a
comparison method between two sets. There is a one-to-one correspondence between order
structures matched with the vector structure of the space and convex cones in a real ordered
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Figure 1: Five types of classification for comparison between the zero vector and a set.

-C

vector space, and those convex cones are called positive cones; see [8] and [19]. A positive
cone is often used as a dominance cone in a decision problem for a minimizer with respect
to a preference structure. The set of the inverses of vectors in a positive cone is called a
negative cone. When comparing the zero vector and a set with respect to a given positive
cone, there are seven types of relationships; we classify nonempty sets into seven categories
(not disjoint possibly) according to whether they intersect with each of a positive cone, its
negative cone, and their complement: S; := {4 €2Y : ANB; =0,ANBy # 0, AN Bs # 0},
Sy = {A €2V ANB; = w,AﬂBz ?é Q,AQB3 = 0}, Sz = {A €2V AN B, 75 Q,AQBQ =
@,AﬂB:g ;é @}, 54 = {A € 2Y : AﬂBl ;é @,AHBQ = @,AﬂB:g = @}, 55 = {A € 2Y :
AﬂBl = @,AHBQ = @,AﬂB:g ;é @}, 56 = {A € 2Y : AﬂBl ;é @,AHBQ ;é @,AﬂB3 = @},
S;={Ae€2Y:ANB, # 0,AN By # ), AN B3 # ()} where Y is a topological vector
space, C' is a convex cone in Y with nonempty interior and C' # Y, By := C, By := —C,
B; = (C U (—())¢, not disjoint possibly but By U B, U Bs = Y. However, alternative
situations which we consider can be made whether a given set intersects with each of a
positive cone and its negative cone, or whether it is contained entirely in one of the two cones,
so alternative situations which are considered in the cases of S, Sg and S; (or S3, Sg and
S7) are the same one. For such reason, we restrict the relationships between the zero vector
and a set to the five cases as illustrated in Figure 1. Under this basic policy, we establish
five types of alternative theorems 3.1-3.5 with respect to the interior of a convex cone in
the sense of weak efficiency. Besides, we present five types of alternative theorems 3.6-3.10
with respect to the closure of a convex cone in the sense of strong efficiency.

Nonlinear Scalarization

In this section, we introduce a nonlinear scalarization for sets and show some properties that
a characteristic function and scalarizing functions have.

Let Y be a topological vector space, C' a convex cone in Y with nonempty interior. We
assume that C' # Y, which is equivalent to

intC' N (—clC) =0 (2.1)

when C'is a convex cone with nonempty interior. These assumptions are natural in infinite
dimensional cases as well as finite dimensional cases. For instance, we give the following
example.

Ezample 2.1. Let R be the real numbers and E = L,[0,1] with 0 < p < 1, that is, the set
of real-valued functions z on the interval [0, 1] for which |z(t)| is Lebesgue integrable. If we
take the product space M = E x R and the set P = E x R where R, is the set of positive
real numbers, then P is a convex cone with nonempty interior and P # M. However, the
Hausdorff topological vector space L,[0,1] with 0 < p < 1 has no nonzero continuous linear
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functionals (see [18, pp.36-37]), hence M*, the topological dual of M, does not separate
points on M, and therefore M is not a locally convex space by [18, p.60, Corollary].

To begin with, we define a characteristic function
ho(y; k) :=inf{t:y € th — C}

where k € int C' and moreover —he(—y; k) = supq{t : y € tk+C}. This function he(y; k) has
been treated in some papers ([17] for example) and it is regarded as a generalization of the
Tchebyshev scalarization. Essentially, he(y; k) is equivalent to the smallest strictly (int C')-
monotonic function defined by Luc in [13]. Note that he (+; k) is positively homogeneous and
subadditive for every fixed k € int C', and hence it is sublinear and continuous.

Now, we give some useful properties of this function h¢.

Lemma 2.1. Let y € Y, then the following statements hold:
(i) If y € —int C, then ho(y; k) < 0 for all k € int C;
(ii) If there exists k € int C' with ho(y; k) < 0, then y € —int C'.

Proof. First we prove the statement (i). Suppose that y € —int C, then there exists an
absorbing neighborhood V; of 0 in Y such that y + Vo C —int C'. Since Vj is absorbing, for
all £ € int C', there exists tg > 0 such that tgk € V,. Therefore, y + tok € y + Vo C —int C.
Hence, we have

inf{t :y eth—C} < —t5 <0,

which shows that heo(y; k) < 0.

Next we prove the statement (ii). Let y € Y. Suppose that there exists k € int C' such
that hco(y; k) < 0. Then, there exist tg > 0 and ¢y € C such that y = —tok—co = —(tok+co).
Since tok € int C' and C is a convex cone, we have y € —int C. O

Lemma 2.2. Let y € Y, then the following statements hold:
(i) If y € —clC, then ha(y; k) <0 for all k € int C;
(ii) If there exists k € int C' with ho(y; k) <0, theny € —clC.

Proof. First we prove the statement (i). Suppose that y € —clC. Then, there exist a net
{yr} € —C such that y, converges to y. For each y,, since yy € 0-k — C for all k € int C,
ho(yx; k) <0 for all k € int C. By the continuity of ha(+; k), ho(y; k) <0 for all k € int C.

Next we prove the statement (ii). Let y € Y. Suppose that there exists k € int C' such
that ho(y; k) < 0. In the case he(y; k) < 0, from (ii) of Lemma 2.1, it is clear that y € —cl C..
So we assume that he(y; k) = 0 and show that y € —clC. By the definition of h¢, for each
n =1,2,..., there exists t,, € R such that

1
ho(y; k) <tn < ho(y; k) + o (2.2)
and
y E€tyk—C. (2.3)

From (2.2), lim, o0 t, = 0. From (2.3), there exists ¢, € C such that y = ¢,k — ¢, that is,
¢n = tpk —y. Since ¢,, - —y as n — oo, we have y € —clC. O
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Lemma 2.3. Let y € Y, then the following statements hold:
(i) If y € int C, then ha(y; k) > 0 for all k € int C;
(ii) If y € clC, then ha(y; k) > 0 for all k € int C.

Proof. To show the statement (i), let y € intC, and then y ¢ —clC by (2.1). By the
contraposition of (ii) in Lemma 2.2, he(y; k) > 0 for all k € int C.

Next, to show the statement (ii), let y € clC, and then y ¢ —int C' by (2.1). By the
contraposition of (ii) in Lemma 2.1, h¢(y; k) > 0 for all k € int C. O

The following lemma shows (strictly) monotone property on hc(+; k), which has been
investigated in [5] and [1].

Lemma 2.4. Let y,y € Y, then the following statements hold:

(i) Ify €e g+ int C, then hc(y; k) > he(y; k) for all k € int C;

(ii) Ify € g+ clC, then ha(y; k) > ho(g; k) for all k € int C.
Proof. Let y,y € Y. First, we prove the statement (i). Suppose that y € § + int C, that is,
there exists ¢ € int C' such that § =y — ¢. Then, for each k € int C', we have

he(g3k) = holy —ck)

hc(y; k) + he(—c; k) (by the subadditivity of he(+;k))
hc(y; k) (by (i) of Lemma 2.1).

VANVAN

Analogously, we prove the statement (ii) by using (i) of Lemma 2.2. O
Lemma 2.5. Let y,y €Y and k € int C, then the following statements hold:

(i) If he(ys k) > ho(y; k), then ha(y — g5 k) > 0;

(ii) If ho(y; k) = ho(y; k), then ho(y — g3 k) = 0.

Proof. Let y,5 € Y and k € intC. To show the statement (i), suppose that hco(y; k) >
he(g; k). By the contraposition of (ii) in Lemma 2.4, we have y —§ ¢ —clC. Therefore, the
statement (i) follows from the contraposition of (ii) in Lemma 2.2. Analogously, we prove the
statement (ii) by using the contrapositions of (i) in Lemma 2.4 and (ii) in Lemma 2.1. O

Remark 2.1. In the above lemma, we note that each converse does not hold.

In the following, we present main tools to prove alternative theorems for set-valued maps.
They are some properties that scalarizing functions for sets have.

Proposition 2.1. Let A C Y, then the following statements hold:
(i) If AN (=int C) # 0, then infyca he(y; k) <0 for all k € int C;
(ii) If there exists k € int C' with inf,ca he(y; k) <0, then AN (—int C) # 0.

Proof. First we prove the statement (i). Suppose that A N (=intC) # (. Then, there
exists y € AN (—int C). By (i) of Lemma 2.1, for all k € int C, ho(y; k) < 0, and hence,
infyca he(y; k) < 0.

Next we prove the statement (ii). Suppose that there exists k& € int C' such that
infyea he(y; k) < 0. Then, there exist ¢g > 0 and yo € A such that

ho(yos k) < inf he(y; k) +eo <O0.
yEA

By (ii) of Lemma 2.1, we have yo € —int C', which implies that A N (—int C') # 0. O
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Proposition 2.2. Let A CY, then the following statements hold:
(i) If AC —int C and A is a compact set, then sup,c 4 hc(y; k) <0 for all k € int C;
(ii) If there exists k € int C' with sup,c 4 ho(y; k) <0, then A C —int C.

Proof. First we prove the statement (i). Assume that A is a compact set and suppose that
A C —intC. Then, for all k£ € int C,

AcC U (—tk—int C).

t>0
By the compactness of A, there exist ty,... ,t, > 0 such that
AcC U (—tik — intC).
i=1
Since —t,k —int C C —t,k —int C for t, < t,, there exists to := min{t1,...,¢n} > 0 such

that A C —tpk —int C. For each y € A, we have
he(y; k) = inf{t : y € th — C} < —to.

Hence,

sup he(y; k) < —to < 0.
yeEA

Next, we prove the statement (ii). Suppose that there exists k € int C' such that
sup,e ho(y; k) < 0. Then, for all y € A, he(y;k) < 0. By (i) of Lemma 2.1, we have
y € —int C, and hence A C —int C. O

Remark 2.2. When we replace A by cl A in (i) of Proposition 2.2, the assertion still remains.

Moreover, we can replace (i) in Proposition 2.2 by another relaxed form.

Corollary 2.1. Let A CY and assume that there exists a compact set B such that B C
—intC. If AC B~ C, then sup,c 4 ho(y; k) <0 for all k € int C'.

Proof. Assume that there exists a compact set B such that B C —intC and A C B — C.
By applying (i) of Proposition 2.2 to B instead of A, for all k¥ € int C,

sup ho(y; k) < 0.
yeB

Since A C B — C, it follows from (i) of Lemma 2.1 and the subadditivity of hc(-; k) that

he(y; k) < sup he(z; k)
z2EB

for each y € A. Therefore, sup, ¢ 4 ho(y; k) <0 for all k € int C. O
Proposition 2.3. Let A CY, then the following statements hold:
(i) If AN (=clC) #£ 0, then infyc 4 ho(y; k) <0 for all k € int C;

(i) If A is a compact set and there exists k € int C' with infyeca hc(y; k) < 0, then AN
(—clC) # 0.
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Proof. First we prove the statement (i). Suppose that A N (—clC) # @. Then, there
exists y € AN (—clC). By (i) of Lemma 2.2, for all k € intC, ha(y; k) < 0, and hence
infyea ho(y; k) <0.

Next, we prove the statement (ii). Suppose that there exists k£ € int C' such that
infyea ho(y; k) <0. In the case infyea he(y; k) < 0, from (ii) of Proposition 2.1, it is clear
that AN(—clC) # 0. So we assume that inf,ec 4 he(y; k) = 0 and show that AN (—clC) # 0.
By the definition of infimum, for each n = 1,2, ... there exist ¢,, € R and y,, € A such that
Yn € t,k — C and

1
inf he(y; k) < t, < inf ho(y k) + —. 2.4
inf oy k) < < Inf oy )+n (2.4)

From (2.4), lim,,_,~ ¢, = 0. Since A is compact, we may suppose that y, — yo for some
yo € A without loss of generality (taking subsequence). Therefore, y,, — t,k — yo and then
yo € —cl C, which shows that AN (—clC) # 0. O

Remark 2.3. If A is not compact, then there are counter-examples violating the statement
(ii) such as an unbounded set approaching —cl C' asymptotically or an open set whose bound-
ary intersects —cl C.

Proposition 2.4. Let A CY, then the following statements hold:
(i) If A C —clC, then sup,c 4 ho(y; k) <0 for all k € int C;
(ii) If there exists k € int C' with sup,c 4 ho(y; k) <0, then A C —clC.

Proof. First we prove the statement (i). Suppose that A C —clC. Then, for each y €
A, it follows from (i) of Lemma 2.2 that hco(y;k) < 0 for all & € intC, and hence
sup,ea ho(y; k) <0 for all k € int C.

Next, we prove the statement (ii). Suppose that there exists k& € intC' such that
sup,eca ho(y; k) < 0. Then, for all y € A, he(y;k) < 0. By (ii) of Lemma 2.2, we have
y € —clC, and hence A C —clC. O

Alternative Theorems

In this section, we present various types of alternative theorems for set-valued maps without
any convexity. These alternative theorems are fundamental tools to derive optimality con-
ditions for vector optimization problems with set-valued maps. As stated in Introduction,
there are five types of relationships between the zero vector and each image of a set-valued
map with respect to a given positive cone.

Now, we consider several characterizations for images of a set-valued map by the non-
linear and strictly monotone characteristic function hc. Let X and Y be a nonempty set
and a topological vector space, F : X — 2V a set-valued map, respectively. We observe the
following four types of scalarizing functions:

(1) @& (k) == sup{hc(y; k) : y € F(x)},
(2) gag(a:; k) :=inf {hc(y; k) :y € F(x)},
(3) —pc" (s k) = sup{—hc(—y;k) :y € F(x)},
4) —¢g" (w;k) = inf {=he(-y;k) 1y € F(x)}.

Functions (1) and (4) have symmetric properties and then results for function (4) —¢5"
can be easily proved by those for function (1) ¥£. Similarly, the results for function (3)
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—pg" can be deduced by those for function (2) E. By using these four functions we
measure each image of set-valued map F' with respect to its 4-tuple of scalars, which can be
regarded as standpoints for the evaluation of the image with respect to convex cone C.

First, we present five types of alternative theorems for set-valued maps when we compare
each image of set-valued map with the zero vector with respect to the interior of a convex
cone.

Theorem 3.1. Let X and Y be a nonempty set and a topological vector space, C a convex
cone in'Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. Then,
ezxactly one of the following two systems is consistent:

(I) There exists x € X such that F(z) N (—int C) # 0;
(IT) There exists k € int C such that pE(z;k) > 0 for all z € X.

Proof. First, we assume that system (I) is consistent. Then, there exists x € X such that
F(z) N (=int C) # 0. By (i) of Proposition 2.1, pZ(z; k) < 0 for all k € int C, which shows
that system (II) is not consistent.

Next, we assume that system (II) is not consistent. Then, for all k¥ € int C, there exists
x € X such that oL (z;k) < 0. By (ii) of Proposition 2.1, system (I) is consistent. O

Theorem 3.2. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in 'Y with nonempty interior, and F : X — 2V a set-valued map, respectively. If F is
compact-valued on X, then exactly one of the following two systems is consistent:

(I) There exists x € X such that F(z) C —int C;
(IT) There exists k € int C such that E(x;k) >0 for all x € X.

Proof. First, we assume that system (I) is consistent. Then, there exists x € X such that
F(z) C —int C. By (i) of Proposition 2.2, & (z; k) < 0 for all k € int C', which shows that
system (II) is not consistent.

Next, we assume that system (II) is not consistent. Then, for all k& € int C, there exists
x € X such that & (x;k) < 0. By (ii) of Proposition 2.2, system (I) is consistent. O

Corollary 3.1. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in'Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. Assume
that if F(x) C —int C, then there exists a compact subset B C —int C' such that F(x) C
B — C. Then, exactly one of the following two systems is consistent:

(I) There exists © € X such that F(z) C —int C;
(I) There exists k € int C' such that YE(z;k) >0 for all v € X.

Proof. First, we assume that system (I) is consistent. Then, there exists x € X such that
F(z) C —int C. By Corollary 2.1, 5 (z; k) < 0 for all k € int C, which shows that system
(IT) is not consistent.

Next, we assume that system (II) is not consistent. Then, for all k¥ € int C, there exists
x € X such that E(x; k) < 0. By (ii) of Proposition 2.2, system (I) is consistent. O

Theorem 3.3. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in'Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. Then,
ezxactly one of the following two systems is consistent:
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(I) There exists v € X such that F(x) Nint C # (;
(IT) There exists k € int C' such that —pg" (2;k) < 0 for all v € X.
Proof. The proof is completed simply by replacing F' by —F in the proof of Theorem 3.1. [

Theorem 3.4. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in'Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. If F' is
compact-valued on X, then exactly one of the following two systems is consistent:

(I) There exists x € X such that F(z) C int C;
(II) There exists k € int C' such that —;" (z;k) <0 for all v € X.
Proof. The proof is completed simply by replacing F' by —F in the proof of Theorem 3.2. [

Corollary 3.2. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in'Y with nonempty interior, and F : X — 2V a set-valued map, respectively. Assume
that if F(x) C int C, then there exists a compact subset B C int C' such that F(z) C B+ C.
Then, exactly one of the following two systems is consistent:

(I) There exists © € X such that F(z) C int C;
(IT) There exists k € int C' such that —;" (x;k) <0 for all x € X
Proof. The proof is completed simply by replacing F' by —F in the proof of Corollary 3.1. [

Theorem 3.5. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in Y with nonempty interior, and F : X — 2V a set-valued map, respectively. Then,
ezactly one of the following two systems is consistent:

() There exists x € X such that F(x) N (=int C) # O or F(z) Nint C # (;
II) There exists k € int C such that ©E(x;k) > 0 and —p " (2;k) <0 for all z € X.
c c

Proof. The proof is straightforward from the same way as the proofs of Theorems 3.1 and
3.3. O

Next, we present five types of alternative theorems for set-valued maps when we compare
each image of set-valued map with the zero vector with respect to the closure of a convex
cone.

Theorem 3.6. Let X and Y be a nonempty set and a topological vector space, C a convex
cone in'Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. If F is
compact-valued on X, then exactly one of the following two systems is consistent:

(I) There exists x € X such that F(x) N (—clC) # 0;
(IT) There exists k € int C such that pE(z;k) > 0 for all z € X.

Proof. First, we assume that system (I) is consistent. Then, there exists x € X such that
F(z) N (=clC) # 0. By (i) of Proposition 2.3, oL (z;k) < 0 for all k € int C, which shows
that system (II) is not consistent.

Next, we assume that system (II) is not consistent. Then, for all k& € int C, there exists
x € X such that oL (z;k) < 0. By (ii) of Proposition 2.3, system (I) is consistent. O
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Theorem 3.7. Let X and Y be a nonempty set and a topological vector space, C a convex
cone in Y with nonempty interior, and F : X — 2V a set-valued map, respectively. Then,
ezxactly one of the following two systems is consistent:

(I) There exists © € X such that F(z) C —clC;
(IT) There exists k € int C such that E(x;k) > 0 for all x € X.

Proof. First, we assume that system (I) is consistent. Then, there exists x € X such that
F(z) C —clC. By (i) of Proposition 2.4, 5 (z;k) < 0 for all k € int C, which shows that
system (II) is not consistent.

Next, we assume that system (II) is not consistent. Then, for all k¥ € int C, there exists
x € X such that & (x;k) < 0. By (ii) of Proposition 2.4, system (I) is consistent. O

Theorem 3.8. Let X and Y be a nonempty set and a topological vector space, C a convex
cone in 'Y with nonempty interior, and F : X — 2V a set-valued map, respectively. If F is
compact-valued on X, then exactly one of the following two systems is consistent:

(I) There exists x € X such that F(xz)NclC #0;
(I1) There exists k € int C' such that —pZ5" (x;k) < 0 for all x € X.
Proof. The proofis completed simply by replacing F' by —F in the proof of Theorem 3.6. [

Theorem 3.9. Let X and Y be a nonempty set and a topological vector space, C a convex
cone in Y with nonempty interior, and F : X — 2V a set-valued map, respectively. Then,
ezxactly one of the following two systems is consistent:

(I) There exists x € X such that F(xz) C clC;
(IT) There exists k € int C' such that —p" (x;k) < 0 for all € X
Proof. The proof is completed simply by replacing F' by —F in the proof of Theorem 3.7. [

Theorem 3.10. Let X and Y be a nonempty set and a topological vector space, C' a convex
cone in' Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. If F is
compact-valued on X, then exactly one of the following two systems is consistent:

(I) There exists x € X such that F(z) N (—clC) # 0 or F(z) NclC # B;
(IT) There exists k € int C' such that oE(x;k) > 0 and —p* (2;k) < 0 for all v € X.

Proof. The proof is straightforward from the same way as the proofs of Theorems 3.6 and
3.8. O

Optimality Conditions

Throughout this section, let X be a nonempty set, and let Y and Z be ordered topological
vector spaces with convex cones C' and D, respectively. We assume that C # Y and
intC #0. Let F: X — 2Y and G : X — 2% be set-valued maps. A constrained set-valued
optimization problem is written as
(MP) ming F(z)
subject to  G(x) N (=D) # 0,
where K is a convex cone in Y. The feasible set of problem (MP) is defined by V = {z €
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X : G(z)N(—=D) # 0}. Problem (MP) is to find all solutions zp € V such that there exists
yo € F(zp) and for each € V, there exists no y € F(z) satisfying yo € y + K \ {0y }.
Such solution z is called an efficient solution of problem (MP) with respect to K, and in
case of int K instead of K, its solution is called a weakly efficient solution (traditionally in
vector optimization). Since the constraint in problem (MP) is reduced to G(z) < 0 when G
is a real-valued function and D is the cone of nonnegative reals, it is a generalization of the
inequality constraints of a standard nonlinear programming problem. Thus, we consider the
following optimization problems:

(MP1) min,,, o F(z) subject to G(z) N (=D) # 0;
(MP2) ming; F(z) subject to G(z) N (—=D) # 0.

Definition 4.1. A point o € V is said to be a weakly efficient solution of (MP1) if there
exists yo € F(xo) and for each z € V, there exists no y € F(z) satisfying yo € y + int C,
that is,

F(V)N(yo —int C) = §; (4.1)

A pair (zg,yo) is said to be a weakly efficient element for (MP1) if 2o € V and yo € F(z0)
satisfies (4.1).

Definition 4.2. A point zg € V is said to be an efficient solution of (MP2) if there exists
Yo € F(zo) and for each x € V, there exists no y € F(z) satisfying yo € y + C' \ {0y}, that
is,

FV)N(yo — C\{0v}) = 0; (4.2)

A pair (x9,yo) is said to be an efficient element for (MP2) if g € V and yo € F(z0) satisfies
(4.2).

Definition 4.3. Let k£ € int C'. Consider the following scalar minimization problem

. Fqo..
min g (z; k). (4.3)

Let xg € V be given. Then, a pair (xo,yo) is said to be an optimal element for the problem
if the following conditions hold:

(i) @E(z;k) > @E(xosk) for all z € V;
(11) ng(xo; k) = hC(yO; k) and Yo € F(.To)

Remark 4.1. Under k € int C', we have the following: a pair (zg,y0) is an optimal element
for (4.3) if and only if 29 € V and yo € F(zo) satisfies

he(y; k) > he(yos k) for all y € F(V).

Definition 4.4. Let k € int C. Consider problem (4.3). Let g € V be given. Then, a pair
(o, yo0) is said to be a strict optimal element if the following conditions hold:

(i) cpg(a:;k) > cpg(xo;k) forall z € V\{zo};
(i) cpg(:rg; k) = he(yo; k) and yo € F(xo);
(iii) hc(y;k) > holyo; k) for all y € F(zo) \ {yo}-
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Remark 4.2. Under k € intC, we have the following: a pair (zo,yo) is a strict optimal
element for (4.3) if and only if g € V and yo € F(xo) satisfies

ho(y; k) > he(yos k), for all y € F(V) \ {yo}-

Theorem 4.1. (Sufficient condition for (MP1).) Let & € V and §j € F(Z). If there exists
k € int C such that (Z,7) is an optimal element for (4.3), then (Z,7) is a weakly efficient
element for (MP1).

Proof. Assume that (Z,7) is not a weakly efficient element for (MP1). Then, there exist
z € Vand y € F(x) such that § € y+int C. Since k € int C, it follows from (i) of Lemma 2.4
that ho(y; k) > heo(y; k). By Remark 4.1, it contradicts the assumption that (Z,7) is an
optimal element for (4.3). O

Theorem 4.2. (Necessary and sufficient condition for (MP1).) Let Z € V and § € F(Z).
Then (Z,7) is a weakly efficient element for (MP1) if and only if there exists k € int C' such
that he(y — g3 k) > 0 for ally € F(V).

Proof. Suppose first that (Z,7) is a weakly efficient element for (MP1). By definition, we
have (F(V) —g) N (—=int C) = 0. By applying Theorem 3.1 to F(V) — § instead of F(z),
there exists &k € int C such that ho(y — 7; k) > 0 for all y € F(V).

Conversely, suppose that there exists k € int C' such that he(y—g; k) > Oforally € F(V).
Assume that (Z,7) is not a weakly efficient element for (MP1). Then, there exist x € V' and
y € F(z) such that y — g € —int C. Since k € int C, it follows from (i) of Lemma 2.1 that
hc(y — 4; k) < 0, which contradicts the assumption. O

Theorem 4.3. (Sufficient condition for (MP2).) Let Z € V and § € F(Z). If there exists
k € int C such that (Z,§) is a strict optimal element for (4.3), then (Z,7) is an efficient
element for (MP2).

Proof. By applying the same argument as the proof of Theorem 4.1 to problem (MP2), the
proof is straightforward from (ii) of Lemma 2.4 and Remark 4.2. O

Theorem 4.4. (Necessary and sufficient condition for (MP2).) Let Z € V and § € F(Z).
If F is compact-valued on V and C is closed, then (T,y) is an efficient element for (MP2)
if and only if there exists k € int C' such that ha(y — g; k) > 0 for ally € F(V) \ {7}.

Proof. For problem (MP2), by using the same argument as the proof of Theorem 4.2, it
follows from Theorem 3.6 that the necessity is shown. By (i) of Lemma 2.2, we can also
show the sufficiency. O

Conclusions

Based on a nonlinear scalarization technique for sets, we establish five types of alternative
theorems for set-valued maps without any convexity assumption. Moreover, we obtain
optimality conditions for set-valued optimization problems.
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