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Abstract: A subset B of R} is B-convex if for all 1,22 € B and all t € [0,1] one has tz1 V x2 € B. These
sets were first investigated in [1] where it was shown that Carathéodory, Radon and Helly like Theorems
hold. In this work we establish separation and Hahn-Banach like Theorems for B-convex sets.
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Introduction

This paper continues the investigation of B-convexity introduced in [1], more precisely, we
establish geometric and functional Hahn-Banach like separation properties in B-convexity.
A subset B of R} is B-convex if for all z1,2> € B and all ¢t € [0,1] one has tx; V z» € B;
an easy induction shows that B is Bconvex if and only if, for all zy,...,x,, € B and all
t1,...,tm € [0,1] such that max{ti,... ,t,} = 1 one has ;- t;z; € B, where V denotes
the maximum with respect to partial order of R} associated to the positive cone, that is,
the coordinatewise supremum. For z and y in ]Ri, x <ymeans y —x € R} .

The first section deals with the Stone-Kakutani separation property (the algebraic Hahn-
Banach Theorem) which, as is well known, is a consequence of the Pash-Peano Property. So,
we show that the Pash-Peano Property holds in B-convexity. For the reader’s convenience,
we give the (standard) proof of the Stone-Kakutani Theorem as well as the generalized
Stone-Kakutani and Pash-Peano Theorems which are due, at least in the framework of
abstract convexities, to Van de Vel [4].

B-convex sets are studied through the properties of their Minkowski gauge. Of particular
interest are the B-convex sets whose complements are also B-convex; those sets are called
half-spaces (B-half-spaces would be more precise, but since these half-spaces will always,
and only, appear in conjunction with B-convex sets the possiblity of confusion is minimal).
Analytic and geometric separation theorems are proved for disjoint B-convex sets. It is
shown that a closed B-convex set is always the intersection of the closed half-spaces in which
it is contained. A family of open half-spaces such that all convex sets are intersection of
members of that family is given; furthermore, it is shown that the family in question is
minimal with respect to that property.

We use the following notation: I = {1,...,n}; R} is the set of points with nonnegative
coordinates and R} , is its interior, the set of points with strictly positive coordinates; for
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14 W. BRIEC, C.D. HORVATH AND A. RUBINOV

x € R} the ith coordinate of x is denoted by z; and I(x) = {i : ; # 0}. We denote by [ A]
the B-convex hull of A, that is, the intersection of all the B-convex subsets of R} containing
A. The B-convex hull of a finite set is a B-polytope; we recall that a set C' is B-convex if
and only if it contains all the B-polytopes spanned by its finite subsets and that the union
of an up-directed family of B-convex sets is B-convex.*

Algebraic Separation

The following lemma says that B-convexity is join-hull commutative; this property will be
used in the proof of the Pasch-Peano Property from which algebraic separation of disjoint
B-convex sets is a consequence.

Lemma 2.1. For all subsets S of R} and for all point p we have

[Suiptl= U [=z.p]

z€e[S]

Proof. One inclusion is clear; we prove the other one, and we assume that S is not empty.
If y € [SU{p}], we can assume that y # p otherwise there is nothing to prove; then,
there exist x1,...,2, € S and mi,... ,mer1 € [0,1] such that maxi<j<kp+17; = 1 and
y=mx1V...VeTr V Nrp1p. Since y # p we have maxj<i<ip 1 # 0, let p = maxj<i<p m;
and p; =mn;/pfori=1,... k. Thenz = a V.. Vugar € [S]andy = paVnerip € [z, p]
since max{u, Mr+1} = 1. O

Proposition 2.1 (Pash-Peano). For all quintuple (a,by,b2,c1,c2) of points of R} such
that ¢; € [a,b;] we have [by,ca] N [b2,c1] # 0.

Proof. We have to show that the following system of equations has a solution

merV paby = e Vb
(%) max{n, pa} = 1
max{n, m} = 1

Since ¢; € [a,b;] we can write ¢; = p;a V o;b; with max{p;,;} = 1; a substitution in the
first line of (x) yields

(x2) (mp1)aV (mai)bi V pebs = (n2p2)aV (n202)ba V p1by

Given p; and «;, i = 1,2, one can easily solve (k2) for n; and p;, i = 1,2 in the following
way

1 m=(p2/pr)and 2 =1 if p1 > po

(f)2 m=Tlandn = (p1/p2) i p2>p

(#)s m=mn=1 if  p1=p

Ba pi =nics
This solution of (x2) is also a solution of (%) if max{n, 2} = max{na, u1} = 1; let us see
that this is indeed the case. There are, formally, three cases to consider, namely (£)1, (£)2
and (f)3. In the first case, ()1, we have max{no, 1} = 12 = 1 and max{ps, a2} = 1 with
1> p1 > p2 > 0 from which we obtain s = 1 and us = 75 = 1; we have shown that
max{n, u2} = 1. The second case, that is (f)2, is treated similarly; as for (f); there is
nothing to prove since 1y =12 = 1. O

*A family of sets is up-directed if the union of any two members of the family is contained in a member
of the family.
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Theorem 2.1 (The Stone-Kakutani Property). If Cy and Cy are disjoint B-convex
sets, then there exists a B-conver set D C R} such that R} \ D is also B-conver, C1 C D
and Cy CR} \ D.

Proof. Let Z be the family of pairs of disjoint convex sets (D1, Ds) such that C; C D;
partially ordered by (Dy,D2) C (Dj,D%) if D; C D The pair (Cy,C2) belongs to
Z and if C = {(Dix,D2x) : A € A} is a chain in Z then (J,cpx Dix,Usea D22) €
Z since an up-directed union of B-convex sets is B-convex and, as can easily be seen,
(Uxea D1,2) N(Uxep D2,x) = 0; by Zorn’s lemma there is a maximal element (H;, Hz) in Z.
Assume that there is a point a in R} \ (H; |J Hz); from the maximality of the pair (H;, Ha)
we have [ Hy |J{a} N Hs # 0 and [ Hy J{a}] N Hy # 0. Take a point ¢; in the first set and
a point ¢z in the second set. By Lemma 2.1 there exists b; € H; such that ¢; € [a,b;]. By
the Pash-Peano Property there exists a point « in [ by, ca ] ([ b2,¢1 ]- From by, ¢y € Hy and
ba,c1 € Hy we obtain u € Hy N Hy, which is impossible since the pair (Hy, Hy) isin Z. O

Corollary 2.1 (Generalized Pash-Peano Property). Ifa,bi,... ,bm,c1,...,¢m are
points in R} such that ¢; € [a,b;] for all i = 1,...m then -, [Bi U {ci}] # 0 where
Bz:{b]j#l}

Proof. For m = 1 there is nothing to prove, for m = 2 we have the Pash-Peano Property;
let us assume that m > 3 and that the conclusion has been established for values less or
equal to m — 1. Let B; = B; \ {bm}; by the induction hypothesis there is a point p in
ﬂ:’;}l[[B; U{el] C ﬂ?i;l[[Bi U {c;}]; since b, € B; for i < m — 1 we have [p,b,,] C
ﬂ;”zzl[[Bi U{cit] X [p,bm N[ BmU{cm}] # 0 the proof is over, otherwise, by the Stone-
Kakutani Property, there exists a B-convex set D whose complement in R} is also B-convex
and such that [p,b,,] C D and [ By, U{cyn}]ND = 0. From ¢, € [a,b], b € D and
cm € R} \ D we see that a € R} \ D and consequently J,,,[a,b;] C R} \ D which implies
¢i € R? \ D for i # m. For i # m we have B, C By, and therefore [ B/ U {c;}] C R? \ D
which yields the obvious contradiction p & D. O

Let us call half-spaces’ those B-convex subsets of R’} whose complement is also B-
convex.

Proposition 2.2 (Generalized Stone-Kakutani). If Cy,...,C,, are B-conver subsets
of R} such that (-, Ci =0, then there exists half-spaces D1, ..., Dy, such that (\D; =0,
UD; =R} and, foralli=1,...,m, C; C D;.

Proof. Let Z be the set of m-tuples (D1,...,D,,) of B-convex subsets of R} such that
NieyD; = 0 and, for all i = 1,...,m, C; C D;, partially ordered in the obvious way,
that is, (Dy,...,D,,) is greater than (D;,... ,D;n) if, for all 4, D; D D; . Using Zorn’s
Lemma we find a maximal element (Hi,...,H,). For each j = 1,...,m there is, by the
Stone-Kakutani Property, a half-space D; containing H; which does not intersect [, y H;;
the n-tuple obtained by replacing H; by D, in (Hi,... ,H,,) is greater than (Hu,... ,Hmn);
by maximality, H; = D;. We have to show that |J!", H; = R? ; for a contradiction, assume
that this is not the case and let a € R} \ ", H;. By maximality of (Hi, ..., H,y,), there

exists, for all j, a point ¢; in [H; U{a}]N (ﬂi# HZ) and therefore a point b; € H; such
that ¢; € [b; U{a}]N (ﬂi# Hl) From the generalized Pash-Peano Property we have

T Also called hemi-spaces or maximal B-convex sets.
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Nj=i[{ci =i # j}U{b;}] # 0; we have reached a contradiction since [ {c; : i # j}U{b;}] C
j O

H;.

Gauges and Co-Gauges

We need the following definitions and results (see [3] for details). A set U C R is called
radiant if (z € U,t €]0,1]) implies tx € U. A radiant set containing 0 is starshaped at 0. A
set V' C R% is called co-radiant if 0 ¢ V and (z € V,¢ > 1) implies tz € V. The Minkowski
gauge uy of the radiant set U is defined by

pu(x) = inf{\ €]0, +ool: & € AU}, r €RY.
The Minkowski co-gauge vy of the co-radiant set V is defined by
vy (x) = sup{\ €]0, +o0l: & € AV}, z €RY.

If U is a radiant set then V' = R} \ U is co-radiant and vy = py. If V' is co-radiant then
U =R} \V is radiant and py = vy.

For each x # 0 consider the ray R, = {\x : A > 0}. Let U be a radiant set. It follows
from the definition that pgy(0) = 0. If 2 # 0 then

py(z) =0 <= R, CU, py(z) = +o0 <= R, NU = . (3.1)
Let V be a co-radiant set. Then vy (0) = 0. If z # 0 then
vy(z) =400 <= R, CV, vy(z) =0 < R, NV =10. (3.2)

Note that both gy and vy are positively homogeneous functions.
A set U C R™ is called radially closed, or closed-along-rays in the terminology of [3], if

(T eR, M >0,z €U k=1,2,..., \p = A) = Az eU. (3.3)

A radiant set U is radially closed if and only if U = {z € R} : py(x) < 1}. A co-radiant set
V is radially closed if and only if V' = {x € R} : vy (x) > 1}.

A set U is called radially open (or open-along-rays) if its complement R’} \ U is radially
closed. It is easy to check that a radiant set U (co-radiant set V', respectively) is radially
open if and only if U = {z € R} : py(z) <1} (V ={z € R} : vy (x) > 1}, respectively).

A set U C R} is called an upper semilattice if (z,y € U = =z Vy € U). Note that
each B-convex set is an upper semilattice.

Proposition 3.1. A subset of R} containing 0 is B-conver if and only if it is an upper
semilattice starshaped at 0. A set which is radiant is B-convez if and only if it is an upper
semilattice.

Proof. If B is B-convex then x Vy € B for all z and y in B;if 0 € B thentz =0V tx € B
for all € B and all ¢t € [0,1]. Reciprocally, if B is starshaped at 0 (resp. radiant) then
tr € Bif v € B and t € [0,1] (resp. t €]0,1]) and, if B is also an upper semilattice of R’}
then tx Vy € B for all z and y in B and t € [0, 1]. O

Lemma 3.1. (1) Let U C R} be a radiant set.

fA function f : R} — [0, +00] is called positively homogeneous if f(Az) = Af(z) for A €]0, +ool.
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(a) If U is B-convex then
po(te Vy) <max{uv(z), po(y)} for all xz,y € R}, t€[0,1]. (3.4)

(b) If U is radially closed or radially open and (3.4) holds then U is B-convez.
(2) Let V C R} be a co-radiant set.
(a) If V is B-convex then

vy (te Vy) > min{vy (z),vv(y)} for all z,y e R}, ¢t €]0,1]. (3.5)

(b) If V is radially closed or radially open and (3.5) holds then V' is B-conver.

Proof. (1) Let U be a radiant B-convex set. Consider points z,y € R} and ¢ € [0,1]. Assume
for the sake of definiteness that uy(tz) < py(y) < +oo. If r > pp(y) then tx € rU,y € rU.
From r~!(tzVy) = r~tzVr—ty we have r~! (txVy) € U; this shows that (3.4) holds. If either
puy (tz) = +oo or uy(y) = +oo then (3.4) is obvious. Let U be radiant. If U is radially closed,
then U = {z € R} : py(z) < 1}, if U is radially open then U = {z € R} : py(z) < 1}. In
both cases (3.4) implies that U is a B-convex set.

(2) Let V be a co-radiant and B-convex set. Consider points z,y € V and a number
t € [0,1]. Assume for the sake of definiteness that +oo > vy (tz) > vy (y) > 0. Let
0 <r<wy(y) <wy(ty). Since V is co-radiant it follows that tz € rV, y € rV. B-convexity
of V implies B-convexity of rV', so (tzVy) € rV. This means that vy (tzVy) > vy (y), hence
(3.5) holds. If either vy (z) = 0 or vy (y) = 0 then (3.5) is obvious. If V is either radially
closed or open and (3.5) holds then clearly V is a B-convex set. O

Corollary 3.1. If a radiant set U C R} is B-convex then

po(zVy) <max{py(z), pu(y)} for all x,y € RY. (3.6)
If U is radiant, either radially closed or radially open, and (3.6) holds then U is B-convex.

Proposition 3.2. (1) Let B be a half-space containing 0. Then, for all z,y € R} and
t €[0,1],

min{us(2), 1Y)} < s ta v y) < max{us (@), us(y)}- (3.7)

If B is B-convez, either radially closed or open and the left-hand inequality in (3.7) holds
then B is a half-space.

(2) Let B be a half-space that does not contain 0. Then, for all x,y € R} andt € [0, 1],

min{vp(2), v (y)} < vs(ta V y) < max{vp(z), va(y)}. (3.8)

If B is B-convez, either radially closed or open and the right-hand inequality in (3.8) holds
then B is a half-space.

Proof. (1) Let B be a half-space and 0 € B. Let z,y € R} and ¢t € [0,1]. Since B is B-
convex and radiant it follows from (3.4) that the right-hand inequality in (3.7) holds. Since
C =R} \ B is B-convex and co-radiant it follows from (3.5) that

ve(te Vy) > minfre (), ve(y)}.
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From pup = v¢ we obtain the left-hand inequality in (3.7).

Let B be B-convex and radially closed and C'= R} \ B. Then C' is radially open. The
left-hand inequality in (3.7) can be presented as min{vc(z),ve(y)} < ve(tx Vy). Applying
Lemma 3.1 we conclude that C' is B-convex, hence B is a half-space. A similar argument
can be used if B is radially open.

(2) Let B be a half-space and 0 ¢ B. Let z,y € R} and ¢ € [0, 1]. Since B is B-convex and
co-radiant it follows from (3.5) that the left-hand inequality in (3.8) holds. Since C'= R} \ B
is B-convex and radiant it follows from (3.4) that

pe(tr Vy) < max{pc(tz), pc(y)}-

This implies the right-hand inequality in (3.8).

Let B be B-convex and radially closed and C' = R} \ B. Then C is radially open.
The right-hand inequality in (3.8) can be presented as pc(tz Vy) < max{uc(z), nc(y)}-
Applying Lemma 3.1 we conclude that C is B-convex, hence B is a half-space. A similar
argument can be used if B is radially open. O

Corollary 3.2. Let B C R} be a conic set, that is (v € B,A >0) = Az € B. Then

pnte) =vet) ={ 0 HeEl 39)

where C' =R} \ B. If B is an upper semilattice then B is a half-space.

Indeed, since B and C' are both radiant and co-radiant sets we can consider up and v
and (3.9) follows from (3.1) and (3.2).

Assume that B is an upper semilattice. Then for each z,y € B and t € [0, 1] we have
up(x) = pp(y) = pp(tz Vy) = 0. It follows from Proposition 3.2 that B is a half space.

Gauges and co-gauges are defined for arbitrary radiant and co-radiant sets; if those sets
are also B-convex then the gauge and the co-gauge have additional algebraic properties but
the B-convexity structure has in itself little bearing on the continuity properties. For the
sake of completeness we state the following result which follows from Propositions 5.2 and
5.10 of [3].

Proposition 3.3. Let U be a radially closed B-convex containing 0, then

(1) pp is lower semicontinuous if and only U is closed;

(2) pu is continuous if and only if U is closed, O is in the relative interior of U (with respect
to R} ) and, for all x € R}, R, does not intersect the boundary of U more than once.

B-Measurable Maps and Half-Spaces

A map f: R} — [0,00] is called B-measurable if, for all z,y € R} and ¢ € [0, 1],

min{f(z), f(y)} < f(tz Vy) < max{f(z), f(y)}. (4.10)

A B-measurable map is characterized by the fact that inverse images of intervals are B-
convex; it follows that level sets {x € R} : f(z) = A} of B-measurable maps are B-convex
sets, [1]. The gauge of a half-space containing 0 and the co-gauge of a half-space that does
not contain 0 are positively homogeneous B-measurable maps. One can easily check that for
an homogeneous B-measurable map f : R} — [0,00] and for all A > 0, {z € R} : f(z) < A}
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is a radially open half-space containing 0, {x € R"} : f(x) < A} is a radially closed half-space
and {z € R} : f(x) = 0} is a conic set and an upper semilattice of R .

A subset {u1,...,u,} of R} is a spanning set if, for all z € R’} there exist positive real
numbers ry,... 7, such that £ = riu; V...V rpus,. It is easy to see that for a minimal
spanning set {uy,... ,u,} we have m = n and, up to relabeling, uj = tre, whereey,... e,

are the vectors of the canonical bases of R™ and t; > 0. We consider only spanning sets of
this form later on.

Lemma 4.1. Let f : R} — [0,00] be a positively homogeneous B-measurable map, then

(1) f takes only finite values if and only if there exists a spanning set {ui,... ,un} such
that max{f(u1),..., f(um)} < +00;

(2) dom f :={x € R} : f(z) < +oo}, {z € R} : f(x) = +o0}U{0} and {z € R} : f(z) = 0}
are conic upper semilattices;

(3) if dom (f) = R} then

(a) if min{f(x), f(y)} # O then f(xVy) = max{f(z), f(y)};

(b) if {fu € R} : f(u) = 0} = {0} then there exists a unique a € R} such that, for all
z € R}, f(z) = maxicicn{ziai};

(c) if {u € R} : f(u) = 0} # {0} then there exists a partition of I = {1,... ,n} into two
subsets I° and I and there exists a unique a € R} such that
() f(e;) =0 if and only if i € I° and a; =0 if i € I°;
(B) if f(x) #0 then f(x) = max;er{a;z;} = max;er+{a;x;}.

Proof. Part (1) follows from f(riui; V...V rytm,) < maxi<i<m{rif(u;)} and part (2) from
(4.10) and the fact that f(z) =t~ f(tz) if f(z) # 400 and t > 0.

Assume that f does not take the value 400 and let z and y in R} such that 0 < f(z) <
f(y); then f(z)~'z and f(y)~'y belong to L(f;1) = {u € R} : f(u) = 1} which is B-convex
since f is B-measurable, and therefore

() fy) ") flx) eV fly) 'y € L(f; 1),

that is f(f(y) Yz Vy)) =1or f(zVy) = f(y) = max{f(z), f(y)}. By induction we can
show that if minj<j<p, f(z;) > 0 then

flzr V.. Vay) =max{f(z1),..., f(zm)}. (4.11)

If f(e;) > 0 for all i € I then due to (4.11) and positive homogeneity of f we have for all
r e Ry:
flo) = max {wif(ei)} = max {zif (e:)};

consequently, if L(f;0) = {u € R} : f(u) = 0} is not {0} then there is at least one
index i for which f(e;) = 0. Let I° = {i : f(e;) = 0} and IT = {i : f(e;) # 0} and
for z € R} let 2 = ;.4 wie; and wo = \/,; o wie;; from the previous computations we
have f(z4) = max;c+{z:f(e;)} = max;er{z;f(e;)}. Since f is B-measurable and positively
homogenous we have

0 < f(zo) < max{f(zie;)} = max{wif(e:)} =0,
el iel
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and therefore f(zg) = 0; from z = x4 V xy we obtain f(z) < max{f(z;), f(zo)} = f(z4).
If f(x) # 0 we obtain, taking into account that z =z V =4,

f(z) = max{f(z), f(z+)} = f(z+) = max{z:f(e:)}.

If f(z) = max;er{z;f(e;)} for all z such that f(x) # 0 then f(e;) = a; for all indices i such
that f(el) 75 0. O

Corollary 4.1. If U C R} is a half-space containing 0 in its relative interior and no half-
rays then there exists a unique (a1, ... ,a,) € R} such that py(r) = maxi<i<n{a;iz;}. If
U is closed and bounded then@ = (a;*,... ,a;') is the mazimal element of U and U = {z €

R} @ <T}; T is also the unique point of U where the map (x1,...,%n) = 21 + ...+ Tp
attains its mazimum value.

Proof. Since 0 is in the relative interior of U, the domain of py is R} and if puy7(x) = 0 then
x = 0 since there are no half-rays in U. This proves the first part. To prove the second part
notice first that U = {z € R} : py(x) < 1}, since U is closed and radial, and therefore, from
maxi<;<n{Z;a;} = 1, we have T € U. The inequality y < Z, for y € R}, is clearly equivalent
to y;a; < 1for all 7, this proves the second part. If y < T then y1+.. .4y, <T1+...+T,. O

Corollary 4.2. A compact nonempty B-convex set B has a unique mazimal element T, it
is the unique point of B where the map (z1,...,x,) = x1 + ... + z, attains its mazimum
value. If f : B — Ry is B-measurable and positevely homogeneous then either f(T) = 0 or

f(@) = max{f(z): z € B}.

Proof. If y € B then y VT € B and therefore >, max{y;,Z;} < Y., T;, this shows that
yi <T;. If f: B — R} is B-measurable and f(Z) # 0 then, for all y € B, min{f(Z), f(y)} #
0 and therefore f(Z V y) = max{f(Z), f(y)}. But TV y = T, therefore f(T) > f(y). O

Separation of B-Convex Sets by a Map

Let us say that two sets A and B are

(a) weakly separated by a map f if sup,c, f(z) < inf.ep f(z) or sup,cp f(z) <
infea f(2);

(b) separated by a map f if there exists a real number r such that either V(z,y) € Ax B
flx) <r < f(y)orV(z,y) € AxB f(y) <r < f(z);

(c) strictly separated by a map f if sup,c, f(z) < infiep f(x) or sup,ep f(z) <
infaea f(x).

The following lemma will be used in the examination of separation properties of B-convex
sets.

Lemma 5.1. If Cy and C are B-convex sets then [C1 UCy ] = {sx Viy : (z,y) € Cy x Cy
and s> 0,t > 0,max{s,t} = 1}.

Proof. One inclusion being obvious,we have to show that

C={szVty:(r,y) € C; x Cy and s > 0,t > 0, max{s,t} =1}



SEPARATION IN B-CONVEXITY 21

is B-convex. Let u; = s;x; V ty;, ¢ = 1,2, with o; € Cy, y; € C2, 0 < min{s;,¢t;},
max{s;,t;} =1 and let ¢ € [0,1]. Then

max{ max{tsi, s2 }, max{tty, t>} } = max{tsy,tt1,sq2,t2} = 1.

Let @ = max{tsi,s2} and 8 = max{tty,t2}; if @« = 0 then either s; = s; = 0, in which
case t1 = to = 1 and tuy Vus = ty1 Vy: € Cy C C or t = s2 = 0, in which case
tug Vus = uy = y2 € Cy C C; similarly, if 3 = 0 we have tu; Vuy, € C; € C. We
can now assume that o # 0 and 8 # 0; Then » = (a 'ts;)z; V (a ts2)re € C) and
y= (B 1tt))y1 V (B ts)ys € Cy, therefore tuy Vus = ax V By € C. O

Theorem 5.1. (1) Two disjoint B-convex sets Cy and Co can be weakly separated by a
B-measurable positively homogenous map.

(2) Furthermore, if there exists a vector u € Ry, such that C1 UCy C R} +u, then C1 and
Cs can be weakly separated by a finite B-measurable positively homogenous map.

(3) If, on top of the conditions from (1) and (2) above, we also have inf(, yec,xc, |2 —
Ylloo > 0, then Cy and Cs can be separated by a finite B-measurable positively homogenous
map.

(4) Under all the previous assumptions, if either Cy or Cy is bounded then they can be strictly
separated by a finite B-measurable positively homogenous map.

Proof. (1). Let Cy, i = 1,2 be disjoint B-convex sets of R” ; by Theorem 2.1 there exists a
half-space B such that C; C B and C> C R} \ B, where, without loss of generality, we can
assume that 0 € B. Then , for all z € C1, pup(z) <1 and for all z € Cs, 1 < pp(z).

(2) First, if C; UCy C R} +u with w € R}, then C; UC, C R}, + 27 'u; we can therefore
assume that C1 UCy C R} 4+ u. Let Bs = {x € R} : ||z||c <} and assume that

[BsUC,[NCy#B foral §>0.
By Lemma 5.1 there are two possibilities;

(a) either there exists a sequence of elements of the form xy V y, € Co with ||z||c0 < Ik,
yr € C1 and 0y decreases to 0, or

(b) there exists a sequence of elements of the form xy, V tryr € Cy with 2 and yj as in (a)
and t, € [0,1].

In the first case, since u € R}, and u <y, we have xp V yr = y; if k is large enough;
we would then have y, € C; N Cq, which is impossible; (b) is therefore the case. Let
up = Ty V teyr; since uy € Cy we have up = u V uy or, up = (uV ) Vtryr. From v € R}
we have u V 7, = u for k large enough, therefore, uy = u V tyyx, but up € R}, +u and
consequently, up = try for k large enough. In conclusion, we have shown that, if, for all
d>0,[BsUC]NCy # 0 then there exists y € C; and t €]0,1[ such that ty € Cs. Let
us see that we cannot have for all § > 0, [Bs UC,;|NCy # 0 and [BsUC, [N Cy # 0. If
this were the case there would exist y € C, z € C2 and t,s €]0, 1] such that ty € Cy and
sz € Cy; we have ty € [0,y] and sz € [0, z], by Proposition 2.1 there exists a point w in
ly,sz] N[z, ty]. From [y,sz] C Cy and [z,ty] C Cy we obtain w € C; N Cy. We can
assume that there exists § > 0 such that [BsUCL N Cy # P; let C = [Bs U C,] and find
a half-space B such that C € B and Co N B = . From 0 € C we have 0 € B and from
de; € C,i=1,...,n, we have ug(e;) < 6! and, by part (1) of Lemma 4.1, up takes only
finite values.
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(3) Let n = inf(, yyec, xc, [[T — Y|l and, for all subset S C R} let B;(S) = {z € R} :
Jy € S s.t. ||z — ylloo < 6} if C is B-convex then, for all 6 > 0, Bs(C) is also B-convex by
Proposition 2.4.2 . of [1], which also implies that the closure of a B-convex set is B-convex.
Since ) > 0 we can chooseu € R} |, > 0 such p1 < ||u||oo and B, (C1)NB,(C2) = 0 and also
B,(C1)UB,(C2) C R}, +u, since, by hypothesis, C;UC> C R} 4o for some v € R} | . From
part (2) we find a half-space B such that 0 € B, B,(C1) C B, B,(C>) C R} \ B, pup is finite
valued and sup,cp, (c,) 1B (z) <1 <infocp, (o, pp(2). o € Cr and t = (1+ p/(2]|2]|))
then then tx € B,(C1) C B, and therefore,

-1
I
uB(x)§<1+7> < 1.
2[|zf|o

If y € Cs then y € R} + u and therefore ||y||oc > p and therefore s = (1 — 1/(2||y||=)) is
strictly positive. Since ||sy — y||lcc = 1/2 we have sy € B,(C2) C R} \ B, and therefore
sy € B which implies that

—1

I

1< (1 - —> < uB(y).
2|1yl

(4) Now, assume that C; is bounded. There is a v € R} such that, for all z € Ci,
[|Z]|co < |v]|co and therefore

-1
I .
sup ugp(x S(l—l— ) <1< inf pp(y).
sup 15 () ol Jnf 1e )

If C5 is bounded there is a v € R} such that, for all y € Cs, ||y||ce < [|V]|oo, and p < ||v]|oo;
we then have

—1
7 .
su )<1<|(1-— < inf .
sup upla) < < ||v||oo> < ot wsv)

O

Theorem 5.2. A point can be strictly separated from any closed B-convex set to which it
does not belong by a finite B-measurable positively homogenous map.

Proof. Let C C R} be a closed B-convex set and x € R} a point which is not in C. If z =0
we take f(z) = ||2||co; from 0 € C, and C closed, we have f(z) =0 < infyec f(y); we can
assume now that z # 0.

Let us see that we cannot have, for all 6 > 0, [Bs U{z}]NC # 0 and z € [Bs UC].
First, notice that [ Bs U {z}] is closed and bounded; if [ Bs U {z}](C # 0 for all § > 0
then, since [ Bs U {z} ][\ C is compact and

[Byufz}] c[Bsu{z}] if n<s,

we conclude that ()5 ([ Bs U {z}]NC) is not empty.

An element y of (5.,[Bs U {z}] is of the form tx with ¢ € [0,1]; indeed, we have
y = x, V tix where we can assume that ¢, converges to some t* € [0, 1] and z;, converges to
0 in R}, therefore xy V trx converges to t*x.

If 2 € Nyl Bs UC] then we can find a sequence d; which decreases to 0, a sequence
tr € [0,1], a sequence u;, € R} with |[ug|loc < 6x and a sequence yp € C such that, for
all k, ¢ = uy V tgy,. Since x # 0 there is at least one index ¢ for which z; > 0; from
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z; = max{ug,i,tryr,;} for all k there exists k(i) such that, for all k& > k(i), z; = tpys,. If
zj = 0 then 0 = max{us ;,tryr ;} and in particular 0 = txys ;, that is, x; = trye,j; let
K = max{k(i) : z; > 0} then, for k¥ > K, we have z = t,y,. In conclusion, if for all § > 0,
[Bsu{z}]NC # 0 and x € [ Bs UC] then there exits t € [0,1] such that tz € C' and there
exist s € [0,1] and y € C such that x = sy; but (tz) V sy € C, since tz and y are in C, and
(tx) V sy = (tz) V& = x; we have obtained x € C, which is not the case by hypothesis. So,
either

(a) there exists 6 > 0 such that [ Bs U{z}]C =0 or
(b) there exists § > 0 such that € [ Bs UC].

If (a) is the case, we find g > 0 such that B, ([Bs U{z}])(C = 0, which is possible since
[ BsU{z}] is compact and C' is closed. There is a half-space B such that B, ([ BsU{z}]) C B
and C'N B = (); up is finite and, proceeding as in the proof of Theorem 5.1 we obtain

—1
u .
) < |1+ —— <1< inf .
pnto) < (14 75 ) <1< inf o)
If (b) is the case, we find g > 0 such that B, (z) N [Bs UC] = 0 and a half-space B such
that [ Bs UC] C B and B,(xz) N B = 0; we can always assume that u < ||z||~. Proceeding
again as in the proof of Theorem 5.1 we obtain

-1
sup up(y) <1< <1 - A ) < up(z).
yeC [EA1PS

@ Separation of a Point from a B-Convex Set

This section contains an explicit construction of a family M of open half-spaces such that
all B-convex sets are intersections of members of M and M is minimal with respect to that
property. For a point 2 € R}, and a closed B-convex set to which it does not belong a
separating map is explicitely given.

We also show that the B-convexity structure on R’} , can be reconstructed from n + 1 of
partial orders. For z € R’} let

No(z) ={z:0<z <z}
and
Nj(z) ={z € R} :x; > z; and Vi z;x; > zjx;}.
The set Np(z) is closed convex and radiant and the sets N;(z), for j > 1 are closed convex
and co-radiant. If z; = 0 then N;(z) = R%}; if z; # 0 and 2 € N;(2) then z; # 0 and z; # 0
implies z; # 0, in other words I(z) C I(z). For z; # 0 let Fj(z) be the j-th face of the
polytope Ny(z), that is
Fj(z) ={z € R} : z; = zj and Viz; < 2}
then N;(z) is the conic hull of F;(z), that is

N;i(z)={tx:t>1and z € F;(2)}.
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For j € {0,1...,n} let
M;(z) =R} \ Nj(z) and U;(2) = {z € R} : 2z € N;(x)}.

Notice that for, j # 0, z € M;(z) if and only if z; > 0 and either z; < z; or z; > z; and
there exists an index [ such that ;2 < x;2; which is equivalent to

(a) either zy =0 and ; >0 or
(b)z—]’ < max {l,maxiel(z)7i¢j if—} where I(z) = {i: z; > 0}.

Lemma 6.1. The sets Nj(z) are closed and B-convex, the sets M;(z) are open and B-
convez; they are therefore half-spaces.

Proof. That Ny(z) is closed is obvious; it is a radiant upper semilattice and therefore B-
convex. If z and y belong to My(z) then there are indices i and j such that x; > z; and
yr > zi; if t € [0,1] then max{x;,ty;} > x; > z; and max{tz;,y;} > y > 2. This proves
that My(z) is B-convex.

Let j € {1,... ,n};if z; = 0 then N;(2) = R} and M;(z) = () are B-convex. Assume that
zj > 0and let z,y € Nj(z) and ¢ € [0,1]. From z; > z; and y; > z; we have max{tz;,y;} >
zj, and from z;2; > z;2; we get tx;z; > tz;z;, now, from y;z; > y,;2; and the positivity of the
coefficients we have max{tz;, y;}z; = max{tz;z;,y;z;} > max{tz;z;,yiz;} > max{tz;, y:}z;;
we have shown that tz Vy € N;(2).

Now let z,y € M;(z) and t €]0, 1], we show that tz Vy € M;(z). There are two cases to
consider:

(a) there exists an index [ such that either z; > 0 and z; = 0 or y; > 0 and z; = 0; then, in
both cases max{tz;,y;} > 0 and 2z = 0;

(b) for i € I(2) let a; = w;2;" and b; = y;2; ", then a; < max {1, max;ey(.),i; @i} and
bj < max {1, maX;er(z),i#j bl}

From t €]0,1] we have max{ta;,b;} < max{t, 1, maX;es(z) ix;j tai, MaX;cy(z),izj bi} =
max{1, maX;es(z),ixj @i, MaX;cr(z),iz; bi } = max{l, max;cy (. ixj{tai, bi}}.

Lemma 6.2. For all j € {0,...,n} the binary relation U; is a partial order on R} .

Proof. For simplicity let us write z <; x for z € Uj(z). For j = 0 =<, is simply the partial
order associated to the positive cone R ; we assume that j > 1. From the definition of V;
we have z € N;(z) for all z € R}. Assume that z <; z and  <; z then z € N;(z) and
x € Nj(z); from x; > z; and z; > x; we have z; = z; and, from z;x; > z;z; and z;z; > zx;
for all i we have, taking into account that x and z are in R | , x; = 2; for all i. If z <; y and
y =; = then y; < z; and z; < y;, also y;2; > y;2; and z;y; > x;y; for all 4; multiplying the
second inequality by z;z; we obtain (z;z;)(y;z:) > (z;2:)(yiz;), and from the first inequality,
(z:25)(yj2i) > (zj2:)(y;2:) which yields (z;2;) > (z;2;). O

Theorem 6.1. (1) Let A be a nonempty set and let B be the B-convex radiant set spanned
by A (that is the intersection of all the B-convex radiant sets containing A). Then z € B if
and only if, for all j € {1,...n} N;(2) N A # 0.

(2) [A] ={2€R} :Vj€{0,...,n} Nj(z) N A # D}

Proof. First notice that, for an arbitrary nonempty set A, N;j(z) NA #£Qif j > 1, z; =0,
and Np(0) N A # 0 if and only if 0 € A; in other words, we can assume that z # 0 and
Jjel(z).
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(1 — a) We assume that A = B. Let b; € N;(z) N B; for all j € I(z) we have b; ; > z;, let

Zl
i

b bi: .
t =k :min{ = i€ I(z)} and, forl € I(z),u =t
2k Zi

We have t > 1, 0 < py < 1 and pup = 1. Since B is B-convex and radiant we have
1 \/lel(z) Wb € B, that is v = \/lel(z)(zl/bl,l)bl € B. Let us see that v = z. If
j & I(z) then v; = 0 = 2;. If j € I(z) then b;;/2; = max;cp(z)bji/z: and v; =
(maxlel(z) (Zl/bu)(bl,j/z:j)) Z; = Zj since (bu/zl) Z (bl,j/Zj) for all [ € [(Z)

(1—-0b) If ANN;(z) =0 then A C M;(z) and, since M;(z) is radiant, we have B C M;(z),
in other words, B[ N;(z) = 0. This shows that, for j € {1,...,n}, B[ N;(z) # 0 if and
only if AN\ N;(z) # 0.

(2) Let B = [ A]J; since the sets N;(z) are half-spaces we have, as in (1 —b), B(\N;(z) # 0
if and only if A(\N;(z) # 0, for j € {0,...,n}. The set |Jy ., tB is radiant, and B-
convex. From N;(z) N B #  for all j € I(z) we have z = tu with 0 < ¢ < 1 and u € B; if
No(2) N B # ) then there exists v € B such that v < z. From z = vV z = v V tu we have
z € B. O

Given a binary relation R on a set X and a subset A of X we write R(A) for |J, ., R(a).
Corollary 6.1 below makes clear the content of Theorem 6.1; it says that the B-convex hull
operator A — [A] is determined by the n 4 1 binary relations U;; in particular, on R},
[ A] is obtained by first taking the upper-set generated by A for each of the partial orders
Uj, that is |J,c 4 {z € R?, :a =; x}, and then by taking the intersection of all these sets.

Corollary 6.1. For all subset A of R} we have

[Al=(Ui(4). (6.12)

Jj=0

As a consequence, the B-convex hull of a finite set is always the union of a finite number of
linear polytopes.

Proof. Notice that AN N;(z) # 0 if and only if z € U;(A), this proves the first part. If
A is finite then [A] is compact, choose r and s such that [A] C [r,s]”, then [A] =
N_o[U5 (4) 1 [ry5]"] = M Uuen Us(a) N [ry8]". The set Uy(a) N [rs]” = {z € R} :
Vi ajz; > a;z; and r < z; < t} is compact and defined by a finite number of linear inequali-
ties, it is therefore a linear polytope. The intersection of a finite number of linear polytopes
is again a linear polytope. This completes the proof. O

Corollary 6.1 gives a effective procedure to construct [ A] if A is a finite set. First, z € Uj(a)
is the solution set of the following system of linear inequalities

{OSI‘]‘SG]'

0 <ajz; — a;z; for all 4.

which can be solved without the simplex algorithm. The description of Up(a) is even simpler:
Uo(a) = {z € R} : a < x}. Using distributivity of the intersection over the reunion in (6.12)
we have

[A] = U () Ui (). (6.13)

(a07___ 7a")EA"+1 7=0
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Each of the set (;_, Uj(a?) is the solution set of a system of linear inequalities which
corresponds to one of the convex polytopes whose reunion makes the B-convex hull of A.

The set Up(a) which is closed and co-radiant can be described by its co-gauge, and the
sets Uj;(a), which are closed and radiant can be described by their gauges, Up(a) = {z €
R} : vyy(a)(z) > 1} and Uj(a) = {z € R} : py,q)(z) < 1}. From Corollary 6.1, we have,
for an arbitrary subset A of R}, that x € [A] if and only if there exists o’ € A and, for
all j € {1,...,n}, there exists a € A such that uy,(4)(r) < 1 < vy,(a)(z); We obtain the
following characterization of the B-convex hull of a finite set A:

[A] = {z € R : max min 4y, (a) (2) <1 < maxvy,()(z) } (6.14)

One can check that the co-gauge Up(a) and the gauges of the sets U;(a) are given by the
following formulas:

400 ifa=0
YUy (a) (x) = 0 if 4i s.t. a; >0and 2; =0
min;cr(q) Ti/a;  otherwise.

and
+o0 ifa;=0and z; >0
(ZU) _ +00 if 37 s.t. Tia; < Tja;
HO; @& =19 ¢ ifa; =2; =0
xzj/a; otherwise.

If a # 0 then for all € R} | vy, () (%) = min;er(q)(zi/ai), vy, (q) is therefore continuous on
R? , . For a finite set A C R} (6.14) can be interpreted as a separation formula.

Proposition 6.1. For a finite set A let v4 = max,ea Vyy(a) and fij 4 = MiNgea Sy, (a)-
If © ¢ [A], then either va(z) < 1 < inf.cpaqva(z) or there exists j > 1 such that
maxepaypy,a(z) < 1 < pja(x). Furthermore, pja is positively homogeneous and lower
semicontinuous, and v; a(z) is positively homogeneous and upper semicontinuous.

Proposition 5.2 asserts that a closed B-convex set and a point that does not belong to this
set can be the strongly separated by a finite B-measurable positively homogeneous map. If
this point is strictly positive then an explicit expression for separating maps can be given.
To z € R}, we associate n + 1 maps on R} defined as follows:

and, for j > 1
01 (z) = 0 itz; =0o0r (z;/2;) < 6-(x)
2 (x4/75)  otherwise.
Notice that, for all z € R7, and for all j > 1, 6.(z) =1 and #(z) =1

Proposition 6.2. Let B be a closed B-convez set and z € R}, a point that does not belong
to B. Then the following alternative holds:

(1) either, for all x € B,1 < 6.(z) or

(2) there exists j > 1 such that, for all z € B, 6I(z) < 1.

Proof. If z ¢ B there are two possibilites: either (a) BN Ny(z) = 0) or (b) there exists j > 1
such that BN N;(z) = 0, as follows from Theorem 6.1.
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Assume that (a) is the case. Since Ny(z) is closed and radiant we have Ny(z) = {x €
R} : png(z)(z) < 1}, and therefore, for all # € B, 1 < pp,(z)(z). Since z € R}, an easy
computation yields pin,(.)(7) = 0. (z) for all x € B.

Now, assume that (b) is the case. The set N;(z) is closed and co-radiant, it is therefore
equal to {z € R} : 1 < vn,(:)(2)}, and consequently, for all z € B, vn,(-)(z) < 1. Again,
taking into account that z € R}, we find

y (z) = 0 ifz; =0or Jist. ziz; < zjz;
Ni@W = (2/2;)  otherwise.

If vn,(y(®) < 1 then, either z; = 0 or (z;/z;) < maxjer(zi/z;) or maxies(w;/2;) =
(z;/2;) < 1, and therefore vy, .)(2) = #1(z) for all z € B. O

We have seen that Uj, as a binary relation on R, , is a partial order; it has another
noticeable property. First, let us say that a binary relation R C B x B on a B-convex set B
is a Ky Fan relation if it has the following properties:

(1) for all z € R} z € R(x);
(2) for all z € R7. the set R} \ R™'(z) is B-convex.

Ky Fan maps appeared in Ky Fan’s proof of his famous inequality (without being named
of course); in the framework of classical convexity a Ky Fan map with closed values, one of
which is compact, verifies (), . g R(x) # 0. This statement, as is well known, is equivalent to
Brouwer’s fixed point Theorem, and to Ky Fan’s inequality; it can be proved by Dugundji-
Granas generalization of the Knaster-Kuratowski-Mazurkiewicz Theorem, namely: if R is a
binary relation on a (classical) convex set X such that R(z) is closed for all z € X and, for
all non empty finite subset A of X the convex hull of A is contained in (J,. 4 R(a) (this is
the KKM Property), then, for all non empty finite subset A of X, ., R(z) # 0, [2] for
more details. This result, which is also equivalent to Brouwer’s fixed point Theorem, is of
great importance in mathematical economics.

Let us see that if R is a Ky Fan map on a B-convex set B, then for all non empty
finite subset A of B one has [A] C R(A) (this is of course the KKM property). Indeed, if
x & R(A) then A C R} \ R !(x) which, by (2), implies [A] C R} \ R~*(z); from (1) we
have z ¢ R} \ R™*(z), and therefore z ¢ [ A].

Now let us come to the reason for this diversion on Ky Fan maps: for all j € {0,... ,n},
Uj is a Ky Fan map on R} . This is easily seen, U; is reflexive, and Uj_l(a:) = N,(z), which,
as we have seen, is a half space, therefore R \ U]fl(:r) =R} \ Nj(z) = Mj(z) is B-convex.
The interesting part of the formula [ A] = (_, U;(A4) is not so much that the B-convex
hull of A is obtained as an intersection of images of A under Ky Fan maps but that those
maps are finite in number and also partial orders.

Propositions 6.1 implies that a B-polytope is an intersection of closed radiant and co-
radiant sets; our next result will show than an arbitrary B-convex set is an intersection of
open half-spaces. More precisely, let

M={M;(z):z€ R}, jel(z)} U{M(0)},

members of M are open half-spaces, we show that arbitrary B-convex sets are intersections
of members of M and that M is a minimal set of open half-spaces with that property.

Lemma 6.3. (1) Let z € R} and u € My(z). Then u + Xe; € My(z) for all i € I and all
A > 0;
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(2) Let z € R} and u € Mj(z) for j € I(z). Then there exists \j > 0 such that u + \je; ¢
M;(z) and u+ Xe; € M;(z) for alli € I,i# j.

Proof. Tt follows directly from the definition of sets M;(z). O

Lemma 6.4. Let v € R}, u # 0 and z € Nj(u), j € {0} U I(u). Then I(z) C I(u) and
Nj(z) C Nj(u).

Proof. The result is obvious if j = 0 so we consider only case j € I(u). Since z € N;(u)
it follows then there exists ¢ > 1 such that z; = tu; and z; < tu; for i € I(u). It follows
from this that I(z) C I(u). Let € N;(2). Then there exists 7 > 1 such that z; = 72; and
z; < 12; for i € I(z). We have z; = (1t)u; and z; < (7t)u; for i € I(z). Let i € I(u) \ I(2).
Then z; = 0, hence x; = 0. Since u; > 0 it follows that x; < (7t)u; for such 7 as well. Thus
the result follows. U

Lemma 6.5. Let M;(z) C M;(u), j € {0} U I(u). Then z € M;(u).

Proof. The result easily follows from Lemma 6.4 if j = 0, so we consider only case j € I(u).
We have N;(z) D Nj(u). Assume that z ¢ M;(u). Then z € N;(u). In view of Lemma 6.4
we have N;(z) C Nj(u), that is N;(z) = N;(u). Since M;(z) # M;(w), this is impossible.
Hence z € M;(u). O

Lemma 6.6. Let M € M and M' = M\ {M} then M # (\{M' e M': M C M'}.

Proof. If M = R} \ {0} the conclusion holds trivially since 0 € M' if M' # M; we can
assume that M # R} \ {0}. Let M = M;(z) with z; > 0. If M;(z) C My(u) and k # 0 it
easily follows from Lemma 6.3 that k& = j, hence M;(u) D M;(z). Due to Lemma 6.5 we
conclude that z € M;(u) = M'. We have shown z € {M' € M’ : M C M'}, and since
z & M;(z) the proof is complete. O

Theorem 6.2. For all A C R} we have
[Al=(){MeM:AcCM}

and M is a minimal family of open half-spaces with the property above.

Proof. If z ¢ [A] and z # 0 then, by Theorem 6.1, there exists j € I(z) such that
ANN;(z) = 0, in other words, A C M;(z), and, obviously, z € M;(z). If z = 0 then
A C R} \ {0} = Mp(0). The remainder of the proof is contained in the previous lem-
mas. O

The Geometric Hahn-Banach Theorem in B-Convexity

None of the results given so far imply that a closed B-convex set is the intersection of the
closed half-spaces containing. It is the purpose of this last section to establish this fact.

For 6 > 0 let Bs[S] be the d-neighbourhood of the set with respect to the norm || - ||
and let us say that two sets S; and Ss are non-proximate if inf(, yyeg, x5, ||7 = Yllcc > 0
or, equivalently, if there exists 6 > 0 such that Bs[S1] N Bs[S2] = 0. We recall that if C' is
B-convex then Bs[C] is B-convex, as well as the closure of C' and its interior, which follows
from [1] Lemma 2.2.12 and Section 2.4.
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Theorem 7.1. If Cy and C> are non-prozimate B-convex sets of R} then there exists a
closed half-space D such that C1 C intD and C> C R} \ D.

Proof. Choose ¢ > 0 such that Bs[C;] N Bs[C2] = 0; by the Stone-Kakutani Property there
exists a half space L such that Bs[C;] C L and B;s[C5] C R} \ L. Let D be the closure of
L; Cy is in the interior of D and C5 is in R} \ D. Furthermore, D, being the closure of
B-convex set, is B-convex, and, from R} \ L = int(R7 \ L) (with respect to the relative
topology of R ), we have that R} \ D is also B-convex. O

Corollary 7.1. A closed B-convex set is the intersection of the closed half-spaces in which
it is contained.

In the previous sections we have shown that disjoint B-convex sets can be separated by an
homogeneous B-measurable map; unfortunately, those maps do not have to be continuous.
To achieve separation by continuous maps we have to use the larger class of B-measurable
maps, in other words, if we drop the positive homogeneity property then continuous sep-
aration is possibe; this is a consequence of results from [1] and a Theorem of Van de Vel,
Theorem 2.7 in [4], which is akin to the Tietze-Urysohn Theorem . For the reader’s con-
veniance, and also because Van de Vel’s Theorem is more general than needed here, we
reproduce in a simplified form, and in the context of B-convexity, the main argument of the
proof.

Theorem 7.2. If C1 and Cs are non-empty non-prozimate B-conver sets of R’ then there
exists a continuous B-measurable map f : R} — [0,1] such that f(C1) = {0} and f(C2) =

1.

Proof. Let I be the set of dyadic numbers strictly between 0 and 1. As in Theorem 7.1
let § > 0 such that Bs[C1] N Bs[Cs] = () and a half space L such that Bs[Ci] C L and
B;s[Cy] € R} \ L. Put L = H,y; considering the /2 neighbourhoods one can see that
(C1, R} \ Hyjz) and (Hi/s,Cs) are two pairs of non-proximate B-convex sets. The initial
procedure applied to the pair (C1, R} \ Hy/s) yields a half-space which we call Hy /4, that
same procedure applied to the pair (Hy 2, C2) yields a half-space which we call Hz/4. By
induction one obtains a family {H, : d € D} of half-spaces such that:

(1) d — Hy is increasing.

(2) for alld € D, (C1, R} \ Hy) and (Hg,Cs) are pairs of non-proximate B-convex sets.

(3) if dy < dy then (Hg,,R} \ Hy,) is a pair of non-proximate B-convex sets. The map
f R} — [0, 1] defined as follows has the required properties:

fz) = 1 ifx ¢ J{Hq:deD}
| inf{deD:x € Hy} otherwise.
O
Theorem 7.2 improves part (3) of Theorem 5.1 in as much as the separation is done through
a continuous map, but, on the other hand, we have much less information on the map,
since we cannot expect a map taking its values in [0, 1] to be positively homogeneous. As

a consequence of Theorem 7.2 we have again that closed B-convex sets are intersections of
closed half-spaces and of open half-spaces.
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