SEPARATION IN \mathbb{B}-CONVEXITY

W. Briec, C.D. Horvath and A. Rubinov
To Terry Rockafellar on his 70th birthday.

Abstract

A subset B of \mathbb{R}_{+}^{n} is \mathbb{B}-convex if for all $x_{1}, x_{2} \in B$ and all $t \in[0,1]$ one has $t x_{1} \vee x_{2} \in B$. These sets were first investigated in [1] where it was shown that Carathéodory, Radon and Helly like Theorems hold. In this work we establish separation and Hahn-Banach like Theorems for \mathbb{B}-convex sets.

Key words: \mathbb{B}-convexity, gauges, co-gauges, separation, \mathbb{B}-measurable maps
Mathematics Subject Classification: 46A22, 52A30, 52A99,06F30

1 Introduction

This paper continues the investigation of \mathbb{B}-convexity introduced in [1], more precisely, we establish geometric and functional Hahn-Banach like separation properties in \mathbb{B}-convexity. A subset B of \mathbb{R}_{+}^{n} is \mathbb{B}-convex if for all $x_{1}, x_{2} \in B$ and all $t \in[0,1]$ one has $t x_{1} \vee x_{2} \in B$; an easy induction shows that B is \mathbb{B}-convex if and only if, for all $x_{1}, \ldots, x_{m} \in B$ and all $t_{1}, \ldots, t_{m} \in[0,1]$ such that $\max \left\{t_{1}, \ldots, t_{m}\right\}=1$ one has $\bigvee_{i=1}^{m} t_{i} x_{i} \in B$, where \vee denotes the maximum with respect to partial order of \mathbb{R}_{+}^{n} associated to the positive cone, that is, the coordinatewise supremum. For x and y in $\mathbb{R}_{+}^{n}, x \leq y$ means $y-x \in \mathbb{R}_{+}^{n}$.

The first section deals with the Stone-Kakutani separation property (the algebraic HahnBanach Theorem) which, as is well known, is a consequence of the Pash-Peano Property. So, we show that the Pash-Peano Property holds in \mathbb{B}-convexity. For the reader's convenience, we give the (standard) proof of the Stone-Kakutani Theorem as well as the generalized Stone-Kakutani and Pash-Peano Theorems which are due, at least in the framework of abstract convexities, to Van de Vel [4].
\mathbb{B}-convex sets are studied through the properties of their Minkowski gauge. Of particular interest are the \mathbb{B}-convex sets whose complements are also \mathbb{B}-convex; those sets are called half-spaces (\mathbb{B}-half-spaces would be more precise, but since these half-spaces will always, and only, appear in conjunction with \mathbb{B}-convex sets the possiblity of confusion is minimal). Analytic and geometric separation theorems are proved for disjoint \mathbb{B}-convex sets. It is shown that a closed \mathbb{B}-convex set is always the intersection of the closed half-spaces in which it is contained. A family of open half-spaces such that all convex sets are intersection of members of that family is given; furthermore, it is shown that the family in question is minimal with respect to that property.

We use the following notation: $I=\{1, \ldots, n\} ; \mathbb{R}_{+}^{n}$ is the set of points with nonnegative coordinates and \mathbb{R}_{++}^{n} is its interior, the set of points with strictly positive coordinates; for
$x \in \mathbb{R}_{+}^{n}$ the i th coordinate of x is denoted by x_{i} and $I(x)=\left\{i: x_{i} \neq 0\right\}$. We denote by $\llbracket A \rrbracket$ the \mathbb{B}-convex hull of A, that is, the intersection of all the \mathbb{B}-convex subsets of \mathbb{R}_{+}^{n} containing A. The \mathbb{B}-convex hull of a finite set is a \mathbb{B}-polytope; we recall that a set C is \mathbb{B}-convex if and only if it contains all the \mathbb{B}-polytopes spanned by its finite subsets and that the union of an up-directed family of \mathbb{B}-convex sets is \mathbb{B}-convex.*

2 Algebraic Separation

The following lemma says that \mathbb{B}-convexity is join-hull commutative; this property will be used in the proof of the Pasch-Peano Property from which algebraic separation of disjoint \mathbb{B}-convex sets is a consequence.
Lemma 2.1. For all subsets S of \mathbb{R}_{+}^{n} and for all point p we have

$$
\llbracket S \cup\{p\} \rrbracket=\bigcup_{x \in \llbracket S \rrbracket} \llbracket x, p \rrbracket .
$$

Proof. One inclusion is clear; we prove the other one, and we assume that S is not empty. If $y \in \llbracket S \cup\{p\} \rrbracket$, we can assume that $y \neq p$ otherwise there is nothing to prove; then, there exist $x_{1}, \ldots, x_{k} \in S$ and $\eta_{1}, \ldots, \eta_{k+1} \in[0,1]$ such that $\max _{1 \leq i \leq k+1} \eta_{i}=1$ and $y=\eta_{1} x_{1} \vee \ldots \vee \eta_{k} x_{k} \vee \eta_{k+1} p$. Since $y \neq p$ we have $\max _{1 \leq i \leq k} \eta_{i} \neq 0$, let $\mu=\max _{1 \leq i \leq k} \eta_{i}$ and $\mu_{i}=\eta_{i} / \mu$ for $i=1, \ldots, k$. Then $x=\mu_{1} x_{1} \vee \ldots \vee \mu_{k} x_{k} \in \llbracket S \rrbracket$ and $y=\mu x \vee \eta_{k+1} p \in \llbracket x, p \rrbracket$ since $\max \left\{\mu, \eta_{k+1}\right\}=1$.

Proposition 2.1 (Pash-Peano). For all quintuple ($a, b_{1}, b_{2}, c_{1}, c_{2}$) of points of \mathbb{R}_{+}^{n} such that $c_{i} \in \llbracket a, b_{i} \rrbracket$ we have $\llbracket b_{1}, c_{2} \rrbracket \cap \llbracket b_{2}, c_{1} \rrbracket \neq \emptyset$.

Proof. We have to show that the following system of equations has a solution

$$
(\star)\left\{\begin{array}{l}
\eta_{1} c_{1} \vee \mu_{2} b_{2}=\eta_{2} c_{2} \vee \mu_{1} b_{1} \\
\max \left\{\eta_{1}, \mu_{2}\right\}=1 \\
\max \left\{\eta_{2}, \mu_{1}\right\}=1
\end{array}\right.
$$

Since $c_{i} \in \llbracket a, b_{i} \rrbracket$ we can write $c_{i}=\rho_{i} a \vee \alpha_{i} b_{i}$ with $\max \left\{\rho_{i}, \alpha_{i}\right\}=1$; a substitution in the first line of $(*)$ yields

$$
\left(\star_{2}\right) \quad\left(\eta_{1} \rho_{1}\right) a \vee\left(\eta_{1} \alpha_{1}\right) b_{1} \vee \mu_{2} b_{2}=\left(\eta_{2} \rho_{2}\right) a \vee\left(\eta_{2} \alpha_{2}\right) b_{2} \vee \mu_{1} b_{1}
$$

Given ρ_{i} and $\alpha_{i}, i=1,2$, one can easily solve (\star_{2}) for η_{i} and $\mu_{i}, i=1,2$ in the following way

$$
\left\{\begin{array}{llll}
(\sharp)_{1} & \eta_{1}=\left(\rho_{2} / \rho_{1}\right) \text { and } \eta_{2}=1 & \text { if } & \rho_{1}>\rho_{2} \\
(\sharp)_{2} & \eta_{1}=1 \text { and } \eta_{2}=\left(\rho_{1} / \rho_{2}\right) & \text { if } & \rho_{2}>\rho_{1} \\
(\sharp)_{3} & \eta_{1}=\eta_{2}=1 & \text { if } & \rho_{1}=\rho_{2} \\
(\sharp)_{4} & \mu_{i}=\eta_{i} \alpha_{i} & &
\end{array}\right.
$$

This solution of $\left(\star_{2}\right)$ is also a solution of (\star) if $\max \left\{\eta_{1}, \mu_{2}\right\}=\max \left\{\eta_{2}, \mu_{1}\right\}=1$; let us see that this is indeed the case. There are, formally, three cases to consider, namely $(\sharp)_{1},(\sharp)_{2}$ and $(\sharp)_{3}$. In the first case, $(\sharp)_{1}$, we have $\max \left\{\eta_{2}, \mu_{1}\right\}=\eta_{2}=1$ and $\max \left\{\rho_{2}, \alpha_{2}\right\}=1$ with $1 \geq \rho_{1}>\rho_{2} \geq 0$ from which we obtain $\alpha_{2}=1$ and $\mu_{2}=\eta_{2}=1$; we have shown that $\max \left\{\eta_{1}, \mu_{2}\right\}=1$. The second case, that is $(\sharp)_{2}$, is treated similarly; as for $(\sharp)_{3}$ there is nothing to prove since $\eta_{1}=\eta_{2}=1$.

[^0]Theorem 2.1 (The Stone-Kakutani Property). If C_{1} and C_{2} are disjoint \mathbb{B}-convex sets, then there exists a \mathbb{B}-convex set $D \subset \mathbb{R}_{+}^{n}$ such that $\mathbb{R}_{+}^{n} \backslash D$ is also \mathbb{B}-convex, $C_{1} \subset D$ and $C_{2} \subset \mathbb{R}_{+}^{n} \backslash D$.

Proof. Let \mathcal{Z} be the family of pairs of disjoint convex sets $\left(D_{1}, D_{2}\right)$ such that $C_{i} \subset D_{i}$ partially ordered by $\left(D_{1}, D_{2}\right) \subset\left(D_{1}^{\prime}, D_{2}^{\prime}\right)$ if $D_{i} \subset D_{i}^{\prime}$. The pair $\left(C_{1}, C_{2}\right)$ belongs to \mathcal{Z} and if $\mathcal{C}=\left\{\left(D_{1, \lambda}, D_{2, \lambda}\right): \lambda \in \Lambda\right\}$ is a chain in \mathcal{Z} then $\left(\bigcup_{\lambda \in \Lambda} D_{1, \lambda}, \bigcup_{\lambda \in \Lambda} D_{2, \lambda}\right) \in$ \mathcal{Z} since an up-directed union of \mathbb{B}-convex sets is \mathbb{B}-convex and, as can easily be seen, $\left(\bigcup_{\lambda \in \Lambda} D_{1, \lambda}\right) \bigcap\left(\bigcup_{\lambda \in \Lambda} D_{2, \lambda}\right)=\emptyset$; by Zorn's lemma there is a maximal element $\left(H_{1}, H_{2}\right)$ in \mathcal{Z}. Assume that there is a point a in $\mathbb{R}_{+}^{n} \backslash\left(H_{1} \bigcup H_{2}\right)$; from the maximality of the pair $\left(H_{1}, H_{2}\right)$ we have $\llbracket H_{1} \bigcup\{a\} \rrbracket \cap H_{2} \neq \emptyset$ and $\llbracket H_{2} \bigcup\{a\} \rrbracket \cap H_{1} \neq \emptyset$. Take a point c_{1} in the first set and a point c_{2} in the second set. By Lemma 2.1 there exists $b_{i} \in H_{i}$ such that $c_{i} \in \llbracket a, b_{i} \rrbracket$. By the Pash-Peano Property there exists a point u in $\llbracket b_{1}, c_{2} \rrbracket \cap \llbracket b_{2}, c_{1} \rrbracket$. From $b_{1}, c_{2} \in H_{1}$ and $b_{2}, c_{1} \in H_{2}$ we obtain $u \in H_{1} \cap H_{2}$, which is impossible since the pair $\left(H_{1}, H_{2}\right)$ is in \mathcal{Z}.

Corollary 2.1 (Generalized Pash-Peano Property). If $a, b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{m}$ are points in \mathbb{R}_{+}^{n} such that $c_{i} \in \llbracket a, b_{i} \rrbracket$ for all $i=1, \ldots m$ then $\bigcap_{i=1}^{m} \llbracket B_{i} \cup\left\{c_{i}\right\} \rrbracket \neq \emptyset$ where $B_{i}=\left\{b_{j}: j \neq i\right\}$.

Proof. For $m=1$ there is nothing to prove, for $m=2$ we have the Pash-Peano Property; let us assume that $m \geq 3$ and that the conclusion has been established for values less or equal to $m-1$. Let $B_{i}^{\prime}=B_{i} \backslash\left\{b_{m}\right\}$; by the induction hypothesis there is a point p in $\bigcap_{i=1}^{m-1} \llbracket B_{i}^{\prime} \cup\left\{c_{i}\right\} \rrbracket \subset \bigcap_{i=1}^{m-1} \llbracket B_{i} \cup\left\{c_{i}\right\} \rrbracket ;$ since $b_{m} \in B_{i}$ for $i \leq m-1$ we have $\llbracket p, b_{m} \rrbracket \subset$ $\bigcap_{i=1}^{m-1} \llbracket B_{i} \cup\left\{c_{i}\right\} \rrbracket$. If $\llbracket p, b_{m} \rrbracket \cap \llbracket B_{m} \cup\left\{c_{m}\right\} \rrbracket \neq \emptyset$ the proof is over, otherwise, by the StoneKakutani Property, there exists a \mathbb{B}-convex set D whose complement in \mathbb{R}_{+}^{n} is also \mathbb{B}-convex and such that $\llbracket p, b_{m} \rrbracket \subset D$ and $\llbracket B_{m} \cup\left\{c_{m}\right\} \rrbracket \cap D=\emptyset$. From $c_{m} \in \llbracket a, b_{m} \rrbracket, b_{m} \in D$ and $c_{m} \in \mathbb{R}_{+}^{n} \backslash D$ we see that $a \in \mathbb{R}_{+}^{n} \backslash D$ and consequently $\bigcup_{i \neq m} \llbracket a, b_{i} \rrbracket \subset \mathbb{R}_{+}^{n} \backslash D$ which implies $c_{i} \in \mathbb{R}_{+}^{n} \backslash D$ for $i \neq m$. For $i \neq m$ we have $B_{i}^{\prime} \subset B_{m}$ and therefore $\llbracket B_{i}^{\prime} \cup\left\{c_{i}\right\} \rrbracket \subset \mathbb{R}_{+}^{n} \backslash D$ which yields the obvious contradiction $p \notin D$.

Let us call half-spaces ${ }^{\dagger}$ those \mathbb{B}-convex subsets of \mathbb{R}_{+}^{n} whose complement is also \mathbb{B} convex.

Proposition 2.2 (Generalized Stone-Kakutani). If C_{1}, \ldots, C_{m} are \mathbb{B}-convex subsets of \mathbb{R}_{+}^{n} such that $\bigcap_{i=1}^{m} C_{i}=\emptyset$, then there exists half-spaces D_{1}, \ldots, D_{m} such that $\bigcap D_{i}=\emptyset$, $\bigcup D_{i}=\mathbb{R}_{+}^{n}$ and, for all $i=1, \ldots, m, C_{i} \subset D_{i}$.

Proof. Let \mathcal{Z} be the set of m-tuples $\left(D_{1}, \ldots, D_{m}\right)$ of \mathbb{B}-convex subsets of \mathbb{R}_{+}^{n} such that $\bigcap_{i=1}^{m} D_{i}=\emptyset$ and, for all $i=1, \ldots, m, C_{i} \subset D_{i}$, partially ordered in the obvious way, that is, $\left(D_{1}, \ldots, D_{m}\right)$ is greater than $\left(D_{1}^{\prime}, \ldots, D_{m}^{\prime}\right)$ if, for all $i, D_{i} \supseteq D_{i}^{\prime}$. Using Zorn's Lemma we find a maximal element $\left(H_{1}, \ldots, H_{m}\right)$. For each $j=1, \ldots, m$ there is, by the Stone-Kakutani Property, a half-space D_{j} containing H_{j} which does not intersect $\bigcap_{i \neq j} H_{i}$; the n-tuple obtained by replacing H_{j} by D_{j} in $\left(H_{1}, \ldots, H_{m}\right)$ is greater than $\left(H_{1}, \ldots, H_{m}\right)$; by maximality, $H_{j}=D_{j}$. We have to show that $\bigcup_{i=1}^{m} H_{i}=\mathbb{R}_{+}^{n}$; for a contradiction, assume that this is not the case and let $a \in \mathbb{R}_{+}^{n} \backslash \bigcup_{i=1}^{m} H_{i}$. By maximality of $\left(H_{1}, \ldots, H_{m}\right)$, there exists, for all j, a point c_{j} in $\llbracket H_{j} \cup\{a\} \rrbracket \bigcap\left(\bigcap_{i \neq j} H_{i}\right)$ and therefore a point $b_{j} \in H_{j}$ such that $c_{j} \in \llbracket b_{j} \cup\{a\} \rrbracket \cap\left(\bigcap_{i \neq j} H_{i}\right)$. From the generalized Pash-Peano Property we have

[^1]$\bigcap_{j=1}^{m} \llbracket\left\{c_{i}: i \neq j\right\} \cup\left\{b_{j}\right\} \rrbracket \neq \emptyset$; we have reached a contradiction since $\llbracket\left\{c_{i}: i \neq j\right\} \cup\left\{b_{j}\right\} \rrbracket \subset$ H_{j}.

3 Gauges and Co-Gauges

We need the following definitions and results (see [3] for details). A set $U \subset \mathbb{R}_{+}^{n}$ is called radiant if $(x \in U, t \in] 0,1])$ implies $t x \in U$. A radiant set containing 0 is starshaped at 0 . A set $V \subset \mathbb{R}_{+}^{n}$ is called co-radiant if $0 \notin V$ and $(x \in V, t \geq 1)$ implies $t x \in V$. The Minkowski gauge μ_{U} of the radiant set U is defined by

$$
\mu_{U}(x)=\inf \{\lambda \in] 0,+\infty[: x \in \lambda U\}, \quad x \in \mathbb{R}_{+}^{n}
$$

The Minkowski co-gauge ν_{V} of the co-radiant set V is defined by

$$
\nu_{V}(x)=\sup \{\lambda \in] 0,+\infty[: x \in \lambda V\}, \quad x \in \mathbb{R}_{+}^{n}
$$

If U is a radiant set then $V=\mathbb{R}_{+}^{n} \backslash U$ is co-radiant and $\nu_{V}=\mu_{U}$. If V is co-radiant then $U=\mathbb{R}_{+}^{n} \backslash V$ is radiant and $\mu_{U}=\nu_{V}$.

For each $x \neq 0$ consider the ray $R_{x}=\{\lambda x: \lambda>0\}$. Let U be a radiant set. It follows from the definition that $\mu_{U}(0)=0$. If $x \neq 0$ then

$$
\begin{equation*}
\mu_{U}(x)=0 \Longleftrightarrow R_{x} \subset U, \quad \mu_{U}(x)=+\infty \Longleftrightarrow R_{x} \cap U=\emptyset \tag{3.1}
\end{equation*}
$$

Let V be a co-radiant set. Then $\nu_{V}(0)=0$. If $x \neq 0$ then

$$
\begin{equation*}
\nu_{V}(x)=+\infty \Longleftrightarrow R_{x} \subset V, \quad \nu_{V}(x)=0 \Longleftrightarrow R_{x} \cap V=\emptyset \tag{3.2}
\end{equation*}
$$

Note that both μ_{U} and ν_{V} are positively homogeneous functions. ${ }^{\ddagger}$
A set $U \subset \mathbb{R}^{n}$ is called radially closed, or closed-along-rays in the terminology of [3], if

$$
\begin{equation*}
\left(x \in \mathbb{R}_{+}^{n}, \lambda_{k}>0, \lambda_{k} x \in U, k=1,2, \ldots, \lambda_{k} \rightarrow \lambda\right) \Longrightarrow \lambda x \in U \tag{3.3}
\end{equation*}
$$

A radiant set U is radially closed if and only if $U=\left\{x \in \mathbb{R}_{+}^{n}: \mu_{U}(x) \leq 1\right\}$. A co-radiant set V is radially closed if and only if $V=\left\{x \in \mathbb{R}_{+}^{n}: \nu_{V}(x) \geq 1\right\}$.

A set U is called radially open (or open-along-rays) if its complement $\mathbb{R}_{+}^{n} \backslash U$ is radially closed. It is easy to check that a radiant set U (co-radiant set V, respectively) is radially open if and only if $U=\left\{x \in \mathbb{R}_{+}^{n}: \mu_{U}(x)<1\right\}\left(V=\left\{x \in \mathbb{R}_{+}^{n}: \nu_{V}(x)>1\right\}\right.$, respectively $)$.

A set $U \subset \mathbb{R}_{+}^{n}$ is called an upper semilattice if $(x, y \in U \Longrightarrow x \vee y \in U)$. Note that each \mathbb{B}-convex set is an upper semilattice.

Proposition 3.1. A subset of \mathbb{R}_{+}^{n} containing 0 is \mathbb{B}-convex if and only if it is an upper semilattice starshaped at 0 . A set which is radiant is \mathbb{B}-convex if and only if it is an upper semilattice.

Proof. If B is \mathbb{B}-convex then $x \vee y \in B$ for all x and y in B; if $0 \in B$ then $t x=0 \vee t x \in B$ for all $x \in B$ and all $t \in[0,1]$. Reciprocally, if B is starshaped at 0 (resp. radiant) then $t x \in B$ if $x \in B$ and $t \in[0,1]$ (resp. $t \in] 0,1]$) and, if B is also an upper semilattice of \mathbb{R}_{+}^{n} then $t x \vee y \in B$ for all x and y in B and $t \in[0,1]$.

Lemma 3.1. (1) Let $U \subset \mathbb{R}_{+}^{n}$ be a radiant set.

[^2](a) If U is \mathbb{B}-convex then
\[

$$
\begin{equation*}
\mu_{U}(t x \vee y) \leq \max \left\{\mu_{U}(x), \mu_{U}(y)\right\} \text { for all } x, y \in \mathbb{R}_{+}^{n}, t \in[0,1] \tag{3.4}
\end{equation*}
$$

\]

(b) If U is radially closed or radially open and (3.4) holds then U is \mathbb{B}-convex.
(2) Let $V \subset \mathbb{R}_{+}^{n}$ be a co-radiant set.
(a) If V is \mathbb{B}-convex then

$$
\begin{equation*}
\nu_{V}(t x \vee y) \geq \min \left\{\nu_{V}(x), \nu_{V}(y)\right\} \quad \text { for all } \quad x, y \in \mathbb{R}_{+}^{n}, t \in[0,1] \tag{3.5}
\end{equation*}
$$

(b) If V is radially closed or radially open and (3.5) holds then V is \mathbb{B}-convex.

Proof. (1) Let U be a radiant \mathbb{B}-convex set. Consider points $x, y \in \mathbb{R}_{+}^{n}$ and $t \in[0,1]$. Assume for the sake of definiteness that $\mu_{U}(t x) \leq \mu_{U}(y)<+\infty$. If $r>\mu_{U}(y)$ then $t x \in r U, y \in r U$. From $r^{-1}(t x \vee y)=r^{-1} t x \vee r^{-1} y$ we have $r^{-1}(t x \vee y) \in U$; this shows that (3.4) holds. If either $\mu_{U}(t x)=+\infty$ or $\mu_{U}(y)=+\infty$ then (3.4) is obvious. Let U be radiant. If U is radially closed, then $U=\left\{x \in \mathbb{R}_{+}^{n}: \mu_{U}(x) \leq 1\right\}$, if U is radially open then $U=\left\{x \in \mathbb{R}_{+}^{n}: \mu_{U}(x)<1\right\}$. In both cases (3.4) implies that U is a \mathbb{B}-convex set.
(2) Let V be a co-radiant and \mathbb{B}-convex set. Consider points $x, y \in V$ and a number $t \in[0,1]$. Assume for the sake of definiteness that $+\infty \geq \nu_{V}(t x) \geq \nu_{V}(y)>0$. Let $0<r<\nu_{V}(y) \leq \nu_{V}(t y)$. Since V is co-radiant it follows that $t x \in r V, y \in r V$. \mathbb{B}-convexity of V implies \mathbb{B}-convexity of $r V$, so $(t x \vee y) \in r V$. This means that $\nu_{V}(t x \vee y) \geq \nu_{V}(y)$, hence (3.5) holds. If either $\nu_{V}(x)=0$ or $\nu_{V}(y)=0$ then (3.5) is obvious. If V is either radially closed or open and (3.5) holds then clearly V is a \mathbb{B}-convex set.

Corollary 3.1. If a radiant set $U \subset \mathbb{R}_{+}^{n}$ is \mathbb{B}-convex then

$$
\begin{equation*}
\mu_{U}(x \vee y) \leq \max \left\{\mu_{U}(x), \mu_{U}(y)\right\} \quad \text { for all } \quad x, y \in \mathbb{R}_{+}^{n} \tag{3.6}
\end{equation*}
$$

If U is radiant, either radially closed or radially open, and (3.6) holds then U is \mathbb{B}-convex.
Proposition 3.2. (1) Let B be a half-space containing 0. Then, for all $x, y \in \mathbb{R}_{+}^{n}$ and $t \in[0,1]$,

$$
\begin{equation*}
\min \left\{\mu_{B}(x), \mu_{B}(y)\right\} \leq \mu_{B}(t x \vee y) \leq \max \left\{\mu_{B}(x), \mu_{B}(y)\right\} \tag{3.7}
\end{equation*}
$$

If B is \mathbb{B}-convex, either radially closed or open and the left-hand inequality in (3.7) holds then B is a half-space.
(2) Let B be a half-space that does not contain 0 . Then, for all $x, y \in \mathbb{R}_{+}^{n}$ and $t \in[0,1]$,

$$
\begin{equation*}
\min \left\{\nu_{B}(x), \nu_{B}(y)\right\} \leq \nu_{B}(t x \vee y) \leq \max \left\{\nu_{B}(x), \nu_{B}(y)\right\} \tag{3.8}
\end{equation*}
$$

If B is \mathbb{B}-convex, either radially closed or open and the right-hand inequality in (3.8) holds then B is a half-space.

Proof. (1) Let B be a half-space and $0 \in B$. Let $x, y \in \mathbb{R}_{+}^{n}$ and $t \in[0,1]$. Since B is \mathbb{B} convex and radiant it follows from (3.4) that the right-hand inequality in (3.7) holds. Since $C=\mathbb{R}_{+}^{n} \backslash B$ is \mathbb{B}-convex and co-radiant it follows from (3.5) that

$$
\nu_{C}(t x \vee y) \geq \min \left\{\nu_{C}(x), \nu_{C}(y)\right\}
$$

From $\mu_{B}=\nu_{C}$ we obtain the left-hand inequality in (3.7).
Let B be \mathbb{B}-convex and radially closed and $C=\mathbb{R}_{+}^{n} \backslash B$. Then C is radially open. The left-hand inequality in (3.7) can be presented as $\min \left\{\nu_{C}(x), \nu_{C}(y)\right\} \leq \nu_{C}(t x \vee y)$. Applying Lemma 3.1 we conclude that C is \mathbb{B}-convex, hence B is a half-space. A similar argument can be used if B is radially open.
(2) Let B be a half-space and $0 \notin B$. Let $x, y \in \mathbb{R}_{+}^{n}$ and $t \in[0,1]$. Since B is \mathbb{B}-convex and co-radiant it follows from (3.5) that the left-hand inequality in (3.8) holds. Since $C=\mathbb{R}_{+}^{n} \backslash B$ is \mathbb{B}-convex and radiant it follows from (3.4) that

$$
\mu_{C}(t x \vee y) \leq \max \left\{\mu_{C}(t x), \mu_{C}(y)\right\}
$$

This implies the right-hand inequality in (3.8).
Let B be \mathbb{B}-convex and radially closed and $C=\mathbb{R}_{+}^{n} \backslash B$. Then C is radially open. The right-hand inequality in (3.8) can be presented as $\mu_{C}(t x \vee y) \leq \max \left\{\mu_{C}(x), \mu_{C}(y)\right\}$. Applying Lemma 3.1 we conclude that C is \mathbb{B}-convex, hence B is a half-space. A similar argument can be used if B is radially open.

Corollary 3.2. Let $B \subset \mathbb{R}_{+}^{n}$ be a conic set, that is $(x \in B, \lambda \geq 0) \Longrightarrow \lambda x \in B$. Then

$$
\mu_{B}(x)=\nu_{C}(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in B \tag{3.9}\\
+\infty & \text { if } x \in C
\end{array}\right.
$$

where $C=\mathbb{R}_{+}^{n} \backslash B$. If B is an upper semilattice then B is a half-space.
Indeed, since B and C are both radiant and co-radiant sets we can consider μ_{B} and ν_{C} and (3.9) follows from (3.1) and (3.2).

Assume that B is an upper semilattice. Then for each $x, y \in B$ and $t \in[0,1]$ we have $\mu_{B}(x)=\mu_{B}(y)=\mu_{B}(t x \vee y)=0$. It follows from Proposition 3.2 that B is a half space.

Gauges and co-gauges are defined for arbitrary radiant and co-radiant sets; if those sets are also \mathbb{B}-convex then the gauge and the co-gauge have additional algebraic properties but the \mathbb{B}-convexity structure has in itself little bearing on the continuity properties. For the sake of completeness we state the following result which follows from Propositions 5.2 and 5.10 of [3].

Proposition 3.3. Let U be a radially closed \mathbb{B}-convex containing 0 , then
(1) μ_{U} is lower semicontinuous if and only U is closed;
(2) μ_{U} is continuous if and only if U is closed, 0 is in the relative interior of U (with respect to \mathbb{R}_{+}^{n}) and, for all $x \in \mathbb{R}_{+}^{n}, R_{x}$ does not intersect the boundary of U more than once.

4 B-Measurable Maps and Half-Spaces

A map $f: \mathbb{R}_{+}^{n} \rightarrow[0, \infty]$ is called \mathbb{B}-measurable if, for all $x, y \in \mathbb{R}_{+}^{n}$ and $t \in[0,1]$,

$$
\begin{equation*}
\min \{f(x), f(y)\} \leq f(t x \vee y) \leq \max \{f(x), f(y)\} \tag{4.10}
\end{equation*}
$$

A \mathbb{B}-measurable map is characterized by the fact that inverse images of intervals are \mathbb{B} convex; it follows that level sets $\left\{x \in \mathbb{R}_{+}^{n}: f(x)=\lambda\right\}$ of \mathbb{B}-measurable maps are \mathbb{B}-convex sets, [1]. The gauge of a half-space containing 0 and the co-gauge of a half-space that does not contain 0 are positively homogeneous \mathbb{B}-measurable maps. One can easily check that for an homogeneous \mathbb{B}-measurable map $f: \mathbb{R}_{+}^{n} \rightarrow[0, \infty]$ and for all $\lambda>0,\left\{x \in \mathbb{R}_{+}^{n}: f(x)<\lambda\right\}$
is a radially open half-space containing $0,\left\{x \in \mathbb{R}_{+}^{n}: f(x) \leq \lambda\right\}$ is a radially closed half-space and $\left\{x \in \mathbb{R}_{+}^{n}: f(x)=0\right\}$ is a conic set and an upper semilattice of \mathbb{R}_{+}^{n}.

A subset $\left\{u_{1}, \ldots, u_{m}\right\}$ of \mathbb{R}_{+}^{n} is a spanning set if, for all $x \in \mathbb{R}_{+}^{n}$ there exist positive real numbers r_{1}, \ldots, r_{m} such that $x=r_{1} u_{1} \vee \ldots \vee r_{m} u_{m}$. It is easy to see that for a minimal spanning set $\left\{u_{1}, \ldots, u_{m}\right\}$ we have $m=n$ and, up to relabeling, $u_{k}=t_{k} e_{k}$ where e_{1}, \ldots, e_{n} are the vectors of the canonical bases of \mathbb{R}^{n} and $t_{k}>0$. We consider only spanning sets of this form later on.

Lemma 4.1. Let $f: \mathbb{R}_{+}^{n} \rightarrow[0, \infty]$ be a positively homogeneous \mathbb{B}-measurable map, then
(1) f takes only finite values if and only if there exists a spanning set $\left\{u_{1}, \ldots, u_{m}\right\}$ such that $\max \left\{f\left(u_{1}\right), \ldots, f\left(u_{m}\right)\right\}<+\infty$;
(2) $\operatorname{dom} f:=\left\{x \in \mathbb{R}_{+}^{n}: f(x)<+\infty\right\},\left\{x \in \mathbb{R}_{+}^{n}: f(x)=+\infty\right\} \cup\{0\}$ and $\left\{x \in \mathbb{R}_{+}^{n}: f(x)=0\right\}$ are conic upper semilattices;
(3) if $\operatorname{dom}(f)=\mathbb{R}_{+}^{n}$ then
(a) if $\min \{f(x), f(y)\} \neq 0$ then $f(x \vee y)=\max \{f(x), f(y)\}$;
(b) if $\left\{u \in \mathbb{R}_{+}^{n}: f(u)=0\right\}=\{0\}$ then there exists a unique $a \in \mathbb{R}_{++}^{n}$ such that, for all $x \in \mathbb{R}_{+}^{n}, f(x)=\max _{1 \leq i \leq n}\left\{x_{i} a_{i}\right\} ;$
(c) if $\left\{u \in \mathbb{R}_{+}^{n}: f(u)=0\right\} \neq\{0\}$ then there exists a partition of $I=\{1, \ldots, n\}$ into two subsets I^{0} and I^{+}and there exists a unique $a \in \mathbb{R}_{+}^{n}$ such that
(α) $f\left(e_{i}\right)=0$ if and only if $i \in I^{0}$ and $a_{i}=0$ if $i \in I^{0}$;
(β) if $f(x) \neq 0$ then $f(x)=\max _{i \in I}\left\{a_{i} x_{i}\right\}=\max _{i \in I^{+}}\left\{a_{i} x_{i}\right\}$.
Proof. Part (1) follows from $f\left(r_{1} u_{1} \vee \ldots \vee r_{m} u_{m}\right) \leq \max _{1 \leq i \leq m}\left\{r_{i} f\left(u_{i}\right)\right\}$ and part (2) from (4.10) and the fact that $f(x)=t^{-1} f(t x)$ if $f(x) \neq+\infty$ and $t>0$.

Assume that f does not take the value $+\infty$ and let x and y in \mathbb{R}_{+}^{n} such that $0<f(x) \leq$ $f(y)$; then $f(x)^{-1} x$ and $f(y)^{-1} y$ belong to $L(f ; 1)=\left\{u \in \mathbb{R}_{+}^{n}: f(u)=1\right\}$ which is \mathbb{B}-convex since f is \mathbb{B}-measurable, and therefore

$$
\left(f(x) f(y)^{-1}\right) f(x)^{-1} x \vee f(y)^{-1} y \in L(f ; 1)
$$

that is $f\left(f(y)^{-1}(x \vee y)\right)=1$ or $f(x \vee y)=f(y)=\max \{f(x), f(y)\}$. By induction we can show that if $\min _{1 \leq j \leq m} f\left(x_{j}\right)>0$ then

$$
\begin{equation*}
f\left(x_{1} \vee \ldots \vee x_{m}\right)=\max \left\{f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right\} \tag{4.11}
\end{equation*}
$$

If $f\left(e_{i}\right)>0$ for all $i \in I$ then due to (4.11) and positive homogeneity of f we have for all $x \in \mathbb{R}_{+}^{n}$:

$$
f(x)=\max _{\left\{i: x_{i} \neq 0\right\}}\left\{x_{i} f\left(e_{i}\right)\right\}=\max _{1 \leq i \leq n}\left\{x_{i} f\left(e_{i}\right)\right\} ;
$$

consequently, if $L(f ; 0)=\left\{u \in \mathbb{R}_{+}^{n}: f(u)=0\right\}$ is not $\{0\}$ then there is at least one index i for which $f\left(e_{i}\right)=0$. Let $I^{0}=\left\{i: f\left(e_{i}\right)=0\right\}$ and $I^{+}=\left\{i: f\left(e_{i}\right) \neq 0\right\}$ and for $x \in \mathbb{R}_{+}^{n}$ let $x_{+}=\bigvee_{i \in I^{+}} x_{i} e_{i}$ and $x_{0}=\bigvee_{i \in I^{0}} x_{i} e_{i}$; from the previous computations we have $f\left(x_{+}\right)=\max _{i \in I^{+}}\left\{x_{i} f\left(e_{i}\right)\right\}=\max _{i \in I}\left\{x_{i} f\left(e_{i}\right)\right\}$. Since f is \mathbb{B}-measurable and positively homogenous we have

$$
0 \leq f\left(x_{0}\right) \leq \max _{i \in I^{0}}\left\{f\left(x_{i} e_{i}\right)\right\}=\max _{i \in I^{0}}\left\{x_{i} f\left(e_{i}\right)\right\}=0
$$

and therefore $f\left(x_{0}\right)=0$; from $x=x_{+} \vee x_{0}$ we obtain $f(x) \leq \max \left\{f\left(x_{+}\right), f\left(x_{0}\right)\right\}=f\left(x_{+}\right)$. If $f(x) \neq 0$ we obtain, taking into account that $x=x \vee x_{+}$,

$$
f(x)=\max \left\{f(x), f\left(x_{+}\right)\right\}=f\left(x_{+}\right)=\max _{i \in I}\left\{x_{i} f\left(e_{i}\right)\right\}
$$

If $f(x)=\max _{i \in I}\left\{x_{i} f\left(e_{i}\right)\right\}$ for all x such that $f(x) \neq 0$ then $f\left(e_{i}\right)=a_{i}$ for all indices i such that $f\left(e_{i}\right) \neq 0$.

Corollary 4.1. If $U \subset \mathbb{R}_{+}^{n}$ is a half-space containing 0 in its relative interior and no halfrays then there exists a unique $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}_{++}^{n}$ such that $\mu_{U}(x)=\max _{1 \leq i \leq n}\left\{a_{i} x_{i}\right\}$. If U is closed and bounded then $\bar{x}=\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)$ is the maximal element of U and $U=\{x \in$ $\left.\mathbb{R}_{+}^{n}: x \leq \bar{x}\right\} ; \bar{x}$ is also the unique point of U where the map $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}+\ldots+x_{n}$ attains its maximum value.

Proof. Since 0 is in the relative interior of U, the domain of μ_{U} is \mathbb{R}_{+}^{n} and if $\mu_{U}(x)=0$ then $x=0$ since there are no half-rays in U. This proves the first part. To prove the second part notice first that $U=\left\{x \in \mathbb{R}_{+}^{n}: \mu_{U}(x) \leq 1\right\}$, since U is closed and radial, and therefore, from $\max _{1 \leq i \leq n}\left\{\bar{x}_{i} a_{i}\right\}=1$, we have $\bar{x} \in U$. The inequality $y \leq \bar{x}$, for $y \in \mathbb{R}_{+}^{n}$, is clearly equivalent to $y_{i} a_{i} \leq 1$ for all i, this proves the second part. If $y \leq \bar{x}$ then $y_{1}+\ldots+y_{n} \leq \bar{x}_{1}+\ldots+\bar{x}_{n}$.

Corollary 4.2. A compact nonempty \mathbb{B}-convex set B has a unique maximal element \bar{x}, it is the unique point of B where the map $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}+\ldots+x_{n}$ attains its maximum value. If $f: B \rightarrow \mathbb{R}_{+}$is \mathbb{B}-measurable and positevely homogeneous then either $f(\bar{x})=0$ or $f(\bar{x})=\max \{f(x): x \in B\}$.

Proof. If $y \in B$ then $y \vee \bar{x} \in B$ and therefore $\sum_{i=1}^{n} \max \left\{y_{i}, \bar{x}_{i}\right\} \leq \sum_{i=1}^{n} \bar{x}_{i}$, this shows that $y_{i} \leq \bar{x}_{i}$. If $f: B \rightarrow \mathbb{R}_{+}$is \mathbb{B}-measurable and $f(\bar{x}) \neq 0$ then, for all $y \in B, \min \{f(\bar{x}), f(y)\} \neq$ 0 and therefore $f(\bar{x} \vee y)=\max \{f(\bar{x}), f(y)\}$. But $\bar{x} \vee y=\bar{x}$, therefore $f(\bar{x}) \geq f(y)$.

5 Separation of \mathbb{B}-Convex Sets by a Map

Let us say that two sets A and B are
(a) weakly separated by a map f if $\sup _{x \in A} f(x) \leq \inf _{x \in B} f(x)$ or $\sup _{x \in B} f(x) \leq$ $\inf _{x \in A} f(x)$;
(b) separated by a map f if there exists a real number r such that either $\forall(x, y) \in A \times B$ $f(x)<r<f(y)$ or $\forall(x, y) \in A \times B \quad f(y)<r<f(x) ;$
(c) strictly separated by a map f if $\sup _{x \in A} f(x)<\inf _{x \in B} f(x)$ or $\sup _{x \in B} f(x)<$ $\inf _{x \in A} f(x)$.

The following lemma will be used in the examination of separation properties of \mathbb{B}-convex sets.

Lemma 5.1. If C_{1} and C_{2} are \mathbb{B}-convex sets then $\llbracket C_{1} \cup C_{2} \rrbracket=\left\{s x \vee t y:(x, y) \in C_{1} \times C_{2}\right.$ and $s \geq 0, t \geq 0, \max \{s, t\}=1\}$.

Proof. One inclusion being obvious, we have to show that

$$
C=\left\{s x \vee t y:(x, y) \in C_{1} \times C_{2} \text { and } s \geq 0, t \geq 0, \max \{s, t\}=1\right\}
$$

is \mathbb{B}-convex. Let $u_{i}=s_{i} x_{i} \vee t_{i} y_{i}, i=1,2$, with $x_{i} \in C_{1}, y_{i} \in C_{2}, 0 \leq \min \left\{s_{i}, t_{i}\right\}$, $\max \left\{s_{i}, t_{i}\right\}=1$ and let $t \in[0,1]$. Then

$$
\max \left\{\max \left\{t s_{1}, s_{2}\right\}, \max \left\{t t_{1}, t_{2}\right\}\right\}=\max \left\{t s_{1}, t t_{1}, s_{2}, t_{2}\right\}=1
$$

Let $\alpha=\max \left\{t s_{1}, s_{2}\right\}$ and $\beta=\max \left\{t t_{1}, t_{2}\right\}$; if $\alpha=0$ then either $s_{1}=s_{2}=0$, in which case $t_{1}=t_{2}=1$ and $t u_{1} \vee u_{2}=t y_{1} \vee y_{2} \in C_{2} \subset C$ or $t=s_{2}=0$, in which case $t u_{1} \vee u_{2}=u_{2}=y_{2} \in C_{2} \subset C$; similarly, if $\beta=0$ we have $t u_{1} \vee u_{2} \in C_{1} \subset C$. We can now assume that $\alpha \neq 0$ and $\beta \neq 0$; Then $x=\left(\alpha^{-1} t s_{1}\right) x_{1} \vee\left(\alpha^{-1} s_{2}\right) x_{2} \in C_{1}$ and $y=\left(\beta^{-1} t t_{1}\right) y_{1} \vee\left(\beta^{-1} t_{2}\right) y_{2} \in C_{2}$, therefore $t u_{1} \vee u_{2}=\alpha x \vee \beta y \in C$.

Theorem 5.1. (1) Two disjoint \mathbb{B}-convex sets C_{1} and C_{2} can be weakly separated by a \mathbb{B}-measurable positively homogenous map.
(2) Furthermore, if there exists a vector $u \in \mathbb{R}_{++}^{n}$ such that $C_{1} \cup C_{2} \subset \mathbb{R}_{+}^{n}+u$, then C_{1} and C_{2} can be weakly separated by a finite \mathbb{B}-measurable positively homogenous map.
(3) If, on top of the conditions from (1) and (2) above, we also have $\inf _{(x, y) \in C_{1} \times C_{2}} \| x-$ $y \|_{\infty}>0$, then C_{1} and C_{2} can be separated by a finite \mathbb{B}-measurable positively homogenous map.
(4) Under all the previous assumptions, if either C_{1} or C_{2} is bounded then they can be strictly separated by a finite \mathbb{B}-measurable positively homogenous map.

Proof. (1). Let $C_{i}, i=1,2$ be disjoint \mathbb{B}-convex sets of \mathbb{R}_{+}^{n}; by Theorem 2.1 there exists a half-space B such that $C_{1} \subset B$ and $C_{2} \subset \mathbb{R}_{+}^{n} \backslash B$, where, without loss of generality, we can assume that $0 \in B$. Then, for all $x \in C_{1}, \mu_{B}(x) \leq 1$ and for all $x \in C_{2}, 1 \leq \mu_{B}(x)$.
(2) First, if $C_{1} \cup C_{2} \subset \mathbb{R}_{+}^{n}+u$ with $u \in \mathbb{R}_{++}^{n}$ then $C_{1} \cup C_{2} \subset \mathbb{R}_{++}^{n}+2^{-1} u$; we can therefore assume that $C_{1} \cup C_{2} \subset \mathbb{R}_{++}^{n}+u$. Let $B_{\delta}=\left\{x \in \mathbb{R}_{+}^{n}:\|x\|_{\infty} \leq \delta\right\}$ and assume that

$$
\llbracket B_{\delta} \cup C_{1} \rrbracket \cap C_{2} \neq \emptyset \quad \text { for all } \quad \delta>0
$$

By Lemma 5.1 there are two possibilities;
(a) either there exists a sequence of elements of the form $x_{k} \vee y_{k} \in C_{2}$ with $\left\|x_{k}\right\|_{\infty} \leq \delta_{k}$, $y_{k} \in C_{1}$ and δ_{k} decreases to 0 , or
(b) there exists a sequence of elements of the form $x_{k} \vee t_{k} y_{k} \in C_{2}$ with x_{k} and y_{k} as in (a) and $t_{k} \in[0,1]$.

In the first case, since $u \in \mathbb{R}_{++}^{n}$ and $u \leq y_{k}$, we have $x_{k} \vee y_{k}=y_{k}$ if k is large enough; we would then have $y_{k} \in C_{1} \cap C_{2}$, which is impossible; (b) is therefore the case. Let $u_{k}=x_{k} \vee t_{k} y_{k}$; since $u_{k} \in C_{2}$ we have $u_{k}=u \vee u_{k}$ or, $u_{k}=\left(u \vee x_{k}\right) \vee t_{k} y_{k}$. From $u \in \mathbb{R}_{++}^{n}$ we have $u \vee x_{k}=u$ for k large enough, therefore, $u_{k}=u \vee t_{k} y_{k}$, but $u_{k} \in \mathbb{R}_{++}^{n}+u$ and consequently, $u_{k}=t_{k} y_{k}$ for k large enough. In conclusion, we have shown that, if, for all $\delta>0, \llbracket B_{\delta} \cup C_{1} \rrbracket \cap C_{2} \neq \emptyset$ then there exists $y \in C_{1}$ and $\left.t \in\right] 0,1\left[\right.$ such that $t y \in C_{2}$. Let us see that we cannot have for all $\delta>0, \llbracket B_{\delta} \cup C_{1} \rrbracket \cap C_{2} \neq \emptyset$ and $\llbracket B_{\delta} \cup C_{2} \rrbracket \cap C_{1} \neq \emptyset$. If this were the case there would exist $y \in C_{1}, z \in C_{2}$ and $\left.t, s \in\right] 0,1\left[\right.$ such that $t y \in C_{2}$ and $s z \in C_{1}$; we have $t y \in \llbracket 0, y \rrbracket$ and $s z \in \llbracket 0, z \rrbracket$, by Proposition 2.1 there exists a point w in $\llbracket y, s z \rrbracket \cap \llbracket z, t y \rrbracket$. From $\llbracket y, s z \rrbracket \subset C_{1}$ and $\llbracket z, t y \rrbracket \subset C_{2}$ we obtain $w \in C_{1} \cap C_{2}$. We can assume that there exists $\delta>0$ such that $\llbracket B_{\delta} \cup C_{1} \rrbracket \cap C_{2} \neq \emptyset$; let $C=\llbracket B_{\delta} \cup C_{1} \rrbracket$ and find a half-space B such that $C \subset B$ and $C_{2} \cap B=\emptyset$. From $0 \in C$ we have $0 \in B$ and from $\delta e_{i} \in C, i=1, \ldots, n$, we have $\mu_{B}\left(e_{i}\right) \leq \delta^{-1}$ and, by part (1) of Lemma 4.1, μ_{B} takes only finite values.
(3) Let $\eta=\inf _{(x, y) \in C_{1} \times C_{2}}\|x-y\|_{\infty}$ and, for all subset $S \subset \mathbb{R}_{+}^{n}$ let $B_{\delta}(S)=\left\{x \in \mathbb{R}_{+}^{n}\right.$: $\exists y \in S$ s.t. $\left.\|x-y\|_{\infty} \leq \delta\right\}$; if C is \mathbb{B}-convex then, for all $\delta \geq 0, B_{\delta}(C)$ is also \mathbb{B}-convex by Proposition 2.4.2 . of [1], which also implies that the closure of a \mathbb{B}-convex set is \mathbb{B}-convex. Since $\eta>0$ we can choose $u \in \mathbb{R}_{++}^{n}, \mu>0$ such $\mu<\|u\|_{\infty}$ and $B_{\mu}\left(C_{1}\right) \cap B_{\mu}\left(C_{2}\right)=\emptyset$ and also $B_{\mu}\left(C_{1}\right) \cup B_{\mu}\left(C_{2}\right) \subset \mathbb{R}_{++}^{n}+u$, since, by hypothesis, $C_{1} \cup C_{2} \subset \mathbb{R}_{+}^{n}+v$ for some $v \in \mathbb{R}_{++}^{n}$. From part (2) we find a half-space B such that $0 \in B, B_{\mu}\left(C_{1}\right) \subset B, B_{\mu}\left(C_{2}\right) \subset \mathbb{R}_{+}^{n} \backslash B, \mu_{B}$ is finite valued and $\sup _{x \in B_{\mu}\left(C_{1}\right)} \mu_{B}(x) \leq 1 \leq \inf _{x \in B_{\mu}\left(C_{2}\right)} \mu_{B}(x)$. If $x \in C_{1}$ and $t=\left(1+\mu /\left(2\|x\|_{\infty}\right)\right)$ then then $t x \in B_{\mu}\left(C_{1}\right) \subset B$, and therefore,

$$
\mu_{B}(x) \leq\left(1+\frac{\mu}{2\|x\|_{\infty}}\right)^{-1}<1
$$

If $y \in C_{2}$ then $y \in \mathbb{R}_{+}^{n}+u$ and therefore $\|y\|_{\infty}>\mu$ and therefore $s=\left(1-\mu /\left(2\|y\|_{\infty}\right)\right)$ is strictly positive. Since $\|s y-y\|_{\infty}=\mu / 2$ we have $s y \in B_{\mu}\left(C_{2}\right) \subset \mathbb{R}_{+}^{n} \backslash B$, and therefore sy $\notin B$ which implies that

$$
1<\left(1-\frac{\mu}{2\|y\|_{\infty}}\right)^{-1} \leq \mu_{B}(y)
$$

(4) Now, assume that C_{1} is bounded. There is a $v \in \mathbb{R}_{+}^{n}$ such that, for all $x \in C_{1}$, $\|x\|_{\infty} \leq\|v\|_{\infty}$ and therefore

$$
\sup _{x \in C_{1}} \mu_{B}(x) \leq\left(1+\frac{\mu}{\|v\|_{\infty}}\right)^{-1}<1 \leq \inf _{y \in C_{2}} \mu_{B}(y)
$$

If C_{2} is bounded there is a $v \in \mathbb{R}_{+}^{n}$ such that, for all $y \in C_{2},\|y\|_{\infty} \leq\|v\|_{\infty}$, and $\mu<\|v\|_{\infty}$; we then have

$$
\sup _{x \in C_{1}} \mu_{B}(x) \leq 1<\left(1-\frac{\mu}{\|v\|_{\infty}}\right)^{-1} \leq \inf _{y \in C_{2}} \mu_{B}(y)
$$

Theorem 5.2. A point can be strictly separated from any closed \mathbb{B}-convex set to which it does not belong by a finite \mathbb{B}-measurable positively homogenous map.

Proof. Let $C \subset \mathbb{R}_{+}^{n}$ be a closed \mathbb{B}-convex set and $x \in \mathbb{R}_{+}^{n}$ a point which is not in C. If $x=0$ we take $f(x)=\|x\|_{\infty}$; from $0 \notin C$, and C closed, we have $f(x)=0<\inf _{y \in C} f(y)$; we can assume now that $x \neq 0$.

Let us see that we cannot have, for all $\delta>0, \llbracket B_{\delta} \cup\{x\} \rrbracket \cap C \neq \emptyset$ and $x \in \llbracket B_{\delta} \cup C \rrbracket$. First, notice that $\llbracket B_{\delta} \cup\{x\} \rrbracket$ is closed and bounded; if $\llbracket B_{\delta} \cup\{x\} \rrbracket \cap C \neq \emptyset$ for all $\delta>0$ then, since $\llbracket B_{\delta} \cup\{x\} \rrbracket \cap C$ is compact and

$$
\llbracket B_{\eta} \cup\{x\} \rrbracket \subset \llbracket B_{\delta} \cup\{x\} \rrbracket \text { if } \eta \leq \delta
$$

we conclude that $\bigcap_{\delta>0}\left(\llbracket B_{\delta} \cup\{x\} \rrbracket \cap C\right)$ is not empty.
An element y of $\bigcap_{\delta>0} \llbracket B_{\delta} \cup\{x\} \rrbracket$ is of the form $t x$ with $t \in[0,1]$; indeed, we have $y=x_{k} \vee t_{k} x$ where we can assume that t_{k} converges to some $t^{\star} \in[0,1]$ and x_{k} converges to 0 in \mathbb{R}_{+}^{n}, therefore $x_{k} \vee t_{k} x$ converges to $t^{\star} x$.

If $x \in \bigcap_{\delta>0} \llbracket B_{\delta} \cup C \rrbracket$ then we can find a sequence δ_{k} which decreases to 0 , a sequence $t_{k} \in[0,1]$, a sequence $u_{k} \in \mathbb{R}_{+}^{n}$ with $\left\|u_{k}\right\|_{\infty} \leq \delta_{k}$ and a sequence $y_{k} \in C$ such that, for all $k, x=u_{k} \vee t_{k} y_{y}$. Since $x \neq 0$ there is at least one index i for which $x_{i}>0$; from
$x_{i}=\max \left\{u_{k, i}, t_{k} y_{k, i}\right\}$ for all k there exists $k(i)$ such that, for all $k \geq k(i), x_{i}=t_{k} y_{k, i}$. If $x_{j}=0$ then $0=\max \left\{u_{k, j}, t_{k} y_{k, j}\right\}$ and in particular $0=t_{k} y_{k, j}$, that is, $x_{j}=t_{k} y_{k, j}$; let $K=\max \left\{k(i): x_{i}>0\right\}$ then, for $k \geq K$, we have $x=t_{k} y_{k}$. In conclusion, if for all $\delta>0$, $\llbracket B_{\delta} \cup\{x\} \rrbracket \bigcap C \neq \emptyset$ and $x \in \llbracket B_{\delta} \cup C \rrbracket$ then there exits $t \in[0,1]$ such that $t x \in C$ and there exist $s \in[0,1]$ and $y \in C$ such that $x=s y$; but $(t x) \vee s y \in C$, since $t x$ and y are in C, and $(t x) \vee s y=(t x) \vee x=x$; we have obtained $x \in C$, which is not the case by hypothesis. So, either
(a) there exists $\delta>0$ such that $\llbracket B_{\delta} \cup\{x\} \rrbracket \cap C=\emptyset$ or
(b) there exists $\delta>0$ such that $x \notin \llbracket B_{\delta} \cup C \rrbracket$.

If (a) is the case, we find $\mu>0$ such that $B_{\mu}\left(\llbracket B_{\delta} \cup\{x\} \rrbracket\right) \cap C=\emptyset$, which is possible since $\llbracket B_{\delta} \cup\{x\} \rrbracket$ is compact and C is closed. There is a half-space B such that $B_{\mu}\left(\llbracket B_{\delta} \cup\{x\} \rrbracket\right) \subset B$ and $C \cap B=\emptyset ; \mu_{B}$ is finite and, proceeding as in the proof of Theorem 5.1 we obtain

$$
\mu_{B}(x) \leq\left(1+\frac{\mu}{\|x\|_{\infty}}\right)^{-1}<1 \leq \inf _{y \in C} \mu_{B}(y)
$$

If (b) is the case, we find $\mu>0$ such that $B_{\mu}(x) \cap \llbracket B_{\delta} \cup C \rrbracket=\emptyset$ and a half-space B such that $\llbracket B_{\delta} \cup C \rrbracket \subset B$ and $B_{\mu}(x) \cap B=\emptyset$; we can always assume that $\mu<\|x\|_{\infty}$. Proceeding again as in the proof of Theorem 5.1 we obtain

$$
\sup _{y \in C} \mu_{B}(y) \leq 1<\left(1-\frac{\mu}{\|x\|_{\infty}}\right)^{-1} \leq \mu_{B}(x)
$$

6 Separation of a Point from a \mathbb{B}-Convex Set

This section contains an explicit construction of a family \mathcal{M} of open half-spaces such that all \mathbb{B}-convex sets are intersections of members of \mathcal{M} and \mathcal{M} is minimal with respect to that property. For a point $z \in \mathbb{R}_{++}^{n}$ and a closed \mathbb{B}-convex set to which it does not belong a separating map is explicitely given.

We also show that the \mathbb{B}-convexity structure on \mathbb{R}_{++}^{n} can be reconstructed from $n+1$ of partial orders. For $z \in \mathbb{R}_{+}^{n}$ let

$$
N_{0}(z)=\{x: 0 \leq x \leq z\}
$$

and

$$
N_{j}(z)=\left\{x \in \mathbb{R}_{+}^{n}: x_{j} \geq z_{j} \text { and } \forall i z_{i} x_{j} \geq z_{j} x_{i}\right\}
$$

The set $N_{0}(z)$ is closed convex and radiant and the sets $N_{j}(z)$, for $j \geq 1$ are closed convex and co-radiant. If $z_{j}=0$ then $N_{j}(z)=\mathbb{R}_{+}^{n}$; if $z_{j} \neq 0$ and $x \in N_{j}(z)$ then $x_{j} \neq 0$ and $x_{i} \neq 0$ implies $z_{i} \neq 0$, in other words $I(x) \subset I(z)$. For $z_{j} \neq 0$ let $F_{j}(z)$ be the j-th face of the polytope $N_{0}(z)$, that is

$$
F_{j}(z)=\left\{x \in \mathbb{R}_{+}^{n}: x_{j}=z_{j} \text { and } \forall i x_{i} \leq z_{i}\right\}
$$

then $N_{j}(z)$ is the conic hull of $F_{j}(z)$, that is

$$
N_{j}(z)=\left\{t x: t \geq 1 \text { and } x \in F_{j}(z)\right\} .
$$

For $j \in\{0,1 \ldots, n\}$ let

$$
M_{j}(z)=\mathbb{R}_{+}^{n} \backslash N_{j}(z) \text { and } U_{j}(z)=\left\{x \in \mathbb{R}_{+}^{n}: z \in N_{j}(x)\right\}
$$

Notice that for, $j \neq 0, x \in M_{j}(z)$ if and only if $z_{j}>0$ and either $x_{j}<z_{j}$ or $x_{j} \geq z_{j}$ and there exists an index l such that $x_{j} z_{l}<x_{l} z_{j}$ which is equivalent to

$$
\left\{\begin{array}{l}
(a) \text { either } z_{l}=0 \text { and } x_{l}>0 \quad \text { or } \\
(b) \frac{x_{j}}{z_{j}}<\max \left\{1, \max _{i \in I(z), i \neq j} \frac{x_{i}}{z_{i}}\right\} \text { where } I(z)=\left\{i: z_{i}>0\right\}
\end{array}\right.
$$

Lemma 6.1. The sets $N_{j}(z)$ are closed and \mathbb{B}-convex, the sets $M_{j}(z)$ are open and \mathbb{B} convex; they are therefore half-spaces.

Proof. That $N_{0}(z)$ is closed is obvious; it is a radiant upper semilattice and therefore \mathbb{B} convex. If x and y belong to $M_{0}(z)$ then there are indices i and j such that $x_{i}>z_{i}$ and $y_{l}>z_{l}$; if $t \in[0,1]$ then $\max \left\{x_{i}, t y_{i}\right\} \geq x_{i}>z_{i}$ and $\max \left\{t x_{l}, y_{l}\right\} \geq y_{l}>z_{l}$. This proves that $M_{0}(z)$ is \mathbb{B}-convex.

Let $j \in\{1, \ldots, n\}$; if $z_{j}=0$ then $N_{j}(z)=\mathbb{R}_{+}^{n}$ and $M_{j}(z)=\emptyset$ are \mathbb{B}-convex. Assume that $z_{j}>0$ and let $x, y \in N_{j}(z)$ and $t \in[0,1]$. From $x_{j} \geq z_{j}$ and $y_{j} \geq z_{j}$ we have $\max \left\{t x_{j}, y_{j}\right\} \geq$ z_{j}, and from $x_{j} z_{i} \geq x_{i} z_{j}$ we get $t x_{j} z_{i} \geq t x_{i} z_{j}$, now, from $y_{j} z_{i} \geq y_{i} z_{j}$ and the positivity of the coefficients we have $\max \left\{t x_{j}, y_{j}\right\} z_{i}=\max \left\{t x_{j} z_{i}, y_{j} z_{i}\right\} \geq \max \left\{t x_{i} z_{j}, y_{i} z_{j}\right\} \geq \max \left\{t x_{i}, y_{i}\right\} z_{j}$; we have shown that $t x \vee y \in N_{j}(z)$.

Now let $x, y \in M_{j}(z)$ and $\left.\left.t \in\right] 0,1\right]$, we show that $t x \vee y \in M_{j}(z)$. There are two cases to consider:
(a) there exists an index l such that either $x_{l}>0$ and $z_{l}=0$ or $y_{l}>0$ and $z_{l}=0$; then, in both cases $\max \left\{t x_{l}, y_{l}\right\}>0$ and $z_{l}=0$;
(b) for $i \in I(z)$ let $a_{i}=x_{i} z_{i}^{-1}$ and $b_{i}=y_{i} z_{i}^{-1}$, then $a_{j}<\max \left\{1, \max _{i \in I(z), i \neq j} a_{i}\right\}$ and $b_{j}<\max \left\{1, \max _{i \in I(z), i \neq j} b_{i}\right\}$.

From $t \in] 0,1]$ we have $\max \left\{t a_{j}, b_{j}\right\}<\max \left\{t, 1, \max _{i \in I(z), i \neq j} t a_{i}, \max _{i \in I(z), i \neq j} b_{i}\right\}=$ $\max \left\{1, \max _{i \in I(z), i \neq j} t a_{i}, \max _{i \in I(z), i \neq j} b_{i}\right\}=\max \left\{1, \max _{i \in I(z), i \neq j}\left\{t a_{i}, b_{i}\right\}\right\}$.

Lemma 6.2. For all $j \in\{0, \ldots, n\}$ the binary relation U_{j} is a partial order on \mathbb{R}_{++}^{n}.
Proof. For simplicity let us write $z \preceq_{j} x$ for $z \in U_{j}(x)$. For $j=0 \preceq_{j}$ is simply the partial order associated to the positive cone \mathbb{R}_{+}^{n}; we assume that $j \geq 1$. From the definition of N_{j} we have $z \in N_{j}(z)$ for all $z \in \mathbb{R}_{+}^{n}$. Assume that $z \preceq_{j} x$ and $x \preceq_{j} z$ then $z \in N_{j}(x)$ and $x \in N_{j}(z) ;$ from $x_{j} \geq z_{j}$ and $z_{j} \geq x_{j}$ we have $x_{j}=z_{j}$ and, from $z_{i} x_{j} \geq z_{j} x_{i}$ and $z_{j} x_{i} \geq z_{i} x_{j}$ for all i we have, taking into account that x and z are in $\mathbb{R}_{++}^{n}, x_{i}=z_{i}$ for all i. If $z \preceq_{j} y$ and $y \preceq_{j} x$ then $y_{j} \leq z_{j}$ and $x_{j} \leq y_{j}$, also $y_{i} z_{j} \geq y_{j} z_{i}$ and $x_{i} y_{j} \geq x_{j} y_{i}$ for all i; multiplying the second inequality by $z_{j} z_{i}$ we obtain $\left(x_{i} z_{j}\right)\left(y_{j} z_{i}\right) \geq\left(x_{j} z_{i}\right)\left(y_{i} z_{j}\right)$, and from the first inequality, $\left(x_{i} z_{j}\right)\left(y_{j} z_{i}\right) \geq\left(x_{j} z_{i}\right)\left(y_{j} z_{i}\right)$ which yields $\left(x_{i} z_{j}\right) \geq\left(x_{j} z_{i}\right)$.

Theorem 6.1. (1) Let A be a nonempty set and let B be the \mathbb{B}-convex radiant set spanned by A (that is the intersection of all the \mathbb{B}-convex radiant sets containing A). Then $z \in B$ if and only if, for all $j \in\{1, \ldots n\} N_{j}(z) \cap A \neq \emptyset$.
(2) $\llbracket A \rrbracket=\left\{z \in \mathbb{R}_{+}^{n}: \forall j \in\{0, \ldots, n\} N_{j}(z) \cap A \neq \emptyset\right\}$.

Proof. First notice that, for an arbitrary nonempty set $A, N_{j}(z) \cap A \neq \emptyset$ if $j \geq 1, z_{j}=0$, and $N_{0}(0) \cap A \neq \emptyset$ if and only if $0 \in A$; in other words, we can assume that $z \neq 0$ and $j \in I(z)$.
$(1-a)$ We assume that $A=B$. Let $b_{j} \in N_{j}(z) \cap B$; for all $j \in I(z)$ we have $b_{j, j} \geq z_{j}$, let

$$
t=\frac{b_{k, k}}{z_{k}}=\min \left\{\frac{b_{i, i}}{z_{i}}: i \in I(z)\right\} \text { and, for } l \in I(z), \mu_{l}=t \frac{z_{l}}{b_{l, l}}
$$

We have $t \geq 1,0<\mu_{l} \leq 1$ and $\mu_{k}=1$. Since B is \mathbb{B}-convex and radiant we have $t^{-1} \bigvee_{l \in I(z)} \mu_{l} b_{l} \in B$, that is $v=\bigvee_{l \in I(z)}\left(z_{l} / b_{l, l}\right) b_{l} \in B$. Let us see that $v=z$. If $j \notin I(z)$ then $v_{j}=0=z_{j}$. If $j \in I(z)$ then $b_{j, j} / z_{j}=\max _{i \in I(z)} b_{j, i} / z_{i}$ and $v_{j}=$ $\left(\max _{l \in I(z)}\left(z_{l} / b_{l, l}\right)\left(b_{l, j} / z_{j}\right)\right) z_{j}=z_{j}$ since $\left(b_{l, l} / z_{l}\right) \geq\left(b_{l, j} / z_{j}\right)$ for all $l \in I(z)$.
$(1-b)$ If $A \bigcap N_{j}(z)=\emptyset$ then $A \subset M_{j}(z)$ and, since $M_{j}(z)$ is radiant, we have $B \subset M_{j}(z)$, in other words, $B \bigcap N_{j}(z)=\emptyset$. This shows that, for $j \in\{1, \ldots, n\}, B \bigcap N_{j}(z) \neq \emptyset$ if and only if $A \bigcap N_{j}(z) \neq \emptyset$.
(2) Let $B=\llbracket A \rrbracket$; since the sets $N_{j}(z)$ are half-spaces we have, as in $(1-b), B \bigcap N_{j}(z) \neq \emptyset$ if and only if $A \bigcap N_{j}(z) \neq \emptyset$, for $j \in\{0, \ldots, n\}$. The set $\bigcup_{0<t<1} t B$ is radiant, and $\mathbb{B}-$ convex. From $N_{j}(z) \cap B \neq \emptyset$ for all $j \in I(z)$ we have $z=t u$ with $0<t \leq 1$ and $u \in B$; if $N_{0}(z) \cap B \neq \emptyset$ then there exists $v \in B$ such that $v \leq z$. From $z=v \vee z=v \vee t u$ we have $z \in B$.

Given a binary relation R on a set X and a subset A of X we write $R(A)$ for $\bigcup_{a \in A} R(a)$. Corollary 6.1 below makes clear the content of Theorem 6.1; it says that the \mathbb{B}-convex hull operator $A \mapsto \llbracket A \rrbracket$ is determined by the $n+1$ binary relations U_{j}; in particular, on \mathbb{R}_{++}^{n}, $\llbracket A \rrbracket$ is obtained by first taking the upper-set generated by A for each of the partial orders U_{j}, that is $\bigcup_{a \in A}\left\{x \in \mathbb{R}_{++}^{n}: a \preceq_{j} x\right\}$, and then by taking the intersection of all these sets.
Corollary 6.1. For all subset A of \mathbb{R}_{+}^{n} we have

$$
\begin{equation*}
\llbracket A \rrbracket=\bigcap_{j=0}^{n} U_{j}(A) \tag{6.12}
\end{equation*}
$$

As a consequence, the \mathbb{B}-convex hull of a finite set is always the union of a finite number of linear polytopes.

Proof. Notice that $A \cap N_{j}(z) \neq \emptyset$ if and only if $z \in U_{j}(A)$, this proves the first part. If A is finite then $\llbracket A \rrbracket$ is compact, choose r and s such that $\llbracket A \rrbracket \subset[r, s]^{n}$, then $\llbracket A \rrbracket=$ $\bigcap_{j=0}^{n}\left[U_{j}(A) \cap[r, s]^{n}\right]=\bigcap_{j=0}^{n} \bigcup_{a \in A} U_{j}(a) \cap[r, s]^{n}$. The set $U_{j}(a) \cap[r, s]^{n}=\left\{x \in \mathbb{R}_{+}^{n}:\right.$ $\forall i a_{j} x_{i} \geq a_{i} x_{j}$ and $\left.r \leq x_{i} \leq t\right\}$ is compact and defined by a finite number of linear inequalities, it is therefore a linear polytope. The intersection of a finite number of linear polytopes is again a linear polytope. This completes the proof.

Corollary 6.1 gives a effective procedure to construct $\llbracket A \rrbracket$ if A is a finite set. First, $x \in U_{j}(a)$ is the solution set of the following system of linear inequalities

$$
\left\{\begin{array}{l}
0 \leq x_{j} \leq a_{j} \\
0 \leq a_{j} x_{i}-a_{i} x_{j} \text { for all } i
\end{array}\right.
$$

which can be solved without the simplex algorithm. The description of $U_{0}(a)$ is even simpler: $U_{0}(a)=\left\{x \in \mathbb{R}_{+}^{n}: a \leq x\right\}$. Using distributivity of the intersection over the reunion in (6.12) we have

$$
\begin{equation*}
\llbracket A \rrbracket=\bigcup_{\left(a^{0}, \ldots, a^{n}\right) \in A^{n+1}} \bigcap_{j=0}^{n} U_{j}\left(a^{j}\right) \tag{6.13}
\end{equation*}
$$

Each of the set $\bigcap_{j=0}^{n} U_{j}\left(a^{j}\right)$ is the solution set of a system of linear inequalities which corresponds to one of the convex polytopes whose reunion makes the \mathbb{B}-convex hull of A.

The set $U_{0}(a)$ which is closed and co-radiant can be described by its co-gauge, and the sets $U_{j}(a)$, which are closed and radiant can be described by their gauges, $U_{0}(a)=\{x \in$ $\left.\mathbb{R}_{+}^{n}: \nu_{U_{0}(a)}(x) \geq 1\right\}$ and $U_{j}(a)=\left\{x \in \mathbb{R}_{+}^{n}: \mu_{U_{j}(a)}(x) \leq 1\right\}$. From Corollary 6.1, we have, for an arbitrary subset A of \mathbb{R}_{+}^{n}, that $x \in \llbracket A \rrbracket$ if and only if there exists $a^{\prime} \in A$ and, for all $j \in\{1, \ldots, n\}$, there exists $a \in A$ such that $\mu_{U_{j}(a)}(x) \leq 1 \leq \nu_{U_{0}\left(a^{\prime}\right)}(x)$; we obtain the following characterization of the \mathbb{B}-convex hull of a finite set A :

$$
\begin{equation*}
\llbracket A \rrbracket=\left\{x \in \mathbb{R}_{+}^{n}: \max _{j \in I} \min _{a \in A} \mu_{U_{j}(a)}(x) \leq 1 \leq \max _{a \in A} \nu_{U_{0}(a)}(x)\right\} \tag{6.14}
\end{equation*}
$$

One can check that the co-gauge $U_{0}(a)$ and the gauges of the sets $U_{j}(a)$ are given by the following formulas:

$$
\nu_{U_{0}(a)}(x)= \begin{cases}+\infty & \text { if } a=0 \\ 0 & \text { if } \exists i \text { s.t. } a_{i}>0 \text { and } x_{i}=0 \\ \min _{i \in I(a)} x_{i} / a_{i} & \text { otherwise. }\end{cases}
$$

and

$$
\mu_{U_{j}(a)}(x)= \begin{cases}+\infty & \text { if } a_{j}=0 \text { and } x_{j}>0 \\ +\infty & \text { if } \exists i \text { s.t. } x_{i} a_{j}<x_{j} a_{i} \\ 0 & \text { if } a_{j}=x_{j}=0 \\ x_{j} / a_{j} & \text { otherwise }\end{cases}
$$

If $a \neq 0$ then for all $x \in \mathbb{R}_{++}^{n} \nu_{U_{0}(a)}(x)=\min _{i \in I(a)}\left(x_{i} / a_{i}\right), \nu_{U_{0}(a)}$ is therefore continuous on \mathbb{R}_{++}^{n}. For a finite set $A \subset \mathbb{R}_{+}^{n}(6.14)$ can be interpreted as a separation formula.

Proposition 6.1. For a finite set A let $\nu_{A}=\max _{a \in A} \nu_{U_{0}(a)}$ and $\mu_{j, A}=\min _{a \in A} \mu_{U_{j}(a)}$. If $x \notin \llbracket A \rrbracket$, then either $\nu_{A}(x)<1 \leq \inf _{z \in \llbracket A \rrbracket} \nu_{A}(z)$ or there exists $j \geq 1$ such that $\max _{z \in \llbracket A \rrbracket} \mu_{j, A}(z) \leq 1<\mu_{j, A}(x)$. Furthermore, $\mu_{j, A}$ is positively homogeneous and lower semicontinuous, and $\nu_{j, A}(z)$ is positively homogeneous and upper semicontinuous.

Proposition 5.2 asserts that a closed \mathbb{B}-convex set and a point that does not belong to this set can be the strongly separated by a finite \mathbb{B}-measurable positively homogeneous map. If this point is strictly positive then an explicit expression for separating maps can be given. To $z \in \mathbb{R}_{++}^{n}$ we associate $n+1$ maps on \mathbb{R}_{+}^{n} defined as follows:

$$
\theta_{z}(x)=\max _{i \in I} \frac{x_{i}}{z_{i}}
$$

and, for $j \geq 1$

$$
\theta_{z}^{j}(x)= \begin{cases}0 & \text { if } x_{j}=0 \text { or }\left(x_{j} / z_{j}\right)<\theta_{z}(x) \\ \left(x_{j} / z_{j}\right) & \text { otherwise }\end{cases}
$$

Notice that, for all $z \in \mathbb{R}_{++}^{n}$ and for all $j \geq 1, \theta_{z}(z)=1$ and $\theta_{z}^{j}(z)=1$.
Proposition 6.2. Let B be a closed \mathbb{B}-convex set and $z \in \mathbb{R}_{++}^{n}$ a point that does not belong to B. Then the following alternative holds:
(1) either, for all $x \in B, 1<\theta_{z}(x)$ or
(2) there exists $j \geq 1$ such that, for all $x \in B, \theta_{z}^{j}(x)<1$.

Proof. If $z \notin B$ there are two possibilites: either $(a) B \cap N_{0}(z)=\emptyset$ or (b) there exists $j \geq 1$ such that $B \cap N_{j}(z)=\emptyset$, as follows from Theorem 6.1.

Assume that (a) is the case. Since $N_{0}(z)$ is closed and radiant we have $N_{0}(z)=\{x \in$ $\left.\mathbb{R}_{+}^{n}: \mu_{N_{0}(z)}(x) \leq 1\right\}$, and therefore, for all $x \in B, 1<\mu_{N_{0}(z)}(x)$. Since $z \in \mathbb{R}_{++}^{n}$ an easy computation yields $\mu_{N_{0}(z)}(x)=\theta_{z}(x)$ for all $x \in B$.

Now, assume that (b) is the case. The set $N_{j}(z)$ is closed and co-radiant, it is therefore equal to $\left\{x \in \mathbb{R}_{+}^{n}: 1 \leq \nu_{N_{j}(z)}(x)\right\}$, and consequently, for all $x \in B, \nu_{N_{j}(z)}(x)<1$. Again, taking into account that $z \in \mathbb{R}_{++}^{n}$ we find

$$
\nu_{N_{j}(z)}(x)= \begin{cases}0 & \text { if } x_{j}=0 \text { or } \exists i \text { s.t. } z_{i} x_{j}<z_{j} x_{i} \\ \left(x_{j} / z_{j}\right) & \text { otherwise. }\end{cases}
$$

If $\nu_{N_{j}(z)}(x)<1$ then, either $x_{j}=0$ or $\left(x_{j} / z_{j}\right)<\max _{i \in I}\left(x_{i} / z_{i}\right)$ or $\max _{i \in I}\left(x_{i} / z_{i}\right)=$ $\left(x_{j} / z_{j}\right)<1$, and therefore $\nu_{N_{j}(z)}(x)=\theta_{z}^{j}(x)$ for all $x \in B$.

We have seen that U_{j}, as a binary relation on \mathbb{R}_{++}^{n}, is a partial order; it has another noticeable property. First, let us say that a binary relation $R \subset B \times B$ on a \mathbb{B}-convex set B is a Ky Fan relation if it has the following properties:
(1) for all $x \in \mathbb{R}_{+}^{n} \quad x \in R(x)$;
(2) for all $x \in \mathbb{R}_{+}^{n}$ the set $\mathbb{R}_{+}^{n} \backslash R^{-1}(x)$ is \mathbb{B}-convex.

Ky Fan maps appeared in Ky Fan's proof of his famous inequality (without being named of course); in the framework of classical convexity a Ky Fan map with closed values, one of which is compact, verifies $\bigcap_{x \in B} R(x) \neq \emptyset$. This statement, as is well known, is equivalent to Brouwer's fixed point Theorem, and to Ky Fan's inequality; it can be proved by DugundjiGranas generalization of the Knaster-Kuratowski-Mazurkiewicz Theorem, namely: if R is a binary relation on a (classical) convex set X such that $R(x)$ is closed for all $x \in X$ and, for all non empty finite subset A of X the convex hull of A is contained in $\bigcup_{a \in A} R(a)$ (this is the KKM Property), then, for all non empty finite subset A of $X, \bigcap_{a \in A} R(x) \neq \emptyset,[2]$ for more details. This result, which is also equivalent to Brouwer's fixed point Theorem, is of great importance in mathematical economics.

Let us see that if R is a Ky Fan map on a \mathbb{B}-convex set B, then for all non empty finite subset A of B one has $\llbracket A \rrbracket \subset R(A)$ (this is of course the KKM property). Indeed, if $x \notin R(A)$ then $A \subset \mathbb{R}_{+}^{n} \backslash R^{-1}(x)$ which, by (2), implies $\llbracket A \rrbracket \subset \mathbb{R}_{+}^{n} \backslash R^{-1}(x)$; from (1) we have $x \notin \mathbb{R}_{+}^{n} \backslash R^{-1}(x)$, and therefore $x \notin \llbracket A \rrbracket$.

Now let us come to the reason for this diversion on Ky Fan maps: for all $j \in\{0, \ldots, n\}$, U_{j} is a Ky Fan map on \mathbb{R}_{+}^{n}. This is easily seen, U_{j} is reflexive, and $U_{j}^{-1}(x)=N_{j}(x)$, which, as we have seen, is a half space, therefore $\mathbb{R}_{+}^{n} \backslash U_{j}^{-1}(x)=\mathbb{R}_{+}^{n} \backslash N_{j}(x)=M_{j}(x)$ is \mathbb{B}-convex. The interesting part of the formula $\llbracket A \rrbracket=\bigcap_{j=0}^{n} U_{j}(A)$ is not so much that the \mathbb{B}-convex hull of A is obtained as an intersection of images of A under Ky Fan maps but that those maps are finite in number and also partial orders.

Propositions 6.1 implies that a \mathbb{B}-polytope is an intersection of closed radiant and coradiant sets; our next result will show than an arbitrary \mathbb{B}-convex set is an intersection of open half-spaces. More precisely, let

$$
\mathcal{M}=\left\{M_{j}(z): z \in \mathbb{R}_{+}^{n}, j \in I(z)\right\} \cup\left\{M_{0}(0)\right\}
$$

members of \mathcal{M} are open half-spaces, we show that arbitrary \mathbb{B}-convex sets are intersections of members of \mathcal{M} and that \mathcal{M} is a minimal set of open half-spaces with that property.

Lemma 6.3. (1) Let $z \in \mathbb{R}_{+}^{n}$ and $u \in M_{0}(z)$. Then $u+\lambda e_{i} \in M_{0}(z)$ for all $i \in I$ and all $\lambda>0$;
(2) Let $z \in \mathbb{R}_{+}^{n}$ and $u \in M_{j}(z)$ for $j \in I(z)$. Then there exists $\lambda_{j}>0$ such that $u+\lambda_{j} e_{j} \notin$ $M_{j}(z)$ and $u+\lambda e_{i} \in M_{j}(z)$ for all $i \in I, i \neq j$.

Proof. It follows directly from the definition of sets $M_{j}(z)$.
Lemma 6.4. Let $u \in \mathbb{R}_{+}^{n}, u \neq 0$ and $z \in N_{j}(u), j \in\{0\} \cup I(u)$. Then $I(z) \subset I(u)$ and $N_{j}(z) \subset N_{j}(u)$.

Proof. The result is obvious if $j=0$ so we consider only case $j \in I(u)$. Since $z \in N_{j}(u)$ it follows then there exists $t \geq 1$ such that $z_{j}=t u_{j}$ and $z_{i} \leq t u_{i}$ for $i \in I(u)$. It follows from this that $I(z) \subset I(u)$. Let $x \in N_{j}(z)$. Then there exists $\tau \geq 1$ such that $x_{j}=\tau z_{j}$ and $x_{i} \leq \tau z_{i}$ for $i \in I(z)$. We have $x_{j}=(\tau t) u_{j}$ and $x_{i} \leq(\tau t) u_{i}$ for $i \in I(z)$. Let $i \in I(u) \backslash I(z)$. Then $z_{i}=0$, hence $x_{i}=0$. Since $u_{i}>0$ it follows that $x_{i} \leq(\tau t) u_{i}$ for such i as well. Thus the result follows.

Lemma 6.5. Let $M_{j}(z) \subset M_{j}(u), j \in\{0\} \cup I(u)$. Then $z \in M_{j}(u)$.
Proof. The result easily follows from Lemma 6.4 if $j=0$, so we consider only case $j \in I(u)$. We have $N_{j}(z) \supset N_{j}(u)$. Assume that $z \notin M_{j}(u)$. Then $z \in N_{j}(u)$. In view of Lemma 6.4 we have $N_{j}(z) \subset N_{j}(u)$, that is $N_{j}(z)=N_{j}(u)$. Since $M_{j}(z) \neq M_{j}(u)$, this is impossible. Hence $z \in M_{j}(u)$.

Lemma 6.6. Let $M \in \mathcal{M}$ and $\mathcal{M}^{\prime}=\mathcal{M} \backslash\{M\}$ then $M \neq \bigcap\left\{M^{\prime} \in \mathcal{M}^{\prime}: M \subset M^{\prime}\right\}$.
Proof. If $M=\mathbb{R}_{+}^{n} \backslash\{0\}$ the conclusion holds trivially since $0 \in M^{\prime}$ if $M^{\prime} \neq M$; we can assume that $M \neq \mathbb{R}_{+}^{n} \backslash\{0\}$. Let $M=M_{j}(z)$ with $z_{j}>0$. If $M_{j}(z) \subset M_{k}(u)$ and $k \neq 0$ it easily follows from Lemma 6.3 that $k=j$, hence $M_{j}(u) \supset M_{j}(z)$. Due to Lemma 6.5 we conclude that $z \in M_{j}(u)=M^{\prime}$. We have shown $z \in \bigcap\left\{M^{\prime} \in \mathcal{M}^{\prime}: M \subset M^{\prime}\right\}$, and since $z \notin M_{j}(z)$ the proof is complete.

Theorem 6.2. For all $A \subset \mathbb{R}_{+}^{n}$ we have

$$
\llbracket A \rrbracket=\bigcap\{M \in \mathcal{M}: A \subset M\}
$$

and \mathcal{M} is a minimal family of open half-spaces with the property above.
Proof. If $z \notin \llbracket A \rrbracket$ and $z \neq 0$ then, by Theorem 6.1, there exists $j \in I(z)$ such that $A \bigcap N_{j}(z)=\emptyset$, in other words, $A \subset M_{j}(z)$, and, obviously, $z \notin M_{j}(z)$. If $z=0$ then $A \subset \mathbb{R}_{+}^{n} \backslash\{0\}=M_{0}(0)$. The remainder of the proof is contained in the previous lemmas.

7 The Geometric Hahn-Banach Theorem in \mathbb{B}-Convexity

None of the results given so far imply that a closed \mathbb{B}-convex set is the intersection of the closed half-spaces containing. It is the purpose of this last section to establish this fact.

For $\delta>0$ let $B_{\delta}[S]$ be the δ-neighbourhood of the set with respect to the norm $\|\cdot\|_{\infty}$ and let us say that two sets S_{1} and S_{2} are non-proximate if $\inf _{(x, y) \in S_{1} \times S_{2}}\|x-y\|_{\infty}>0$ or, equivalently, if there exists $\delta>0$ such that $B_{\delta}\left[S_{1}\right] \cap B_{\delta}\left[S_{2}\right]=\emptyset$. We recall that if C is \mathbb{B}-convex then $B_{\delta}[C]$ is \mathbb{B}-convex, as well as the closure of C and its interior, which follows from [1] Lemma 2.2.12 and Section 2.4.

Theorem 7.1. If C_{1} and C_{2} are non-proximate \mathbb{B}-convex sets of \mathbb{R}_{+}^{n} then there exists a closed half-space D such that $C_{1} \subset \operatorname{int} D$ and $C_{2} \subset \mathbb{R}_{+}^{n} \backslash D$.

Proof. Choose $\delta>0$ such that $B_{\delta}\left[C_{1}\right] \cap B_{\delta}\left[C_{2}\right]=\emptyset$; by the Stone-Kakutani Property there exists a half space L such that $B_{\delta}\left[C_{1}\right] \subset L$ and $B_{\delta}\left[C_{2}\right] \subset \mathbb{R}_{+}^{n} \backslash L$. Let D be the closure of $L ; C_{1}$ is in the interior of D and C_{2} is in $\mathbb{R}_{+}^{n} \backslash D$. Furthermore, D, being the closure of \mathbb{B}-convex set, is \mathbb{B}-convex, and, from $\mathbb{R}_{+}^{n} \backslash \bar{L}=\operatorname{int}\left(\mathbb{R}_{+}^{n} \backslash L\right.$) (with respect to the relative topology of \mathbb{R}_{+}^{n}), we have that $\mathbb{R}_{+}^{n} \backslash D$ is also \mathbb{B}-convex.

Corollary 7.1. A closed \mathbb{B}-convex set is the intersection of the closed half-spaces in which it is contained.

In the previous sections we have shown that disjoint \mathbb{B}-convex sets can be separated by an homogeneous \mathbb{B}-measurable map; unfortunately, those maps do not have to be continuous. To achieve separation by continuous maps we have to use the larger class of \mathbb{B}-measurable maps, in other words, if we drop the positive homogeneity property then continuous separation is possibe; this is a consequence of results from [1] and a Theorem of Van de Vel, Theorem 2.7 in [4], which is akin to the Tietze-Urysohn Theorem . For the reader's conveniance, and also because Van de Vel's Theorem is more general than needed here, we reproduce in a simplified form, and in the context of \mathbb{B}-convexity, the main argument of the proof.
Theorem 7.2. If C_{1} and C_{2} are non-empty non-proximate \mathbb{B}-convex sets of \mathbb{R}_{+}^{n} then there exists a continuous \mathbb{B}-measurable map $f: \mathbb{R}_{+}^{n} \rightarrow[0,1]$ such that $f\left(C_{1}\right)=\{0\}$ and $f\left(C_{2}\right)=$ $\{1\}$.

Proof. Let \mathbb{D} be the set of dyadic numbers strictly between 0 and 1. As in Theorem 7.1 let $\delta>0$ such that $B_{\delta}\left[C_{1}\right] \cap B_{\delta}\left[C_{2}\right]=\emptyset$ and a half space L such that $B_{\delta}\left[C_{1}\right] \subset L$ and $B_{\delta}\left[C_{2}\right] \subset \mathbb{R}_{+}^{n} \backslash L$. Put $L=H_{1 / 2}$; considering the $\delta / 2$ neighbourhoods one can see that $\left(C_{1}, \mathbb{R}_{+}^{n} \backslash H_{1 / 2}\right)$ and $\left(H_{1 / 2}, C_{2}\right)$ are two pairs of non-proximate \mathbb{B}-convex sets. The initial procedure applied to the pair $\left(C_{1}, \mathbb{R}_{+}^{n} \backslash H_{1 / 2}\right)$ yields a half-space which we call $H_{1 / 4}$, that same procedure applied to the pair $\left(H_{1 / 2}, C_{2}\right)$ yields a half-space which we call $H_{3 / 4}$. By induction one obtains a family $\left\{H_{d}: d \in \mathbb{D}\right\}$ of half-spaces such that:
(1) $d \mapsto H_{d}$ is increasing.
(2) for all $d \in \mathbb{D},\left(C_{1}, \mathbb{R}_{+}^{n} \backslash H_{d}\right)$ and $\left(H_{d}, C_{2}\right)$ are pairs of non-proximate \mathbb{B}-convex sets.
(3) if $d_{1}<d_{2}$ then $\left(H_{d_{1}}, \mathbb{R}_{+}^{n} \backslash H_{d_{2}}\right)$ is a pair of non-proximate \mathbb{B}-convex sets. The map $f: \mathbb{R}_{+}^{n} \rightarrow[0,1]$ defined as follows has the required properties:

$$
f(x)=\left\{\begin{array}{lc}
1 & \text { if } x \notin \bigcup\left\{H_{d}: d \in \mathbb{D}\right\} \\
\inf \left\{d \in \mathbb{D}: x \in H_{d}\right\} & \text { otherwise }
\end{array}\right.
$$

Theorem 7.2 improves part (3) of Theorem 5.1 in as much as the separation is done through a continuous map, but, on the other hand, we have much less information on the map, since we cannot expect a map taking its values in $[0,1]$ to be positively homogeneous. As a consequence of Theorem 7.2 we have again that closed \mathbb{B}-convex sets are intersections of closed half-spaces and of open half-spaces.

Acknowledgement

The authors are grateful to the referee for his thorough reading of the manuscript.

References

[1] W. Briec and C. Horvath, \mathbb{B}-convexity, Optimization 53 (2004) 103-127.
[2] J. Dugundji and A. Granas, Fixed Point Theory, Springer-Verlag, New York, 2003.
[3] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
[4] M.L.J. van de Vel, Theory of Convex Structures, North Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
[5] M.L.J. van de Vel, A selection theorem for topological convex structures, Trans. Amer. Math. Soc. 336 (1993) 463-496.

Manuscript received 21 June 2004
revised 27 October 2004
accepted for publication 29 October 2004
W. Briec

Université de Perpignan, Département d'Économie, 52 Ave. Paul Alduy, Perpignan 66860 Cedex, France
E-mail address: briec@univ-perp.fr
C.D. Horvath

Université de Perpignan, Département de Mathématiques, 52 Ave. Paul Alduy, Perpignan 66860 Cedex, France
E-mail address: horvath@univ-perp.fr
A. Rubinov

University of Ballarat, School of Information Technology and Mathematical Sciences, Victoria, Australia
E-mail address: a.rubinov@ballarat.edu.au

[^0]: *A family of sets is up-directed if the union of any two members of the family is contained in a member of the family.

[^1]: ${ }^{\dagger}$ Also called hemi-spaces or maximal \mathbb{B}-convex sets.

[^2]: \ddagger A function $f: \mathbb{R}_{+}^{n} \rightarrow[0,+\infty]$ is called positively homogeneous if $f(\lambda x)=\lambda f(x)$ for $\left.\lambda \in\right] 0,+\infty[$.

