

Pasific Journal of Optimization Vol. 1, No. 1, pp. 13-30, January 2005

SEPARATION IN B-CONVEXITY

W. BRIEC, C.D. HORVATH AND A. RUBINOV

To Terry Rockafellar on his 70th birthday.

Abstract: A subset B of \mathbb{R}^n_+ is \mathbb{B} -convex if for all $x_1, x_2 \in B$ and all $t \in [0, 1]$ one has $tx_1 \lor x_2 \in B$. These sets were first investigated in [1] where it was shown that Carathéodory, Radon and Helly like Theorems hold. In this work we establish separation and Hahn-Banach like Theorems for \mathbb{B} -convex sets.

Key words: B-convexity, gauges, co-gauges, separation, B-measurable maps

Mathematics Subject Classification: 46A22, 52A30, 52A99,06F30

1 Introduction

This paper continues the investigation of \mathbb{B} -convexity introduced in [1], more precisely, we establish geometric and functional Hahn-Banach like separation properties in \mathbb{B} -convexity. A subset B of \mathbb{R}^n_+ is \mathbb{B} -convex if for all $x_1, x_2 \in B$ and all $t \in [0,1]$ one has $tx_1 \lor x_2 \in B$; an easy induction shows that B is \mathbb{B} -convex if and only if, for all $x_1, \ldots, x_m \in B$ and all $t_1, \ldots, t_m \in [0,1]$ such that $\max\{t_1, \ldots, t_m\} = 1$ one has $\bigvee_{i=1}^m t_i x_i \in B$, where \lor denotes the maximum with respect to partial order of \mathbb{R}^n_+ associated to the positive cone, that is, the coordinatewise supremum. For x and y in \mathbb{R}^n_+ , $x \leq y$ means $y - x \in \mathbb{R}^n_+$.

The first section deals with the Stone-Kakutani separation property (the algebraic Hahn-Banach Theorem) which, as is well known, is a consequence of the Pash-Peano Property. So, we show that the Pash-Peano Property holds in B-convexity. For the reader's convenience, we give the (standard) proof of the Stone-Kakutani Theorem as well as the generalized Stone-Kakutani and Pash-Peano Theorems which are due, at least in the framework of abstract convexities, to Van de Vel [4].

 \mathbb{B} -convex sets are studied through the properties of their Minkowski gauge. Of particular interest are the \mathbb{B} -convex sets whose complements are also \mathbb{B} -convex; those sets are called half-spaces (\mathbb{B} -half-spaces would be more precise, but since these half-spaces will always, and only, appear in conjunction with \mathbb{B} -convex sets the possibility of confusion is minimal). Analytic and geometric separation theorems are proved for disjoint \mathbb{B} -convex sets. It is shown that a closed \mathbb{B} -convex set is always the intersection of the closed half-spaces in which it is contained. A family of open half-spaces such that all convex sets are intersection of members of that family is given; furthermore, it is shown that the family in question is minimal with respect to that property.

We use the following notation: $I = \{1, ..., n\}$; \mathbb{R}^n_+ is the set of points with nonnegative coordinates and \mathbb{R}^n_{++} is its interior, the set of points with strictly positive coordinates; for

Copyright © 2005 Yokohama Publishers http://www.ybook.co.jp

 $x \in \mathbb{R}^n_+$ the *i*th coordinate of x is denoted by x_i and $I(x) = \{i : x_i \neq 0\}$. We denote by $\llbracket A \rrbracket$ the B-convex hull of A, that is, the intersection of all the B-convex subsets of \mathbb{R}^n_+ containing A. The B-convex hull of a finite set is a B-polytope; we recall that a set C is B-convex if and only if it contains all the B-polytopes spanned by its finite subsets and that the union of an up-directed family of B-convex sets is B-convex.*

2 Algebraic Separation

The following lemma says that \mathbb{B} -convexity is join-hull commutative; this property will be used in the proof of the Pasch-Peano Property from which algebraic separation of disjoint \mathbb{B} -convex sets is a consequence.

Lemma 2.1. For all subsets S of \mathbb{R}^n_+ and for all point p we have

$$\llbracket S \cup \{p\} \rrbracket = \bigcup_{x \in \llbracket S \rrbracket} \llbracket x, p \rrbracket.$$

Proof. One inclusion is clear; we prove the other one, and we assume that S is not empty. If $y \in [S \cup \{p\}]$, we can assume that $y \neq p$ otherwise there is nothing to prove; then, there exist $x_1, \ldots, x_k \in S$ and $\eta_1, \ldots, \eta_{k+1} \in [0,1]$ such that $\max_{1 \leq i \leq k+1} \eta_i = 1$ and $y = \eta_1 x_1 \vee \ldots \vee \eta_k x_k \vee \eta_{k+1} p$. Since $y \neq p$ we have $\max_{1 \leq i \leq k} \eta_i \neq 0$, let $\mu = \max_{1 \leq i \leq k} \eta_i$ and $\mu_i = \eta_i / \mu$ for $i = 1, \ldots, k$. Then $x = \mu_1 x_1 \vee \ldots \vee \mu_k x_k \in [S]$ and $y = \mu x \vee \eta_{k+1} p \in [x, p]$ since $\max\{\mu, \eta_{k+1}\} = 1$.

Proposition 2.1 (Pash-Peano). For all quintuple (a, b_1, b_2, c_1, c_2) of points of \mathbb{R}^n_+ such that $c_i \in \llbracket a, b_i \rrbracket$ we have $\llbracket b_1, c_2 \rrbracket \cap \llbracket b_2, c_1 \rrbracket \neq \emptyset$.

Proof. We have to show that the following system of equations has a solution

$$(\star) \quad \begin{cases} \eta_1 c_1 \lor \mu_2 b_2 &= \eta_2 c_2 \lor \mu_1 b_1 \\ \max\{\eta_1, \mu_2\} &= 1 \\ \max\{\eta_2, \mu_1\} &= 1 \end{cases}$$

Since $c_i \in [a, b_i]$ we can write $c_i = \rho_i a \vee \alpha_i b_i$ with $\max\{\rho_i, \alpha_i\} = 1$; a substitution in the first line of (\star) yields

$$(\star_{2}) \quad (\eta_{1}\rho_{1})a \lor (\eta_{1}\alpha_{1})b_{1} \lor \mu_{2}b_{2} = (\eta_{2}\rho_{2})a \lor (\eta_{2}\alpha_{2})b_{2} \lor \mu_{1}b_{1}$$

Given ρ_i and α_i , i = 1, 2, one can easily solve (\star_2) for η_i and μ_i , i = 1, 2 in the following way

$$\begin{cases} (\sharp)_1 & \eta_1 = (\rho_2/\rho_1) \text{ and } \eta_2 = 1 & \text{if } \rho_1 > \rho_2 \\ (\sharp)_2 & \eta_1 = 1 \text{ and } \eta_2 = (\rho_1/\rho_2) & \text{if } \rho_2 > \rho_1 \\ (\sharp)_3 & \eta_1 = \eta_2 = 1 & \text{if } \rho_1 = \rho_2 \\ (\sharp)_4 & \mu_i = \eta_i \alpha_i \end{cases}$$

This solution of (\star_2) is also a solution of (\star) if $\max\{\eta_1, \mu_2\} = \max\{\eta_2, \mu_1\} = 1$; let us see that this is indeed the case. There are, formally, three cases to consider, namely $(\sharp)_1$, $(\sharp)_2$ and $(\sharp)_3$. In the first case, $(\sharp)_1$, we have $\max\{\eta_2, \mu_1\} = \eta_2 = 1$ and $\max\{\rho_2, \alpha_2\} = 1$ with $1 \ge \rho_1 > \rho_2 \ge 0$ from which we obtain $\alpha_2 = 1$ and $\mu_2 = \eta_2 = 1$; we have shown that $\max\{\eta_1, \mu_2\} = 1$. The second case, that is $(\sharp)_2$, is treated similarly; as for $(\sharp)_3$ there is nothing to prove since $\eta_1 = \eta_2 = 1$.

^{*}A family of sets is up-directed if the union of any two members of the family is contained in a member of the family.

Theorem 2.1 (The Stone-Kakutani Property). If C_1 and C_2 are disjoint \mathbb{B} -convex sets, then there exists a \mathbb{B} -convex set $D \subset \mathbb{R}^n_+$ such that $\mathbb{R}^n_+ \setminus D$ is also \mathbb{B} -convex, $C_1 \subset D$ and $C_2 \subset \mathbb{R}^n_+ \setminus D$.

Proof. Let \mathcal{Z} be the family of pairs of disjoint convex sets (D_1, D_2) such that $C_i \subset D_i$ partially ordered by $(D_1, D_2) \subset (D'_1, D'_2)$ if $D_i \subset D'_i$. The pair (C_1, C_2) belongs to \mathcal{Z} and if $\mathcal{C} = \{(D_{1,\lambda}, D_{2,\lambda}) : \lambda \in \Lambda\}$ is a chain in \mathcal{Z} then $(\bigcup_{\lambda \in \Lambda} D_{1,\lambda}, \bigcup_{\lambda \in \Lambda} D_{2,\lambda}) \in$ \mathcal{Z} since an up-directed union of \mathbb{B} -convex sets is \mathbb{B} -convex and, as can easily be seen, $(\bigcup_{\lambda \in \Lambda} D_{1,\lambda}) \cap (\bigcup_{\lambda \in \Lambda} D_{2,\lambda}) = \emptyset$; by Zorn's lemma there is a maximal element (H_1, H_2) in \mathcal{Z} . Assume that there is a point a in $\mathbb{R}^n_+ \setminus (H_1 \bigcup H_2)$; from the maximality of the pair (H_1, H_2) we have $\llbracket H_1 \bigcup \{a\} \rrbracket \cap H_2 \neq \emptyset$ and $\llbracket H_2 \bigcup \{a\} \rrbracket \cap H_1 \neq \emptyset$. Take a point c_1 in the first set and a point c_2 in the second set. By Lemma 2.1 there exists $b_i \in H_i$ such that $c_i \in \llbracket a, b_i \rrbracket$. By the Pash-Peano Property there exists a point u in $\llbracket b_1, c_2 \rrbracket \cap \llbracket b_2, c_1 \rrbracket$. From $b_1, c_2 \in H_1$ and $b_2, c_1 \in H_2$ we obtain $u \in H_1 \cap H_2$, which is impossible since the pair (H_1, H_2) is in \mathcal{Z} .

Corollary 2.1 (Generalized Pash-Peano Property). If $a, b_1, \ldots, b_m, c_1, \ldots, c_m$ are points in \mathbb{R}^n_+ such that $c_i \in [\![a, b_i]\!]$ for all $i = 1, \ldots m$ then $\bigcap_{i=1}^m [\![B_i \cup \{c_i\}]\!] \neq \emptyset$ where $B_i = \{b_j : j \neq i\}$.

Proof. For m = 1 there is nothing to prove, for m = 2 we have the Pash-Peano Property; let us assume that $m \geq 3$ and that the conclusion has been established for values less or equal to m-1. Let $B'_i = B_i \setminus \{b_m\}$; by the induction hypothesis there is a point p in $\bigcap_{i=1}^{m-1} \llbracket B'_i \cup \{c_i\} \rrbracket \subset \bigcap_{i=1}^{m-1} \llbracket B_i \cup \{c_i\} \rrbracket$; since $b_m \in B_i$ for $i \leq m-1$ we have $\llbracket p, b_m \rrbracket \subset \bigcap_{i=1}^{m-1} \llbracket B_i \cup \{c_i\} \rrbracket \subset \bigcap_{i=1}^{m-1} \llbracket B_i \cup \{c_m\} \rrbracket \neq \emptyset$ the proof is over, otherwise, by the Stone-Kakutani Property, there exists a \mathbb{B} -convex set D whose complement in \mathbb{R}^n_+ is also \mathbb{B} -convex and such that $\llbracket p, b_m \rrbracket \subset D$ and $\llbracket B_m \cup \{c_m\} \rrbracket \cap D = \emptyset$. From $c_m \in \llbracket a, b_m \rrbracket$, $b_m \in D$ and $c_m \in \mathbb{R}^n_+ \setminus D$ we see that $a \in \mathbb{R}^n_+ \setminus D$ and consequently $\bigcup_{i \neq m} \llbracket a, b_i \rrbracket \subset \mathbb{R}^n_+ \setminus D$ which implies $c_i \in \mathbb{R}^n_+ \setminus D$ for $i \neq m$. For $i \neq m$ we have $B'_i \subset B_m$ and therefore $\llbracket B'_i \cup \{c_i\} \rrbracket \subset \mathbb{R}^n_+ \setminus D$ which yields the obvious contradiction $p \notin D$.

Let us call half-spaces[†] those \mathbb{B} -convex subsets of \mathbb{R}^n_+ whose complement is also \mathbb{B} -convex.

Proposition 2.2 (Generalized Stone-Kakutani). If C_1, \ldots, C_m are \mathbb{B} -convex subsets of \mathbb{R}^n_+ such that $\bigcap_{i=1}^m C_i = \emptyset$, then there exists half-spaces D_1, \ldots, D_m such that $\bigcap D_i = \emptyset$, $\bigcup D_i = \mathbb{R}^n_+$ and, for all $i = 1, \ldots, m$, $C_i \subset D_i$.

Proof. Let Z be the set of m-tuples (D_1, \ldots, D_m) of B-convex subsets of \mathbb{R}^n_+ such that $\bigcap_{i=1}^m D_i = \emptyset$ and, for all $i = 1, \ldots, m, C_i \subset D_i$, partially ordered in the obvious way, that is, (D_1, \ldots, D_m) is greater than (D_1', \ldots, D_m') if, for all $i, D_i \supseteq D_i'$. Using Zorn's Lemma we find a maximal element (H_1, \ldots, H_m) . For each $j = 1, \ldots, m$ there is, by the Stone-Kakutani Property, a half-space D_j containing H_j which does not intersect $\bigcap_{i \neq j} H_i$; the *n*-tuple obtained by replacing H_j by D_j in (H_1, \ldots, H_m) is greater than (H_1, \ldots, H_m) ; by maximality, $H_j = D_j$. We have to show that $\bigcup_{i=1}^m H_i = \mathbb{R}^n_+$; for a contradiction, assume that this is not the case and let $a \in \mathbb{R}^n_+ \setminus \bigcup_{i=1}^m H_i$. By maximality of (H_1, \ldots, H_m) , there exists, for all j, a point c_j in $\llbracket H_j \cup \{a\} \rrbracket \cap (\bigcap_{i \neq j} H_i)$. From the generalized Pash-Peano Property we have

[†]Also called hemi-spaces or maximal B-convex sets.

 $\bigcap_{j=1}^{m} \llbracket \{c_i : i \neq j\} \cup \{b_j\} \rrbracket \neq \emptyset; \text{ we have reached a contradiction since } \llbracket \{c_i : i \neq j\} \cup \{b_j\} \rrbracket \subset H_j.$

3 Gauges and Co-Gauges

We need the following definitions and results (see [3] for details). A set $U \subset \mathbb{R}^n_+$ is called radiant if $(x \in U, t \in]0, 1]$) implies $tx \in U$. A radiant set containing 0 is starshaped at 0. A set $V \subset \mathbb{R}^n_+$ is called co-radiant if $0 \notin V$ and $(x \in V, t \ge 1)$ implies $tx \in V$. The Minkowski gauge μ_U of the radiant set U is defined by

$$\mu_U(x) = \inf\{\lambda \in]0, +\infty[: x \in \lambda U\}, \qquad x \in \mathbb{R}^n_+$$

The Minkowski co-gauge ν_V of the co-radiant set V is defined by

$$\nu_V(x) = \sup\{\lambda \in]0, +\infty[: x \in \lambda V\}, \qquad x \in \mathbb{R}^n_+.$$

If U is a radiant set then $V = \mathbb{R}^n_+ \setminus U$ is co-radiant and $\nu_V = \mu_U$. If V is co-radiant then $U = \mathbb{R}^n_+ \setminus V$ is radiant and $\mu_U = \nu_V$.

For each $x \neq 0$ consider the ray $R_x = \{\lambda x : \lambda > 0\}$. Let U be a radiant set. It follows from the definition that $\mu_U(0) = 0$. If $x \neq 0$ then

$$\mu_U(x) = 0 \iff R_x \subset U, \qquad \mu_U(x) = +\infty \iff R_x \cap U = \emptyset.$$
(3.1)

Let V be a co-radiant set. Then $\nu_V(0) = 0$. If $x \neq 0$ then

$$\nu_V(x) = +\infty \iff R_x \subset V, \qquad \nu_V(x) = 0 \iff R_x \cap V = \emptyset.$$
(3.2)

Note that both μ_U and ν_V are positively homogeneous functions.[‡]

A set $U \subset \mathbb{R}^n$ is called radially closed, or closed-along-rays in the terminology of [3], if

$$(x \in \mathbb{R}^n_+, \lambda_k > 0, \lambda_k x \in U, k = 1, 2, \dots, \lambda_k \to \lambda) \implies \lambda x \in U.$$
(3.3)

A radiant set U is radially closed if and only if $U = \{x \in \mathbb{R}^n_+ : \mu_U(x) \leq 1\}$. A co-radiant set V is radially closed if and only if $V = \{x \in \mathbb{R}^n_+ : \nu_V(x) \geq 1\}$.

A set U is called radially open (or open-along-rays) if its complement $\mathbb{R}^n_+ \setminus U$ is radially closed. It is easy to check that a radiant set U (co-radiant set V, respectively) is radially open if and only if $U = \{x \in \mathbb{R}^n_+ : \mu_U(x) < 1\}$ ($V = \{x \in \mathbb{R}^n_+ : \nu_V(x) > 1\}$, respectively).

A set $U \subset \mathbb{R}^n_+$ is called an upper semilattice if $(x, y \in U \implies x \lor y \in U)$. Note that each \mathbb{B} -convex set is an upper semilattice.

Proposition 3.1. A subset of \mathbb{R}^n_+ containing 0 is \mathbb{B} -convex if and only if it is an upper semilattice starshaped at 0. A set which is radiant is \mathbb{B} -convex if and only if it is an upper semilattice.

Proof. If B is B-convex then $x \lor y \in B$ for all x and y in B; if $0 \in B$ then $tx = 0 \lor tx \in B$ for all $x \in B$ and all $t \in [0, 1]$. Reciprocally, if B is starshaped at 0 (resp. radiant) then $tx \in B$ if $x \in B$ and $t \in [0, 1]$ (resp. $t \in [0, 1]$) and, if B is also an upper semilattice of \mathbb{R}^n_+ then $tx \lor y \in B$ for all x and y in B and $t \in [0, 1]$.

Lemma 3.1. (1) Let $U \subset \mathbb{R}^n_+$ be a radiant set.

[‡]A function $f : \mathbb{R}^n_+ \to [0, +\infty]$ is called positively homogeneous if $f(\lambda x) = \lambda f(x)$ for $\lambda \in]0, +\infty[$.

(a) If U is \mathbb{B} -convex then

$$\mu_U(tx \lor y) \le \max\{\mu_U(x), \mu_U(y)\} \text{ for all } x, y \in \mathbb{R}^n_+, t \in [0, 1].$$
(3.4)

- (b) If U is radially closed or radially open and (3.4) holds then U is \mathbb{B} -convex.
- (2) Let $V \subset \mathbb{R}^n_+$ be a co-radiant set.
 - (a) If V is \mathbb{B} -convex then

$$\nu_V(tx \lor y) \ge \min\{\nu_V(x), \nu_V(y)\} \text{ for all } x, y \in \mathbb{R}^n_+, t \in [0, 1].$$
(3.5)

(b) If V is radially closed or radially open and (3.5) holds then V is \mathbb{B} -convex.

Proof. (1) Let U be a radiant B-convex set. Consider points $x, y \in \mathbb{R}^n_+$ and $t \in [0, 1]$. Assume for the sake of definiteness that $\mu_U(tx) \leq \mu_U(y) < +\infty$. If $r > \mu_U(y)$ then $tx \in rU, y \in rU$. From $r^{-1}(tx \lor y) = r^{-1}tx \lor r^{-1}y$ we have $r^{-1}(tx \lor y) \in U$; this shows that (3.4) holds. If either $\mu_U(tx) = +\infty$ or $\mu_U(y) = +\infty$ then (3.4) is obvious. Let U be radiant. If U is radially closed, then $U = \{x \in \mathbb{R}^n_+ : \mu_U(x) \leq 1\}$, if U is radially open then $U = \{x \in \mathbb{R}^n_+ : \mu_U(x) < 1\}$. In both cases (3.4) implies that U is a B-convex set.

(2) Let V be a co-radiant and \mathbb{B} -convex set. Consider points $x, y \in V$ and a number $t \in [0,1]$. Assume for the sake of definiteness that $+\infty \geq \nu_V(tx) \geq \nu_V(y) > 0$. Let $0 < r < \nu_V(y) \leq \nu_V(ty)$. Since V is co-radiant it follows that $tx \in rV$, $y \in rV$. \mathbb{B} -convexity of V implies \mathbb{B} -convexity of rV, so $(tx \lor y) \in rV$. This means that $\nu_V(tx \lor y) \geq \nu_V(y)$, hence (3.5) holds. If either $\nu_V(x) = 0$ or $\nu_V(y) = 0$ then (3.5) is obvious. If V is either radially closed or open and (3.5) holds then clearly V is a \mathbb{B} -convex set. \Box

Corollary 3.1. If a radiant set $U \subset \mathbb{R}^n_+$ is \mathbb{B} -convex then

$$\mu_U(x \lor y) \le \max\{\mu_U(x), \mu_U(y)\} \quad \text{for all} \quad x, y \in \mathbb{R}^n_+.$$
(3.6)

If U is radiant, either radially closed or radially open, and (3.6) holds then U is \mathbb{B} -convex.

Proposition 3.2. (1) Let B be a half-space containing 0. Then, for all $x, y \in \mathbb{R}^n_+$ and $t \in [0,1]$,

$$\min\{\mu_B(x), \mu_B(y)\} \le \mu_B(tx \lor y) \le \max\{\mu_B(x), \mu_B(y)\}.$$
(3.7)

If B is \mathbb{B} -convex, either radially closed or open and the left-hand inequality in (3.7) holds then B is a half-space.

(2) Let B be a half-space that does not contain 0. Then, for all $x, y \in \mathbb{R}^n_+$ and $t \in [0, 1]$,

$$\min\{\nu_B(x), \nu_B(y)\} \le \nu_B(tx \lor y) \le \max\{\nu_B(x), \nu_B(y)\}.$$
(3.8)

If B is \mathbb{B} -convex, either radially closed or open and the right-hand inequality in (3.8) holds then B is a half-space.

Proof. (1) Let B be a half-space and $0 \in B$. Let $x, y \in \mathbb{R}^n_+$ and $t \in [0, 1]$. Since B is B-convex and radiant it follows from (3.4) that the right-hand inequality in (3.7) holds. Since $C = \mathbb{R}^n_+ \setminus B$ is B-convex and co-radiant it follows from (3.5) that

$$\nu_C(tx \lor y) \ge \min\{\nu_C(x), \nu_C(y)\}.$$

From $\mu_B = \nu_C$ we obtain the left-hand inequality in (3.7).

Let B be B-convex and radially closed and $C = \mathbb{R}^n_+ \setminus B$. Then C is radially open. The left-hand inequality in (3.7) can be presented as $\min\{\nu_C(x), \nu_C(y)\} \leq \nu_C(tx \vee y)$. Applying Lemma 3.1 we conclude that C is B-convex, hence B is a half-space. A similar argument can be used if B is radially open.

(2) Let B be a half-space and $0 \notin B$. Let $x, y \in \mathbb{R}^n_+$ and $t \in [0, 1]$. Since B is B-convex and co-radiant it follows from (3.5) that the left-hand inequality in (3.8) holds. Since $C = \mathbb{R}^n_+ \setminus B$ is B-convex and radiant it follows from (3.4) that

$$\mu_C(tx \lor y) \le \max\{\mu_C(tx), \mu_C(y)\}\$$

This implies the right-hand inequality in (3.8).

Let B be B-convex and radially closed and $C = \mathbb{R}^n_+ \setminus B$. Then C is radially open. The right-hand inequality in (3.8) can be presented as $\mu_C(tx \vee y) \leq \max\{\mu_C(x), \mu_C(y)\}$. Applying Lemma 3.1 we conclude that C is B-convex, hence B is a half-space. A similar argument can be used if B is radially open.

Corollary 3.2. Let $B \subset \mathbb{R}^n_+$ be a conic set, that is $(x \in B, \lambda \ge 0) \implies \lambda x \in B$. Then

$$\mu_B(x) = \nu_C(x) = \begin{cases} 0 & \text{if } x \in B \\ +\infty & \text{if } x \in C \end{cases},$$
(3.9)

where $C = \mathbb{R}^n_+ \setminus B$. If B is an upper semilattice then B is a half-space.

Indeed, since B and C are both radiant and co-radiant sets we can consider μ_B and ν_C and (3.9) follows from (3.1) and (3.2).

Assume that B is an upper semilattice. Then for each $x, y \in B$ and $t \in [0, 1]$ we have $\mu_B(x) = \mu_B(y) = \mu_B(tx \lor y) = 0$. It follows from Proposition 3.2 that B is a half space.

Gauges and co-gauges are defined for arbitrary radiant and co-radiant sets; if those sets are also \mathbb{B} -convex then the gauge and the co-gauge have additional algebraic properties but the \mathbb{B} -convexity structure has in itself little bearing on the continuity properties. For the sake of completeness we state the following result which follows from Propositions 5.2 and 5.10 of [3].

Proposition 3.3. Let U be a radially closed \mathbb{B} -convex containing 0, then

(1) μ_U is lower semicontinuous if and only U is closed;

(2) μ_U is continuous if and only if U is closed, 0 is in the relative interior of U (with respect to \mathbb{R}^n_+) and, for all $x \in \mathbb{R}^n_+$, R_x does not intersect the boundary of U more than once.

4 B-Measurable Maps and Half-Spaces

A map $f : \mathbb{R}^n_+ \to [0, \infty]$ is called \mathbb{B} -measurable if, for all $x, y \in \mathbb{R}^n_+$ and $t \in [0, 1]$,

$$\min\{f(x), f(y)\} \le f(tx \lor y) \le \max\{f(x), f(y)\}.$$
(4.10)

A B-measurable map is characterized by the fact that inverse images of intervals are Bconvex; it follows that level sets $\{x \in \mathbb{R}^n_+ : f(x) = \lambda\}$ of B-measurable maps are B-convex sets, [1]. The gauge of a half-space containing 0 and the co-gauge of a half-space that does not contain 0 are positively homogeneous B-measurable maps. One can easily check that for an homogeneous B-measurable map $f : \mathbb{R}^n_+ \to [0, \infty]$ and for all $\lambda > 0$, $\{x \in \mathbb{R}^n_+ : f(x) < \lambda\}$ is a radially open half-space containing 0, $\{x \in \mathbb{R}^n_+ : f(x) \leq \lambda\}$ is a radially closed half-space and $\{x \in \mathbb{R}^n_+ : f(x) = 0\}$ is a conic set and an upper semilattice of \mathbb{R}^n_+ .

A subset $\{u_1, \ldots, u_m\}$ of \mathbb{R}^n_+ is a spanning set if, for all $x \in \mathbb{R}^n_+$ there exist positive real numbers r_1, \ldots, r_m such that $x = r_1 u_1 \vee \ldots \vee r_m u_m$. It is easy to see that for a minimal spanning set $\{u_1, \ldots, u_m\}$ we have m = n and, up to relabeling, $u_k = t_k e_k$ where e_1, \ldots, e_n are the vectors of the canonical bases of \mathbb{R}^n and $t_k > 0$. We consider only spanning sets of this form later on.

Lemma 4.1. Let $f : \mathbb{R}^n_+ \to [0, \infty]$ be a positively homogeneous \mathbb{B} -measurable map, then (1) f takes only finite values if and only if there exists a spanning set $\{u_1, \ldots, u_m\}$ such that $\max\{f(u_1), \ldots, f(u_m)\} < +\infty;$ (2) dom $f := \{x \in \mathbb{R}^n_+ : f(x) < +\infty\}, \{x \in \mathbb{R}^n_+ : f(x) = +\infty\} \cup \{0\}$ and $\{x \in \mathbb{R}^n_+ : f(x) = 0\}$ are conic upper semilattices; (3) if dom $(f) = \mathbb{R}^n_+$ then

- (a) if $\min\{f(x), f(y)\} \neq 0$ then $f(x \lor y) = \max\{f(x), f(y)\};$
- (b) if $\{u \in \mathbb{R}^n_+ : f(u) = 0\} = \{0\}$ then there exists a unique $a \in \mathbb{R}^n_{++}$ such that, for all $x \in \mathbb{R}^n_+$, $f(x) = \max_{1 \le i \le n} \{x_i a_i\}$;
- (c) if $\{u \in \mathbb{R}^n_+ : f(u) = 0\} \neq \{0\}$ then there exists a partition of $I = \{1, \ldots, n\}$ into two subsets I^0 and I^+ and there exists a unique $a \in \mathbb{R}^n_+$ such that (α) $f(e_i) = 0$ if and only if $i \in I^0$ and $a_i = 0$ if $i \in I^0$; (β) if $f(x) \neq 0$ then $f(x) = \max_{i \in I} \{a_i x_i\} = \max_{i \in I^+} \{a_i x_i\}$.

Proof. Part (1) follows from $f(r_1u_1 \vee \ldots \vee r_mu_m) \leq \max_{1 \leq i \leq m} \{r_if(u_i)\}$ and part (2) from (4.10) and the fact that $f(x) = t^{-1}f(tx)$ if $f(x) \neq +\infty$ and t > 0.

Assume that f does not take the value $+\infty$ and let x and y in \mathbb{R}^n_+ such that $0 < f(x) \le f(y)$; then $f(x)^{-1}x$ and $f(y)^{-1}y$ belong to $L(f;1) = \{u \in \mathbb{R}^n_+ : f(u) = 1\}$ which is \mathbb{B} -convex since f is \mathbb{B} -measurable, and therefore

$$(f(x)f(y)^{-1})f(x)^{-1}x \vee f(y)^{-1}y \in L(f;1),$$

that is $f(f(y)^{-1}(x \lor y)) = 1$ or $f(x \lor y) = f(y) = \max\{f(x), f(y)\}$. By induction we can show that if $\min_{1 \le j \le m} f(x_j) > 0$ then

$$f(x_1 \vee \ldots \vee x_m) = \max\{f(x_1), \ldots, f(x_m)\}.$$
(4.11)

If $f(e_i) > 0$ for all $i \in I$ then due to (4.11) and positive homogeneity of f we have for all $x \in \mathbb{R}^n_+$:

$$f(x) = \max_{\{i:x_i \neq 0\}} \{x_i f(e_i)\} = \max_{1 \le i \le n} \{x_i f(e_i)\};$$

consequently, if $L(f; 0) = \{u \in \mathbb{R}^n_+ : f(u) = 0\}$ is not $\{0\}$ then there is at least one index *i* for which $f(e_i) = 0$. Let $I^0 = \{i : f(e_i) = 0\}$ and $I^+ = \{i : f(e_i) \neq 0\}$ and for $x \in \mathbb{R}^n_+$ let $x_+ = \bigvee_{i \in I^+} x_i e_i$ and $x_0 = \bigvee_{i \in I^0} x_i e_i$; from the previous computations we have $f(x_+) = \max_{i \in I^+} \{x_i f(e_i)\} = \max_{i \in I} \{x_i f(e_i)\}$. Since *f* is \mathbb{B} -measurable and positively homogenous we have

$$0 \le f(x_0) \le \max_{i \in I^0} \{ f(x_i e_i) \} = \max_{i \in I^0} \{ x_i f(e_i) \} = 0,$$

and therefore $f(x_0) = 0$; from $x = x_+ \lor x_0$ we obtain $f(x) \le \max\{f(x_+), f(x_0)\} = f(x_+)$. If $f(x) \ne 0$ we obtain, taking into account that $x = x \lor x_+$,

$$f(x) = \max\{f(x), f(x_{+})\} = f(x_{+}) = \max_{i \in I}\{x_{i}f(e_{i})\}.$$

If $f(x) = \max_{i \in I} \{x_i f(e_i)\}$ for all x such that $f(x) \neq 0$ then $f(e_i) = a_i$ for all indices i such that $f(e_i) \neq 0$.

Corollary 4.1. If $U \subset \mathbb{R}^n_+$ is a half-space containing 0 in its relative interior and no halfrays then there exists a unique $(a_1, \ldots, a_n) \in \mathbb{R}^n_{++}$ such that $\mu_U(x) = \max_{1 \le i \le n} \{a_i x_i\}$. If U is closed and bounded then $\overline{x} = (a_1^{-1}, \ldots, a_n^{-1})$ is the maximal element of U and $U = \{x \in \mathbb{R}^n_+ : x \le \overline{x}\}$; \overline{x} is also the unique point of U where the map $(x_1, \ldots, x_n) \mapsto x_1 + \ldots + x_n$ attains its maximum value.

Proof. Since 0 is in the relative interior of U, the domain of μ_U is \mathbb{R}^n_+ and if $\mu_U(x) = 0$ then x = 0 since there are no half-rays in U. This proves the first part. To prove the second part notice first that $U = \{x \in \mathbb{R}^n_+ : \mu_U(x) \leq 1\}$, since U is closed and radial, and therefore, from $\max_{1 \leq i \leq n} \{\overline{x}_i a_i\} = 1$, we have $\overline{x} \in U$. The inequality $y \leq \overline{x}$, for $y \in \mathbb{R}^n_+$, is clearly equivalent to $y_i a_i \leq 1$ for all i, this proves the second part. If $y \leq \overline{x}$ then $y_1 + \ldots + y_n \leq \overline{x}_1 + \ldots + \overline{x}_n$.

Corollary 4.2. A compact nonempty \mathbb{B} -convex set B has a unique maximal element \overline{x} , it is the unique point of B where the map $(x_1, \ldots, x_n) \mapsto x_1 + \ldots + x_n$ attains its maximum value. If $f: B \to \mathbb{R}_+$ is \mathbb{B} -measurable and positevely homogeneous then either $f(\overline{x}) = 0$ or $f(\overline{x}) = \max\{f(x) : x \in B\}$.

Proof. If $y \in B$ then $y \lor \overline{x} \in B$ and therefore $\sum_{i=1}^{n} \max\{y_i, \overline{x}_i\} \leq \sum_{i=1}^{n} \overline{x}_i$, this shows that $y_i \leq \overline{x}_i$. If $f: B \to \mathbb{R}_+$ is \mathbb{B} -measurable and $f(\overline{x}) \neq 0$ then, for all $y \in B$, $\min\{f(\overline{x}), f(y)\} \neq 0$ and therefore $f(\overline{x} \lor y) = \max\{f(\overline{x}), f(y)\}$. But $\overline{x} \lor y = \overline{x}$, therefore $f(\overline{x}) \geq f(y)$.

5 Separation of B-Convex Sets by a Map

Let us say that two sets A and B are

- (a) weakly separated by a map f if $\sup_{x \in A} f(x) \leq \inf_{x \in B} f(x)$ or $\sup_{x \in B} f(x) \leq \inf_{x \in A} f(x)$;
- (b) **separated** by a map f if there exists a real number r such that either $\forall (x, y) \in A \times B$ f(x) < r < f(y) or $\forall (x, y) \in A \times B$ f(y) < r < f(x);
- (c) strictly separated by a map f if $\sup_{x \in A} f(x) < \inf_{x \in B} f(x)$ or $\sup_{x \in B} f(x) < \inf_{x \in A} f(x)$.

The following lemma will be used in the examination of separation properties of \mathbb{B} -convex sets.

Lemma 5.1. If C_1 and C_2 are \mathbb{B} -convex sets then $[\![C_1 \cup C_2]\!] = \{sx \lor ty : (x, y) \in C_1 \times C_2 and s \ge 0, t \ge 0, \max\{s, t\} = 1\}$.

Proof. One inclusion being obvious, we have to show that

 $C = \{ sx \lor ty : (x, y) \in C_1 \times C_2 \text{ and } s \ge 0, t \ge 0, \max\{s, t\} = 1 \}$

is B-convex. Let $u_i = s_i x_i \lor t_i y_i$, i = 1, 2, with $x_i \in C_1$, $y_i \in C_2$, $0 \le \min\{s_i, t_i\}$, $\max\{s_i, t_i\} = 1$ and let $t \in [0, 1]$. Then

$$\max\{\max\{ts_1, s_2\}, \max\{tt_1, t_2\}\} = \max\{ts_1, tt_1, s_2, t_2\} = 1.$$

Let $\alpha = \max\{ts_1, s_2\}$ and $\beta = \max\{tt_1, t_2\}$; if $\alpha = 0$ then either $s_1 = s_2 = 0$, in which case $t_1 = t_2 = 1$ and $tu_1 \lor u_2 = ty_1 \lor y_2 \in C_2 \subset C$ or $t = s_2 = 0$, in which case $tu_1 \lor u_2 = u_2 = y_2 \in C_2 \subset C$; similarly, if $\beta = 0$ we have $tu_1 \lor u_2 \in C_1 \subset C$. We can now assume that $\alpha \neq 0$ and $\beta \neq 0$; Then $x = (\alpha^{-1}ts_1)x_1 \lor (\alpha^{-1}s_2)x_2 \in C_1$ and $y = (\beta^{-1}tt_1)y_1 \lor (\beta^{-1}t_2)y_2 \in C_2$, therefore $tu_1 \lor u_2 = \alpha x \lor \beta y \in C$.

Theorem 5.1. (1) Two disjoint \mathbb{B} -convex sets C_1 and C_2 can be weakly separated by a \mathbb{B} -measurable positively homogenous map.

(2) Furthermore, if there exists a vector $u \in \mathbb{R}^n_{++}$ such that $C_1 \cup C_2 \subset \mathbb{R}^n_+ + u$, then C_1 and C_2 can be weakly separated by a finite \mathbb{B} -measurable positively homogenous map.

(3) If, on top of the conditions from (1) and (2) above, we also have $\inf_{(x,y)\in C_1\times C_2} ||x - y||_{\infty} > 0$, then C_1 and C_2 can be separated by a finite \mathbb{B} -measurable positively homogenous map.

(4) Under all the previous assumptions, if either C_1 or C_2 is bounded then they can be strictly separated by a finite \mathbb{B} -measurable positively homogenous map.

Proof. (1). Let C_i , i = 1, 2 be disjoint B-convex sets of \mathbb{R}^n_+ ; by Theorem 2.1 there exists a half-space B such that $C_1 \subset B$ and $C_2 \subset \mathbb{R}^n_+ \setminus B$, where, without loss of generality, we can assume that $0 \in B$. Then, for all $x \in C_1$, $\mu_B(x) \leq 1$ and for all $x \in C_2$, $1 \leq \mu_B(x)$.

(2) First, if $C_1 \cup C_2 \subset \mathbb{R}^n_+ + u$ with $u \in \mathbb{R}^n_{++}$ then $C_1 \cup C_2 \subset \mathbb{R}^n_{++} + 2^{-1}u$; we can therefore assume that $C_1 \cup C_2 \subset \mathbb{R}^n_{++} + u$. Let $B_{\delta} = \{x \in \mathbb{R}^n_+ : ||x||_{\infty} \leq \delta\}$ and assume that

$$\llbracket B_{\delta} \cup C_1 \rrbracket \cap C_2 \neq \emptyset \text{ for all } \delta > 0.$$

By Lemma 5.1 there are two possibilities;

- (a) either there exists a sequence of elements of the form $x_k \vee y_k \in C_2$ with $||x_k||_{\infty} \leq \delta_k$, $y_k \in C_1$ and δ_k decreases to 0, or
- (b) there exists a sequence of elements of the form $x_k \vee t_k y_k \in C_2$ with x_k and y_k as in (a) and $t_k \in [0, 1]$.

In the first case, since $u \in \mathbb{R}_{++}^n$ and $u \leq y_k$, we have $x_k \vee y_k = y_k$ if k is large enough; we would then have $y_k \in C_1 \cap C_2$, which is impossible; (b) is therefore the case. Let $u_k = x_k \vee t_k y_k$; since $u_k \in C_2$ we have $u_k = u \vee u_k$ or, $u_k = (u \vee x_k) \vee t_k y_k$. From $u \in \mathbb{R}_{++}^n$ we have $u \vee x_k = u$ for k large enough, therefore, $u_k = u \vee t_k y_k$, but $u_k \in \mathbb{R}_{++}^n + u$ and consequently, $u_k = t_k y_k$ for k large enough. In conclusion, we have shown that, if, for all $\delta > 0$, $\llbracket B_\delta \cup C_1 \rrbracket \cap C_2 \neq \emptyset$ then there exists $y \in C_1$ and $t \in]0, 1[$ such that $ty \in C_2$. Let us see that we cannot have for all $\delta > 0$, $\llbracket B_\delta \cup C_1 \rrbracket \cap C_2 \neq \emptyset$ and $\llbracket B_\delta \cup C_2 \rrbracket \cap C_1 \neq \emptyset$. If this were the case there would exist $y \in C_1$, $z \in C_2$ and $t, s \in]0, 1[$ such that $ty \in C_2$ and $sz \in C_1$; we have $ty \in \llbracket 0, y \rrbracket$ and $sz \in \llbracket 0, z \rrbracket$, by Proposition 2.1 there exists a point w in $\llbracket y, sz \rrbracket \cap \llbracket z, ty \rrbracket$. From $\llbracket y, sz \rrbracket \subset C_1$ and $\llbracket B_\delta \cup C_1 \rrbracket \cap C_2 \neq \emptyset$; let $C = \llbracket B_\delta \cup C_1 \rrbracket$ and find a half-space B such that $C \subset B$ and $C_2 \cap B = \emptyset$. From $0 \in C$ we have $0 \in B$ and from $\delta e_i \in C, i = 1, \ldots, n$, we have $\mu_B(e_i) \leq \delta^{-1}$ and, by part (1) of Lemma 4.1, μ_B takes only finite values. (3) Let $\eta = \inf_{\{x,y\}\in C_1\times C_2} ||x-y||_{\infty}$ and, for all subset $S \subset \mathbb{R}^n_+$ let $B_{\delta}(S) = \{x \in \mathbb{R}^n_+ : \exists y \in S \text{ s.t. } ||x-y||_{\infty} \leq \delta\}$; if C is \mathbb{B} -convex then, for all $\delta \geq 0$, $B_{\delta}(C)$ is also \mathbb{B} -convex by Proposition 2.4.2. of [1], which also implies that the closure of a \mathbb{B} -convex set is \mathbb{B} -convex. Since $\eta > 0$ we can choose $u \in \mathbb{R}^n_{++}$, $\mu > 0$ such $\mu < ||u||_{\infty}$ and $B_{\mu}(C_1) \cap B_{\mu}(C_2) = \emptyset$ and also $B_{\mu}(C_1) \cup B_{\mu}(C_2) \subset \mathbb{R}^n_{++} + u$, since, by hypothesis, $C_1 \cup C_2 \subset \mathbb{R}^n_+ + v$ for some $v \in \mathbb{R}^n_{++}$. From part (2) we find a half-space B such that $0 \in B$, $B_{\mu}(C_1) \subset B$, $B_{\mu}(C_2) \subset \mathbb{R}^n_+ \setminus B$, μ_B is finite valued and $\sup_{x \in B_{\mu}(C_1)} \mu_B(x) \leq 1 \leq \inf_{x \in B_{\mu}(C_2)} \mu_B(x)$. If $x \in C_1$ and $t = (1 + \mu/(2||x||_{\infty}))$ then then $tx \in B_{\mu}(C_1) \subset B$, and therefore,

$$\mu_B(x) \le \left(1 + \frac{\mu}{2||x||_{\infty}}\right)^{-1} < 1.$$

If $y \in C_2$ then $y \in \mathbb{R}^n_+ + u$ and therefore $||y||_{\infty} > \mu$ and therefore $s = (1 - \mu/(2||y||_{\infty}))$ is strictly positive. Since $||sy - y||_{\infty} = \mu/2$ we have $sy \in B_{\mu}(C_2) \subset \mathbb{R}^n_+ \setminus B$, and therefore $sy \notin B$ which implies that

$$1 < \left(1 - \frac{\mu}{2||y||_{\infty}}\right)^{-1} \le \mu_B(y)$$

(4) Now, assume that C_1 is bounded. There is a $v \in \mathbb{R}^n_+$ such that, for all $x \in C_1$, $||x||_{\infty} \leq ||v||_{\infty}$ and therefore

$$\sup_{x \in C_1} \mu_B(x) \le \left(1 + \frac{\mu}{||v||_{\infty}}\right)^{-1} < 1 \le \inf_{y \in C_2} \mu_B(y).$$

If C_2 is bounded there is a $v \in \mathbb{R}^n_+$ such that, for all $y \in C_2$, $||y||_{\infty} \leq ||v||_{\infty}$, and $\mu < ||v||_{\infty}$; we then have

$$\sup_{x \in C_1} \mu_B(x) \le 1 < \left(1 - \frac{\mu}{||v||_{\infty}}\right)^{-1} \le \inf_{y \in C_2} \mu_B(y).$$

Theorem 5.2. A point can be strictly separated from any closed \mathbb{B} -convex set to which it does not belong by a finite \mathbb{B} -measurable positively homogenous map.

Proof. Let $C \subset \mathbb{R}^n_+$ be a closed \mathbb{B} -convex set and $x \in \mathbb{R}^n_+$ a point which is not in C. If x = 0 we take $f(x) = ||x||_{\infty}$; from $0 \notin C$, and C closed, we have $f(x) = 0 < \inf_{y \in C} f(y)$; we can assume now that $x \neq 0$.

Let us see that we cannot have, for all $\delta > 0$, $\llbracket B_{\delta} \cup \{x\} \rrbracket \cap C \neq \emptyset$ and $x \in \llbracket B_{\delta} \cup C \rrbracket$. First, notice that $\llbracket B_{\delta} \cup \{x\} \rrbracket$ is closed and bounded; if $\llbracket B_{\delta} \cup \{x\} \rrbracket \cap C \neq \emptyset$ for all $\delta > 0$ then, since $\llbracket B_{\delta} \cup \{x\} \rrbracket \cap C$ is compact and

$$\llbracket B_{\eta} \cup \{x\} \rrbracket \subset \llbracket B_{\delta} \cup \{x\} \rrbracket \quad \text{if} \quad \eta \le \delta,$$

we conclude that $\bigcap_{\delta>0} (\llbracket B_{\delta} \cup \{x\} \rrbracket \cap C)$ is not empty.

An element y of $\bigcap_{\delta>0} \llbracket B_{\delta} \cup \{x\} \rrbracket$ is of the form tx with $t \in [0,1]$; indeed, we have $y = x_k \vee t_k x$ where we can assume that t_k converges to some $t^* \in [0,1]$ and x_k converges to 0 in \mathbb{R}^n_+ , therefore $x_k \vee t_k x$ converges to $t^* x$.

If $x \in \bigcap_{\delta>0} \llbracket B_{\delta} \cup C \rrbracket$ then we can find a sequence δ_k which decreases to 0, a sequence $t_k \in [0,1]$, a sequence $u_k \in \mathbb{R}^n_+$ with $||u_k||_{\infty} \leq \delta_k$ and a sequence $y_k \in C$ such that, for all $k, x = u_k \lor t_k y_y$. Since $x \neq 0$ there is at least one index *i* for which $x_i > 0$; from

 $x_i = \max\{u_{k,i}, t_k y_{k,i}\}$ for all k there exists k(i) such that, for all $k \ge k(i)$, $x_i = t_k y_{k,i}$. If $x_j = 0$ then $0 = \max\{u_{k,j}, t_k y_{k,j}\}$ and in particular $0 = t_k y_{k,j}$, that is, $x_j = t_k y_{k,j}$; let $K = \max\{k(i) : x_i > 0\}$ then, for $k \ge K$, we have $x = t_k y_k$. In conclusion, if for all $\delta > 0$, $[\![B_{\delta} \cup \{x\}]\!] \cap C \neq \emptyset$ and $x \in [\![B_{\delta} \cup C]\!]$ then there exist $t \in [0, 1]$ such that $tx \in C$ and there exist $s \in [0, 1]$ and $y \in C$ such that x = sy; but $(tx) \lor sy \in C$, since tx and y are in C, and $(tx) \lor sy = (tx) \lor x = x$; we have obtained $x \in C$, which is not the case by hypothesis. So, either

(a) there exists $\delta > 0$ such that $\llbracket B_{\delta} \cup \{x\} \rrbracket \cap C = \emptyset$ or

(b) there exists $\delta > 0$ such that $x \notin [\![B_{\delta} \cup C]\!]$.

If (a) is the case, we find $\mu > 0$ such that $B_{\mu}(\llbracket B_{\delta} \cup \{x\} \rrbracket) \cap C = \emptyset$, which is possible since $\llbracket B_{\delta} \cup \{x\} \rrbracket$ is compact and C is closed. There is a half-space B such that $B_{\mu}(\llbracket B_{\delta} \cup \{x\} \rrbracket) \subset B$ and $C \cap B = \emptyset$; μ_B is finite and, proceeding as in the proof of Theorem 5.1 we obtain

$$\mu_B(x) \le \left(1 + \frac{\mu}{||x||_{\infty}}\right)^{-1} < 1 \le \inf_{y \in C} \mu_B(y).$$

If (b) is the case, we find $\mu > 0$ such that $B_{\mu}(x) \cap \llbracket B_{\delta} \cup C \rrbracket = \emptyset$ and a half-space B such that $\llbracket B_{\delta} \cup C \rrbracket \subset B$ and $B_{\mu}(x) \cap B = \emptyset$; we can always assume that $\mu < ||x||_{\infty}$. Proceeding again as in the proof of Theorem 5.1 we obtain

$$\sup_{y \in C} \mu_B(y) \le 1 < \left(1 - \frac{\mu}{||x||_{\infty}}\right)^{-1} \le \mu_B(x).$$

6 Separation of a Point from a B-Convex Set

This section contains an explicit construction of a family \mathcal{M} of open half-spaces such that all \mathbb{B} -convex sets are intersections of members of \mathcal{M} and \mathcal{M} is minimal with respect to that property. For a point $z \in \mathbb{R}^n_{++}$ and a closed \mathbb{B} -convex set to which it does not belong a separating map is explicitly given.

We also show that the B-convexity structure on \mathbb{R}^n_{++} can be reconstructed from n+1 of partial orders. For $z \in \mathbb{R}^n_+$ let

$$N_0(z) = \{x : 0 \le x \le z\}$$

and

$$N_j(z) = \{ x \in \mathbb{R}^n_+ : x_j \ge z_j \text{ and } \forall i \ z_i x_j \ge z_j x_i \}$$

The set $N_0(z)$ is closed convex and radiant and the sets $N_j(z)$, for $j \ge 1$ are closed convex and co-radiant. If $z_j = 0$ then $N_j(z) = \mathbb{R}^n_+$; if $z_j \ne 0$ and $x \in N_j(z)$ then $x_j \ne 0$ and $x_i \ne 0$ implies $z_i \ne 0$, in other words $I(x) \subset I(z)$. For $z_j \ne 0$ let $F_j(z)$ be the *j*-th face of the polytope $N_0(z)$, that is

$$F_j(z) = \{ x \in \mathbb{R}^n_+ : x_j = z_j \text{ and } \forall i \ x_i \le z_i \}$$

then $N_i(z)$ is the conic hull of $F_i(z)$, that is

$$N_j(z) = \{tx : t \ge 1 \text{ and } x \in F_j(z)\}.$$

For $j \in \{0, 1..., n\}$ let

$$M_j(z) = \mathbb{R}^n_+ \setminus N_j(z)$$
 and $U_j(z) = \{x \in \mathbb{R}^n_+ : z \in N_j(x)\}.$

Notice that for, $j \neq 0, x \in M_j(z)$ if and only if $z_j > 0$ and either $x_j < z_j$ or $x_j \ge z_j$ and there exists an index l such that $x_i z_l < x_l z_j$ which is equivalent to

$$\begin{cases} (a) \text{ either } z_l = 0 \text{ and } x_l > 0 \text{ or} \\ (b)\frac{x_j}{z_j} < \max\left\{1, \max_{i \in I(z), i \neq j} \frac{x_i}{z_i}\right\} \text{ where } I(z) = \{i : z_i > 0\}. \end{cases}$$

Lemma 6.1. The sets $N_i(z)$ are closed and \mathbb{B} -convex, the sets $M_i(z)$ are open and \mathbb{B} convex; they are therefore half-spaces.

Proof. That $N_0(z)$ is closed is obvious; it is a radiant upper semilattice and therefore \mathbb{B} convex. If x and y belong to $M_0(z)$ then there are indices i and j such that $x_i > z_i$ and $y_l > z_l$; if $t \in [0,1]$ then $\max\{x_i, ty_i\} \ge x_i > z_i$ and $\max\{tx_l, y_l\} \ge y_l > z_l$. This proves that $M_0(z)$ is \mathbb{B} -convex.

Let $j \in \{1, \ldots, n\}$; if $z_j = 0$ then $N_j(z) = \mathbb{R}^n_+$ and $M_j(z) = \emptyset$ are B-convex. Assume that $z_j > 0$ and let $x, y \in N_j(z)$ and $t \in [0, 1]$. From $x_j \ge z_j$ and $y_j \ge z_j$ we have max $\{tx_j, y_j\} \ge z_j$ z_j , and from $x_j z_i \ge x_i z_j$ we get $tx_j z_i \ge tx_i z_j$, now, from $y_j z_i \ge y_i z_j$ and the positivity of the coefficients we have $\max\{tx_j, y_j\}z_i = \max\{tx_jz_i, y_jz_i\} \ge \max\{tx_iz_j, y_iz_j\} \ge \max\{tx_i, y_i\}z_j$; we have shown that $tx \lor y \in N_j(z)$.

Now let $x, y \in M_j(z)$ and $t \in [0,1]$, we show that $tx \lor y \in M_j(z)$. There are two cases to consider:

(a) there exists an index l such that either $x_l > 0$ and $z_l = 0$ or $y_l > 0$ and $z_l = 0$; then, in

both cases $\max\{tx_l, y_l\} > 0$ and $z_l = 0$; (b) for $i \in I(z)$ let $a_i = x_i z_i^{-1}$ and $b_i = y_i z_i^{-1}$, then $a_j < \max\{1, \max_{i \in I(z), i \neq j} a_i\}$ and $b_j < \max\{1, \max_{i \in I(z), i \neq j} b_i\}.$

From $t \in [0,1]$ we have $\max\{ta_j, b_j\} < \max\{t, 1, \max_{i \in I(z), i \neq j} ta_i, \max_{i \in I(z), i \neq j} b_i\} =$ $\max\{1, \max_{i \in I(z), i \neq j} ta_i, \max_{i \in I(z), i \neq j} b_i\} = \max\{1, \max_{i \in I(z), i \neq j} \{ta_i, b_i\}\}.$

Lemma 6.2. For all $j \in \{0, ..., n\}$ the binary relation U_j is a partial order on \mathbb{R}^n_{++} .

Proof. For simplicity let us write $z \leq_j x$ for $z \in U_j(x)$. For $j = 0 \leq_j$ is simply the partial order associated to the positive cone \mathbb{R}^n_+ ; we assume that $j \geq 1$. From the definition of N_j we have $z \in N_j(z)$ for all $z \in \mathbb{R}^n_+$. Assume that $z \preceq_j x$ and $x \preceq_j z$ then $z \in N_j(x)$ and $x \in N_j(z)$; from $x_j \ge z_j$ and $z_j \ge x_j$ we have $x_j = z_j$ and, from $z_i x_j \ge z_j x_i$ and $z_j x_i \ge z_i x_j$ for all i we have, taking into account that x and z are in \mathbb{R}^n_{++} , $x_i = z_i$ for all i. If $z \leq_j y$ and $y \leq_j x$ then $y_j \leq z_j$ and $x_j \leq y_j$, also $y_i z_j \geq y_j z_i$ and $x_i y_j \geq x_j y_i$ for all *i*; multiplying the second inequality by $z_j z_i$ we obtain $(x_i z_j)(y_j z_i) \ge (x_j z_i)(y_i z_j)$, and from the first inequality, $(x_i z_j)(y_j z_i) \ge (x_j z_i)(y_j z_i)$ which yields $(x_i z_j) \ge (x_j z_i)$.

Theorem 6.1. (1) Let A be a nonempty set and let B be the \mathbb{B} -convex radiant set spanned by A (that is the intersection of all the \mathbb{B} -convex radiant sets containing A). Then $z \in B$ if and only if, for all $j \in \{1, \ldots n\}$ $N_j(z) \cap A \neq \emptyset$. (2) $\llbracket A \rrbracket = \{ z \in \mathbb{R}^n_+ : \forall j \in \{0, \dots, n\} \ N_j(z) \cap A \neq \emptyset \}.$

Proof. First notice that, for an arbitrary nonempty set A, $N_i(z) \cap A \neq \emptyset$ if $j \ge 1, z_i = 0$, and $N_0(0) \cap A \neq \emptyset$ if and only if $0 \in A$; in other words, we can assume that $z \neq 0$ and $j \in I(z)$.

(1-a) We assume that A = B. Let $b_j \in N_j(z) \cap B$; for all $j \in I(z)$ we have $b_{j,j} \ge z_j$, let

$$t = \frac{b_{k,k}}{z_k} = \min\left\{\frac{b_{i,i}}{z_i} : i \in I(z)\right\} \text{ and, for } l \in I(z), \mu_l = t\frac{z_l}{b_{l,l}}.$$

We have $t \geq 1$, $0 < \mu_l \leq 1$ and $\mu_k = 1$. Since *B* is *B*-convex and radiant we have $t^{-1} \bigvee_{l \in I(z)} \mu_l b_l \in B$, that is $v = \bigvee_{l \in I(z)} (z_l/b_{l,l})b_l \in B$. Let us see that v = z. If $j \notin I(z)$ then $v_j = 0 = z_j$. If $j \in I(z)$ then $b_{j,j}/z_j = \max_{i \in I(z)} b_{j,i}/z_i$ and $v_j = (\max_{l \in I(z)} (z_l/b_{l,l})(b_{l,j}/z_j)) z_j = z_j$ since $(b_{l,l}/z_l) \geq (b_{l,j}/z_j)$ for all $l \in I(z)$.

(1-b) If $A \cap N_j(z) = \emptyset$ then $A \subset M_j(z)$ and, since $M_j(z)$ is radiant, we have $B \subset M_j(z)$, in other words, $B \cap N_j(z) = \emptyset$. This shows that, for $j \in \{1, \ldots, n\}$, $B \cap N_j(z) \neq \emptyset$ if and only if $A \cap N_j(z) \neq \emptyset$.

(2) Let $B = \llbracket A \rrbracket$; since the sets $N_j(z)$ are half-spaces we have, as in (1-b), $B \cap N_j(z) \neq \emptyset$ if and only if $A \cap N_j(z) \neq \emptyset$, for $j \in \{0, \ldots, n\}$. The set $\bigcup_{0 < t \leq 1} tB$ is radiant, and \mathbb{B} convex. From $N_j(z) \cap B \neq \emptyset$ for all $j \in I(z)$ we have z = tu with $0 < t \leq 1$ and $u \in B$; if $N_0(z) \cap B \neq \emptyset$ then there exists $v \in B$ such that $v \leq z$. From $z = v \lor z = v \lor tu$ we have $z \in B$.

Given a binary relation R on a set X and a subset A of X we write R(A) for $\bigcup_{a \in A} R(a)$. Corollary 6.1 below makes clear the content of Theorem 6.1; it says that the \mathbb{B} -convex hull operator $A \mapsto \llbracket A \rrbracket$ is determined by the n + 1 binary relations U_j ; in particular, on \mathbb{R}^n_{++} , $\llbracket A \rrbracket$ is obtained by first taking the upper-set generated by A for each of the partial orders U_j , that is $\bigcup_{a \in A} \{x \in \mathbb{R}^n_{++} : a \leq_j x\}$, and then by taking the intersection of all these sets.

Corollary 6.1. For all subset A of \mathbb{R}^n_+ we have

$$\llbracket A \rrbracket = \bigcap_{j=0}^{n} U_j(A).$$
(6.12)

As a consequence, the \mathbb{B} -convex hull of a finite set is always the union of a finite number of linear polytopes.

Proof. Notice that $A \cap N_j(z) \neq \emptyset$ if and only if $z \in U_j(A)$, this proves the first part. If A is finite then $[\![A]\!]$ is compact, choose r and s such that $[\![A]\!] \subset [r,s]^n$, then $[\![A]\!] = \bigcap_{j=0}^n [U_j(A) \cap [r,s]^n] = \bigcap_{j=0}^n \bigcup_{a \in A} U_j(a) \cap [r,s]^n$. The set $U_j(a) \cap [r,s]^n = \{x \in \mathbb{R}^n_+ : \forall i \ a_j x_i \geq a_i x_j \text{ and } r \leq x_i \leq t\}$ is compact and defined by a finite number of linear inequalities, it is therefore a linear polytope. The intersection of a finite number of linear polytopes is again a linear polytope. This completes the proof.

Corollary 6.1 gives a effective procedure to construct [A] if A is a finite set. First, $x \in U_j(a)$ is the solution set of the following system of linear inequalities

$$\begin{cases} 0 \le x_j \le a_j \\ 0 \le a_j x_i - a_i x_j \text{ for all } i. \end{cases}$$

which can be solved without the simplex algorithm. The description of $U_0(a)$ is even simpler: $U_0(a) = \{x \in \mathbb{R}^n_+ : a \leq x\}$. Using distributivity of the intersection over the reunion in (6.12) we have

$$\llbracket A \rrbracket = \bigcup_{(a^0, \dots, a^n) \in A^{n+1}} \bigcap_{j=0}^n U_j(a^j).$$
(6.13)

Each of the set $\bigcap_{j=0}^{n} U_j(a^j)$ is the solution set of a system of linear inequalities which corresponds to one of the convex polytopes whose reunion makes the \mathbb{B} -convex hull of A.

The set $U_0(a)$ which is closed and co-radiant can be described by its co-gauge, and the sets $U_j(a)$, which are closed and radiant can be described by their gauges, $U_0(a) = \{x \in \mathbb{R}^n_+ : \nu_{U_0(a)}(x) \ge 1\}$ and $U_j(a) = \{x \in \mathbb{R}^n_+ : \mu_{U_j(a)}(x) \le 1\}$. From Corollary 6.1, we have, for an arbitrary subset A of \mathbb{R}^n_+ , that $x \in \llbracket A \rrbracket$ if and only if there exists $a' \in A$ and, for all $j \in \{1, \ldots, n\}$, there exists $a \in A$ such that $\mu_{U_j(a)}(x) \le 1 \le \nu_{U_0(a')}(x)$; we obtain the following characterization of the \mathbb{B} -convex hull of a finite set A:

$$\llbracket A \rrbracket = \{ x \in \mathbb{R}^n_+ : \max_{j \in I} \min_{a \in A} \mu_{U_j(a)}(x) \le 1 \le \max_{a \in A} \nu_{U_0(a)}(x) \}$$
(6.14)

One can check that the co-gauge $U_0(a)$ and the gauges of the sets $U_j(a)$ are given by the following formulas:

$$\nu_{U_0(a)}(x) = \begin{cases} +\infty & \text{if } a = 0\\ 0 & \text{if } \exists i \text{ s.t. } a_i > 0 \text{ and } x_i = 0\\ \min_{i \in I(a)} x_i/a_i & \text{otherwise.} \end{cases}$$

and

$$\mu_{U_j(a)}(x) = \begin{cases} +\infty & \text{if } a_j = 0 \text{ and } x_j > 0 \\ +\infty & \text{if } \exists i \text{ s.t. } x_i a_j < x_j a_i \\ 0 & \text{if } a_j = x_j = 0 \\ x_j/a_j & \text{otherwise.} \end{cases}$$

If $a \neq 0$ then for all $x \in \mathbb{R}^n_{++}$ $\nu_{U_0(a)}(x) = \min_{i \in I(a)} (x_i/a_i)$, $\nu_{U_0(a)}$ is therefore continuous on \mathbb{R}^n_{++} . For a finite set $A \subset \mathbb{R}^n_+$ (6.14) can be interpreted as a separation formula.

Proposition 6.1. For a finite set A let $\nu_A = \max_{a \in A} \nu_{U_0(a)}$ and $\mu_{j,A} = \min_{a \in A} \mu_{U_j(a)}$. If $x \notin [A]$, then either $\nu_A(x) < 1 \leq \inf_{z \in [A]} \nu_A(z)$ or there exists $j \geq 1$ such that $\max_{z \in [A]} \mu_{j,A}(z) \leq 1 < \mu_{j,A}(x)$. Furthermore, $\mu_{j,A}$ is positively homogeneous and lower semicontinuous, and $\nu_{j,A}(z)$ is positively homogeneous and upper semicontinuous.

Proposition 5.2 asserts that a closed \mathbb{B} -convex set and a point that does not belong to this set can be the strongly separated by a finite \mathbb{B} -measurable positively homogeneous map. If this point is strictly positive then an explicit expression for separating maps can be given. To $z \in \mathbb{R}^{n}_{++}$ we associate n + 1 maps on \mathbb{R}^{n}_{+} defined as follows:

$$\theta_z(x) = \max_{i \in I} \frac{x_i}{z_i}$$

and, for $j \ge 1$

$$\theta_z^j(x) = \begin{cases} 0 & \text{if } x_j = 0 \text{ or } (x_j/z_j) < \theta_z(x) \\ (x_j/z_j) & \text{otherwise.} \end{cases}$$

Notice that, for all $z \in \mathbb{R}^n_{++}$ and for all $j \ge 1$, $\theta_z(z) = 1$ and $\theta_z^j(z) = 1$.

Proposition 6.2. Let B be a closed \mathbb{B} -convex set and $z \in \mathbb{R}^n_{++}$ a point that does not belong to B. Then the following alternative holds:

(1) either, for all $x \in B, 1 < \theta_z(x)$ or

(2) there exists $j \ge 1$ such that, for all $x \in B$, $\theta_z^j(x) < 1$.

Proof. If $z \notin B$ there are two possibilities: either (a) $B \cap N_0(z) = \emptyset$ or (b) there exists $j \ge 1$ such that $B \cap N_j(z) = \emptyset$, as follows from Theorem 6.1.

Assume that (a) is the case. Since $N_0(z)$ is closed and radiant we have $N_0(z) = \{x \in \mathbb{R}^n_+ : \mu_{N_0(z)}(x) \leq 1\}$, and therefore, for all $x \in B$, $1 < \mu_{N_0(z)}(x)$. Since $z \in \mathbb{R}^n_{++}$ an easy computation yields $\mu_{N_0(z)}(x) = \theta_z(x)$ for all $x \in B$.

Now, assume that (b) is the case. The set $N_j(z)$ is closed and co-radiant, it is therefore equal to $\{x \in \mathbb{R}^n_+ : 1 \leq \nu_{N_j(z)}(x)\}$, and consequently, for all $x \in B$, $\nu_{N_j(z)}(x) < 1$. Again, taking into account that $z \in \mathbb{R}^n_{++}$ we find

$$\nu_{N_j(z)}(x) = \begin{cases} 0 & \text{if } x_j = 0 \text{ or } \exists i \text{ s.t. } z_i x_j < z_j x_i \\ (x_j/z_j) & \text{otherwise.} \end{cases}$$

If $\nu_{N_j(z)}(x) < 1$ then, either $x_j = 0$ or $(x_j/z_j) < \max_{i \in I} (x_i/z_i)$ or $\max_{i \in I} (x_i/z_i) = (x_j/z_j) < 1$, and therefore $\nu_{N_j(z)}(x) = \theta_z^j(x)$ for all $x \in B$.

We have seen that U_j , as a binary relation on \mathbb{R}^n_{++} , is a partial order; it has another noticeable property. First, let us say that a binary relation $R \subset B \times B$ on a \mathbb{B} -convex set Bis a Ky Fan relation if it has the following properties:

(1) for all $x \in \mathbb{R}^n_+$ $x \in R(x)$;

(2) for all $x \in \mathbb{R}^n_+$ the set $\mathbb{R}^n_+ \setminus R^{-1}(x)$ is \mathbb{B} -convex.

Ky Fan maps appeared in Ky Fan's proof of his famous inequality (without being named of course); in the framework of classical convexity a Ky Fan map with closed values, one of which is compact, verifies $\bigcap_{x \in B} R(x) \neq \emptyset$. This statement, as is well known, is equivalent to Brouwer's fixed point Theorem, and to Ky Fan's inequality; it can be proved by Dugundji-Granas generalization of the Knaster-Kuratowski-Mazurkiewicz Theorem, namely: if R is a binary relation on a (classical) convex set X such that R(x) is closed for all $x \in X$ and, for all non empty finite subset A of X the convex hull of A is contained in $\bigcup_{a \in A} R(a)$ (this is the KKM Property), then, for all non empty finite subset A of X, $\bigcap_{a \in A} R(x) \neq \emptyset$, [2] for more details. This result, which is also equivalent to Brouwer's fixed point Theorem, is of great importance in mathematical economics.

Let us see that if R is a Ky Fan map on a \mathbb{B} -convex set B, then for all non empty finite subset A of B one has $\llbracket A \rrbracket \subset R(A)$ (this is of course the KKM property). Indeed, if $x \notin R(A)$ then $A \subset \mathbb{R}^n_+ \setminus R^{-1}(x)$ which, by (2), implies $\llbracket A \rrbracket \subset \mathbb{R}^n_+ \setminus R^{-1}(x)$; from (1) we have $x \notin \mathbb{R}^n_+ \setminus R^{-1}(x)$, and therefore $x \notin \llbracket A \rrbracket$.

Now let us come to the reason for this diversion on Ky Fan maps: for all $j \in \{0, \ldots, n\}$, U_j is a Ky Fan map on \mathbb{R}^n_+ . This is easily seen, U_j is reflexive, and $U_j^{-1}(x) = N_j(x)$, which, as we have seen, is a half space, therefore $\mathbb{R}^n_+ \setminus U_j^{-1}(x) = \mathbb{R}^n_+ \setminus N_j(x) = M_j(x)$ is B-convex. The interesting part of the formula $[\![A]\!] = \bigcap_{j=0}^n U_j(A)$ is not so much that the B-convex hull of A is obtained as an intersection of images of A under Ky Fan maps but that those maps are finite in number and also partial orders.

Propositions 6.1 implies that a \mathbb{B} -polytope is an intersection of closed radiant and coradiant sets; our next result will show than an arbitrary \mathbb{B} -convex set is an intersection of open half-spaces. More precisely, let

$$\mathcal{M} = \{ M_j(z) : z \in \mathbb{R}^n_+, \ j \in I(z) \} \cup \{ M_0(0) \},\$$

members of \mathcal{M} are open half-spaces, we show that arbitrary \mathbb{B} -convex sets are intersections of members of \mathcal{M} and that \mathcal{M} is a minimal set of open half-spaces with that property.

Lemma 6.3. (1) Let $z \in \mathbb{R}^n_+$ and $u \in M_0(z)$. Then $u + \lambda e_i \in M_0(z)$ for all $i \in I$ and all $\lambda > 0$;

(2) Let $z \in \mathbb{R}^n_+$ and $u \in M_j(z)$ for $j \in I(z)$. Then there exists $\lambda_j > 0$ such that $u + \lambda_j e_j \notin M_j(z)$ and $u + \lambda e_i \in M_j(z)$ for all $i \in I$, $i \neq j$.

Proof. It follows directly from the definition of sets $M_i(z)$.

Lemma 6.4. Let $u \in \mathbb{R}^n_+$, $u \neq 0$ and $z \in N_j(u)$, $j \in \{0\} \cup I(u)$. Then $I(z) \subset I(u)$ and $N_j(z) \subset N_j(u)$.

Proof. The result is obvious if j = 0 so we consider only case $j \in I(u)$. Since $z \in N_j(u)$ it follows then there exists $t \ge 1$ such that $z_j = tu_j$ and $z_i \le tu_i$ for $i \in I(u)$. It follows from this that $I(z) \subset I(u)$. Let $x \in N_j(z)$. Then there exists $\tau \ge 1$ such that $x_j = \tau z_j$ and $x_i \le \tau z_i$ for $i \in I(z)$. We have $x_j = (\tau t)u_j$ and $x_i \le (\tau t)u_i$ for $i \in I(z)$. Let $i \in I(u) \setminus I(z)$. Then $z_i = 0$, hence $x_i = 0$. Since $u_i > 0$ it follows that $x_i \le (\tau t)u_i$ for such i as well. Thus the result follows.

Lemma 6.5. Let $M_j(z) \subset M_j(u), j \in \{0\} \cup I(u)$. Then $z \in M_j(u)$.

Proof. The result easily follows from Lemma 6.4 if j = 0, so we consider only case $j \in I(u)$. We have $N_j(z) \supset N_j(u)$. Assume that $z \notin M_j(u)$. Then $z \in N_j(u)$. In view of Lemma 6.4 we have $N_j(z) \subset N_j(u)$, that is $N_j(z) = N_j(u)$. Since $M_j(z) \neq M_j(u)$, this is impossible. Hence $z \in M_j(u)$.

Lemma 6.6. Let $M \in \mathcal{M}$ and $\mathcal{M}' = \mathcal{M} \setminus \{M\}$ then $M \neq \bigcap \{M' \in \mathcal{M}' : M \subset M'\}$.

Proof. If $M = \mathbb{R}^n_+ \setminus \{0\}$ the conclusion holds trivially since $0 \in M'$ if $M' \neq M$; we can assume that $M \neq \mathbb{R}^n_+ \setminus \{0\}$. Let $M = M_j(z)$ with $z_j > 0$. If $M_j(z) \subset M_k(u)$ and $k \neq 0$ it easily follows from Lemma 6.3 that k = j, hence $M_j(u) \supset M_j(z)$. Due to Lemma 6.5 we conclude that $z \in M_j(u) = M'$. We have shown $z \in \bigcap \{M' \in \mathcal{M}' : M \subset M'\}$, and since $z \notin M_j(z)$ the proof is complete.

Theorem 6.2. For all $A \subset \mathbb{R}^n_+$ we have

$$\llbracket A \rrbracket = \bigcap \{ M \in \mathcal{M} : A \subset M \}$$

and \mathcal{M} is a minimal family of open half-spaces with the property above.

Proof. If $z \notin \llbracket A \rrbracket$ and $z \neq 0$ then, by Theorem 6.1, there exists $j \in I(z)$ such that $A \bigcap N_j(z) = \emptyset$, in other words, $A \subset M_j(z)$, and, obviously, $z \notin M_j(z)$. If z = 0 then $A \subset \mathbb{R}^n_+ \setminus \{0\} = M_0(0)$. The remainder of the proof is contained in the previous lemmas.

[7] The Geometric Hahn-Banach Theorem in B-Convexity

None of the results given so far imply that a closed \mathbb{B} -convex set is the intersection of the closed half-spaces containing. It is the purpose of this last section to establish this fact.

For $\delta > 0$ let $B_{\delta}[S]$ be the δ -neighbourhood of the set with respect to the norm $|| \cdot ||_{\infty}$ and let us say that two sets S_1 and S_2 are non-proximate if $\inf_{(x,y)\in S_1\times S_2} ||x-y||_{\infty} > 0$ or, equivalently, if there exists $\delta > 0$ such that $B_{\delta}[S_1] \cap B_{\delta}[S_2] = \emptyset$. We recall that if C is \mathbb{B} -convex then $B_{\delta}[C]$ is \mathbb{B} -convex, as well as the closure of C and its interior, which follows from [1] Lemma 2.2.12 and Section 2.4. **Theorem 7.1.** If C_1 and C_2 are non-proximate \mathbb{B} -convex sets of \mathbb{R}^n_+ then there exists a closed half-space D such that $C_1 \subset \operatorname{int} D$ and $C_2 \subset \mathbb{R}^n_+ \setminus D$.

Proof. Choose $\delta > 0$ such that $B_{\delta}[C_1] \cap B_{\delta}[C_2] = \emptyset$; by the Stone-Kakutani Property there exists a half space L such that $B_{\delta}[C_1] \subset L$ and $B_{\delta}[C_2] \subset \mathbb{R}^n_+ \setminus L$. Let D be the closure of L; C_1 is in the interior of D and C_2 is in $\mathbb{R}^n_+ \setminus D$. Furthermore, D, being the closure of \mathbb{B} -convex set, is \mathbb{B} -convex, and, from $\mathbb{R}^n_+ \setminus \overline{L} = \operatorname{int}(\mathbb{R}^n_+ \setminus L)$ (with respect to the relative topology of \mathbb{R}^n_+), we have that $\mathbb{R}^n_+ \setminus D$ is also \mathbb{B} -convex.

Corollary 7.1. A closed \mathbb{B} -convex set is the intersection of the closed half-spaces in which it is contained.

In the previous sections we have shown that disjoint B-convex sets can be separated by an homogeneous B-measurable map; unfortunately, those maps do not have to be continuous. To achieve separation by continuous maps we have to use the larger class of B-measurable maps, in other words, if we drop the positive homogeneity property then continuous separation is possibe; this is a consequence of results from [1] and a Theorem of Van de Vel, Theorem 2.7 in [4], which is akin to the Tietze-Urysohn Theorem . For the reader's conveniance, and also because Van de Vel's Theorem is more general than needed here, we reproduce in a simplified form, and in the context of B-convexity, the main argument of the proof.

Theorem 7.2. If C_1 and C_2 are non-empty non-proximate \mathbb{B} -convex sets of \mathbb{R}^n_+ then there exists a continuous \mathbb{B} -measurable map $f : \mathbb{R}^n_+ \to [0,1]$ such that $f(C_1) = \{0\}$ and $f(C_2) = \{1\}$.

Proof. Let \mathbb{D} be the set of dyadic numbers strictly between 0 and 1. As in Theorem 7.1 let $\delta > 0$ such that $B_{\delta}[C_1] \cap B_{\delta}[C_2] = \emptyset$ and a half space L such that $B_{\delta}[C_1] \subset L$ and $B_{\delta}[C_2] \subset \mathbb{R}^n_+ \setminus L$. Put $L = H_{1/2}$; considering the $\delta/2$ neighbourhoods one can see that $(C_1, \mathbb{R}^n_+ \setminus H_{1/2})$ and $(H_{1/2}, C_2)$ are two pairs of non-proximate \mathbb{B} -convex sets. The initial procedure applied to the pair $(C_1, \mathbb{R}^n_+ \setminus H_{1/2})$ yields a half-space which we call $H_{1/4}$, that same procedure applied to the pair $(H_{1/2}, C_2)$ yields a half-space which we call $H_{3/4}$. By induction one obtains a family $\{H_d : d \in \mathbb{D}\}$ of half-spaces such that:

(1) $d \mapsto H_d$ is increasing.

(2) for all $d \in \mathbb{D}$, $(C_1, \mathbb{R}^n_+ \setminus H_d)$ and (H_d, C_2) are pairs of non-proximate B-convex sets.

(3) if $d_1 < d_2$ then $(H_{d_1}, \mathbb{R}^n_+ \setminus H_{d_2})$ is a pair of non-proximate B-convex sets. The map $f : \mathbb{R}^n_+ \to [0, 1]$ defined as follows has the required properties:

$$f(x) = \begin{cases} 1 & \text{if } x \notin \bigcup \{H_d : d \in \mathbb{D}\} \\ \inf \{d \in \mathbb{D} : x \in H_d\} & \text{otherwise.} \end{cases}$$

Theorem 7.2 improves part (3) of Theorem 5.1 in as much as the separation is done through a continuous map, but, on the other hand, we have much less information on the map, since we cannot expect a map taking its values in [0, 1] to be positively homogeneous. As a consequence of Theorem 7.2 we have again that closed B-convex sets are intersections of closed half-spaces and of open half-spaces.

Acknowledgement

The authors are grateful to the referee for his thorough reading of the manuscript.

References

- [1] W. Briec and C. Horvath, B-convexity, Optimization 53 (2004) 103-127.
- [2] J. Dugundji and A. Granas, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [3] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
- [4] M.L.J. van de Vel, Theory of Convex Structures, North Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
- [5] M.L.J. van de Vel, A selection theorem for topological convex structures, Trans. Amer. Math. Soc. 336 (1993) 463-496.

Manuscript received 21 June 2004 revised 27 October 2004 accepted for publication 29 October 2004

W. BRIEC

Université de Perpignan, Département d'Économie, 52 Ave. Paul Alduy, Perpignan 66860 Cedex, France E-mail address: briec@univ-perp.fr

C.D. HORVATH

Université de Perpignan, Département de Mathématiques, 52 Ave. Paul Alduy, Perpignan 66860 Cedex, France

E-mail address: horvathQuniv-perp.fr

A. Rubinov

University of Ballarat, School of Information Technology and Mathematical Sciences, Victoria, Australia E-mail address: a.rubinov@ballarat.edu.au