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hyperplane Hu = {x ∈ Rn | ⟨u, x⟩ = un+1} and two closed half-spaces:

H+
u = {x ∈ Rn | ⟨u, x⟩ ≥ un+1}, H−

u = {x ∈ Rn | ⟨u, x⟩ ≤ un+1},

where ⟨u, x⟩ denotes the inner product u1x1+· · ·+unxn. It is clear that H
+
−u = H−

u .

In the case of u ̸= 0, both H+
u and H−

u are non-empty. In the case of u = 0, one of

H+
u and H−

u is Rn, and the other is empty.

We assume the following strict convexity of Ai in Theorem 1.1 and Sections 2.

(SC) Ai ∩ H = {x} for any boundary point x of Ai and for any supporting

hyperplane H of Ai at x.

Theorem 1.1 ([2]). Let Ai ⊂ Rn be a compact convex set whose interior is non-

empty, and Qi be a non-singular matrix of order n for any i = 1, . . . , n. Assume

(SC) for any i = 1, . . . , n. Then there exists some u ∈ Sn such that both Ai ∩H+
u

and Ai ∩H−
u are non-empty, and

(1.1) max
x∈Ai∩H+

u

⟨u,Qix⟩ − min
x∈Ai∩H+

u

⟨u,Qix⟩ = max
x∈Ai∩H−

u

⟨u,Qix⟩ − min
x∈Ai∩H−

u

⟨u,Qix⟩.

Theorem 1.2 ([2]). Let Ai ⊂ Rn be a compact set whose convex hull has a non-

empty interior for any i = 1, . . . , n. Then there exists some u ∈ Sn such that both

Ai ∩H+
u and Ai ∩H−

u are non-empty and

(1.2) δ∗(u | coAi∩H+
u )−δ∗(u | coAi∩H+

u ) = δ∗(u | coAi∩H−
u )−δ∗(u | coAi∩H−

u )

for all i = 1, . . . , n, where coAi denotes the convex hull of Ai, and

δ∗(u | X) := max
x∈X

⟨u, x⟩, δ∗(u | X) := min
x∈X

⟨u, x⟩.

In this paper, we extend Theorem 1.1 to any antipodal function fi(x,u) w.r.t.

u, that is, fi(x,−u) = −fi(x,u) for any (x,u) ∈ Rn×Sn. Further we remove some

assumptions on the interior of Ai from Theorems 1.1 and 1.2.

In Section 2, we introduce n-tuple of parametric optimization problems with

parameter u ∈ Sn, and show the continuity of its optimal-value function w.r.t. u.

By applying Borsuk-Ulam’s theorem to the optimal-value functions, we obtain the

main theorem (Theorem 2.3).

2. Parametric optimal-value functions

In this section, we consider a family of parametric optimization problems, and

show the continuity of optimal-value functions.

Let Ai be a non-empty compact convex subset of Rn and fi : Rn × Sn → R be

a continuous function for any i = 1, . . . , n. We consider n-tuple of optimal-value

functions φ = (φ1, . . . , φn) : S
n → Rn:

(2.1) φi(u) :=

{
max

x∈Ai∩H+
u

fi(x,u)− min
x∈Ai∩H+

u

fi(x,u) (Ai ∩H+
u ̸= ∅),

δ∗(u | Ai)− un+1 (Ai ∩H+
u = ∅).

The essential part of (2.1) is the first case. The second case comes from the fact

that Ai ∩H+
u = ∅ if and only if δ∗(u | Ai) − un+1 < 0, see Lemma 2.1 below. We
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note that we defined φi(u) = 0 for Ai ∩H+
u = ∅ in [2]. The present φi works better

than the old one.

Set U−
i , U+

i and U0
i as follows.

U−
i := {u ∈ Rn+1 | δ∗(u | Ai) < un+1},(2.2)

U+
i := {u ∈ Rn+1 | δ∗(u | Ai) > un+1},(2.3)

U0
i := {u ∈ Rn+1 | δ∗(u | Ai) = un+1}.(2.4)

Since Ai is a compact convex set, δ∗(u | Ai)− un+1 is a continuous convex function

of u = (u, un+1). Hence U−
i is open and convex, U+

i is open, and U0
i is closed.

Lemma 2.1.

(1) φi(u
∗) = −1 at the north pole u∗ := (0, . . . , 0, 1) ∈ Sn.

(2) Ai ∩H+
u is empty if and only if u ∈ U−

i .

Further, under the assumption (SC), it holds that

(3) If δ∗(u | Ai) = un+1, then Ai ∩H+
u is a singleton and φi(u) = 0. For any

converging sequence uk to u, the diameter of Ai ∩H+
uk converges to 0.

(4) φi is continuous on Sn.

Proof. Since Ai ∩ H+
u∗ = {x ∈ Ai | ⟨0, x⟩ ≥ 1} = ∅ at the north pole u∗ = (0, 1),

and since δ∗(0 | Ai)− 1 = −1, (1) is apparent from the second case of (2.1).

(2) Since Ai is a compact convex set, it holds that

Ai ∩H+
u = ∅ ⇔ max{⟨u, x⟩ | x ∈ Ai} < un+1 ⇔ u ∈ U−

i .

(3) If δ∗(u | Ai) = un+1, then it follows from (2) that Ai ∩ H+
u is non-empty.

Since Ai is compact, there exists x∗ ∈ Ai such that ⟨u, x∗⟩ = δ∗(u | Ai) = un+1.

Hence H := {x ∈ Rn | ⟨u, x⟩ = un+1} is a supporting hyperplane of Ai at x∗. By

(SC), Ai ∩H is a singleton. Since Ai ∩H+
u = Ai ∩H = {x∗}, we have

φi(u) = max
x∈Ai∩H+

u

fi(x,u)− min
x∈Ai∩H+

u

fi(x,u) = 0.

Deny the latter half assertion, then there exist a sequence uk converging to u and

δ > 0 such that diam(Ai ∩H+
uk) ≥ δ. That is, there exist yk, zk ∈ Ai such that

(2.5) ∥ yk − zk ∥≥ δ, ⟨uk, yk⟩ ≥ ukn+1, ⟨uk, zk⟩ ≥ ukn+1.

By compactness of Ai, we may assume that yk and zk converge to some y, z ∈ Ai,

respectively. Taking k → ∞ in (2.5), we have

∥ y − z ∥≥ δ, ⟨u, y⟩ ≥ un+1, ⟨u, z⟩ ≥ un+1.

Therefore, Ai ∩ H+
u includes distinct points y and z, which contradicts the first

assertion.

(4) Since max{fi(x,u) | x ∈ Ai∩H+
u }−min{fi(x,u) | x ∈ Ai∩H+

u } is continuous

on the open set U+
i , and since δ∗(u | Ai)−un+1 is continuous on the open set U−

i , it

suffices to prove that φi is continuous at any u ∈ U0
i . Assume that uk = (uk, ukn+1)

converges to u. Since φi(u) = 0, we may assume that φi(u
k) ̸= 0 for all k.
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(i) If φi(u
k) < 0, then

φi(u
k) = δ∗(uk | Ai)− ukn+1 → δ∗(u | Ai)− un+1 = 0 = φi(u).

(ii) If φi(u
k) > 0, then

φi(u
k) = max

x∈Ai∩H+

uk

fi(x,u
k)− min

x∈Ai∩H+

uk

fi(x,u
k).

Since fi is uniformly continuous on the compact set Ai×Sn, and since the diameter

of Ai ∩H+
uk tends to 0, we see for any ε > 0

|fi(y,uk)− fi(z,u
k)| < ε (y, z ∈ Ai ∩H+

uk)

for all sufficiently large k. Therefore

0 ≤ max
x∈Ai∩H+

uk

fi(x,u
k)− min

x∈Ai∩H+

uk

fi(x,u
k) < ε,

that is, |φi(u
k)− φi(u)| = |φi(u

k)| < ε. □

Lemma 2.2. Assume that fi(x,u) is antipodal w.r.t. u for any x ∈ Rn. Then

(2.6) φi(−u) =

{
max

x∈Ai∩H−
u

fi(x,u)− min
x∈Ai∩H−

u

fi(x,u) (Ai ∩H−
u ̸= ∅),

un+1 − δ∗(u | Ai) (Ai ∩H−
u = ∅).

Proof. Since H+
−u = H−

u , Ai∩H−
u is non-empty if and only if Ai∩H+

−u is non-empty.

Then it follows from definition of φi that

φi(−u) = max
x∈Ai∩H+

−u

fi(x,−u)− min
x∈Ai∩H+

−u

fi(x,−u)

= max
x∈Ai∩H−

u

(−fi(x,u))− min
x∈Ai∩H−

u

(−fi(x,u))

= max
x∈Ai∩H−

u

fi(x,u) −min
x∈Ai∩H−

u

fi(x,u).

If Ai ∩H−
u is empty, then Ai ∩H+

−u is empty. Hence, by definition of φi, we have

φi(−u) = δ∗(−u | Ai) + un+1 = un+1 − δ∗(u | Ai).

□

By applying Borsuk-Ulam’s theorem to φ : Sn → Rn, we obtain the following,

which is an extension of Theorem 1.1.

Theorem 2.3. Assume that fi(x,u) is antipodal w.r.t. u and (SC) is satisfied

for any i = 1, . . . , n. Then there exists some u ∈ Sn such that both Ai ∩ H+
u and

Ai ∩H−
u are non-empty, and

(2.7) max
x∈Ai∩H+

u

fi(x,u)− min
x∈Ai∩H+

u

fi(x,u) = max
x∈Ai∩H−

u

fi(x,u)− min
x∈Ai∩H−

u

fi(x,u)

for any i = 1, . . . , n.
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Proof. By Borsuk-Ulam’s theorem, there exists u ∈ Sn such that φ(u) = φ(−u).

Suppose that Ai ∩H+
u is empty for some i. Then Lemma 2.1 (2) implies φi(u) < 0.

On the other hand, Since Ai ∩H−
u = Ai ̸= ∅, we see from (2.6) that φi(−u) ≥ 0,

which contradicts φi(u) = φi(−u). Hence Ai∩H+
u is non-empty. Similarly, Ai∩H−

u

is non-empty. Therefore (2.7) is a direct consequence of (2.1) and (2.6). □

3. Special case of fi(x,u)

In Section 2, we required the strict convexity (SC) for Ai to guarantee the con-

tinuity of φi. When we take fi(x,u) = ⟨u, x⟩, we do not need (SC).

Lemma 3.1. When we take fi(x,u) = ⟨u, x⟩ for any i = 1, . . . , n, φi is continuous

on the whole Sn without assuming (SC).

Proof. It suffices to prove that φi is continuous at any u = (u, un+1) such that

φi(u) = 0. Then, it follows from Lemma 2.1 (2) that Ai ∩H+
u is non-empty. So, by

definition of φi, we have

max
x∈Ai∩H+

u

⟨u, x⟩ − min
x∈Ai∩H+

u

⟨u, x⟩ = φi(u) = 0,

which implies that ⟨u, x⟩ is constant on Ai ∩H+
u = {x ∈ Ai | ⟨u, x⟩ ≥ un+1}.

Now, assume that uk = (uk, ukn+1) converges to u. Since φi(u) = 0, it’s enough

to consider k such that φi(u
k) ̸= 0.

(i) If there are infinitely many k such that φi(u
k) > 0, then it holds that

(3.1) φi(u
k) = max

x∈Ai∩H+

uk

⟨uk, x⟩ − min
x∈Ai∩H+

uk

⟨uk, x⟩ = ⟨uk, xk⟩ − ⟨uk, yk⟩

for some xk, yk ∈ Ai ∩Huk . By taking subsequences, we may assume that xk and

yk converge to some x∗ ∈ Ai and y∗ ∈ Ai, respectively. Taking k → ∞ in (3.1), we

have

(3.2) lim
k→∞

φi(u
k) = ⟨u, x∗⟩ − ⟨u, y∗⟩.

Also, since ⟨uk, xk⟩ ≥ ukn+1, we have ⟨u, x∗⟩ ≥ un+1, that is, x
∗ ∈ Ai∩H+

u . Similarly

we have y∗ ∈ Ai ∩ H+
u . Since ⟨u, x⟩ is constant on Ai ∩ H+

u , it follows from (3.2)

that φi(u
k) → 0 = φi(u).

(ii) If there are infinitely many k such that φi(u
k) < 0, then by definition of φi,

it holds that

(3.3) φi(u
k) = δ∗(uk | Ai)− ukn+1 → δ∗(u | Ai)− un+1.

Hence δ∗(u | Ai) − un+1 ≤ 0. On the other hand, taking x0 ∈ Ai ∩ H+
u ⊂ Ai, we

have δ∗(u | Ai)− un+1 ≥ ⟨u, x0⟩ − un+1 ≥ 0. Therefore

φi(u
k) → δ∗(u | Ai)− un+1 = 0 = φi(u).

□
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Theorem 3.2. Let Ai ⊂ Rn (i = 1, . . . , n) be non-empty compact convex sets. Then

there exists some u ∈ Sn such that both Ai ∩H+
u and Ai ∩H−

u are non-empty and

(3.4) δ∗(u | Ai ∩H+
u )− δ∗(u | Ai ∩H+

u ) = δ∗(u | Ai ∩H−
u )− δ∗(u | Ai ∩H−

u )

for all i = 1, . . . , n.

Proof. Take fi(x,u) = ⟨u, x⟩ for any i = 1, . . . , n. Since φi is continuous by Lemma

3.1, we obtain (2.7) as well as Theorem 2.3. Then LHS of (2.7) turns into

φi(u) = max
x∈Ai∩H+

u

⟨u, x⟩ − min
x∈Ai∩H+

u

⟨u, x⟩ = δ∗(u | Ai ∩H+
u )− δ∗(u | Ai ∩H+

u ),

and RHS of (2.7) turns into

φi(−u) = max
x∈Ai∩H−

u

⟨u, x⟩ − min
x∈Ai∩H−

u

⟨u, x⟩ = δ∗(u | Ai ∩H−
u )− δ∗(u | Ai ∩H−

u ).

Therefore, we obtain (3.4). □

Example 3.3. n = 1. Take f1(x1,u) = u1x1 and A1 = [−1, 1]. Representing

u ∈ S1 in polar coordinates as u = (cos θ, sin θ) (−π/4 ≤ θ ≤ 7π/4), we have

A1 ∩H+
u = {x1 ∈ [−1, 1] | x1 cos θ ≥ sin θ} =


[tan θ, 1] (−π/4 ≤ θ ≤ π/4)

∅ (π/4 < θ < 3π/4)

[−1, tan θ] (3π/4 ≤ θ ≤ 5π/4)

[−1, 1] (5π/4 ≤ θ ≤ 7π/4).

δ∗(u1 | A1)− u2 =

{
|u1| − u2 (u1 ̸= 0)

−u2 (u1 = 0)
= |u1| − u2 = | cos θ| − sin θ.

δ∗(u1 | A1)− δ∗(u1 | A1) =


cos(θ)− sin(θ) (−π/4 ≤ θ ≤ π/4)

sin(θ)− cos(θ) (3π/4 ≤ θ ≤ 5π/4)

2| cos(θ)| (5π/4, 7π/4).

Therefore, the optimal-value function (2.1) turns into

φ1(u) =


| cos(θ)− sin(θ)| on [−π/4, π/4] ∪ [3π/4, 5π/4]

| cos θ| − sin θ on [π/4, 3π/4]

2| cos(θ)| on [5π/4, 7π/4].

There is a pair of antipodal points where φ1 has the same value. For u = (1, 0)

corresponding to θ = 0, π, it holds that φ1(u) = φ1(−u) = 1 .

We have just removed the assumption of the strict convexity of Ai. By taking its

convex hull, we do not need to require convexity either. So Ai can be finite.

Corollary 3.4. Let Ai ⊂ Rn (i = 1, . . . , n) be non-empty compact sets. Then there

exists some u ∈ Sn such that both Ai ∩H+
u and Ai ∩H−

u are non-empty and

(3.5) δ∗(u | Ai ∩H+
u )− δ∗(u | Ai ∩H+

u ) = δ∗(u | Ai ∩H−
u )− δ∗(u | Ai ∩H−

u )

for all i = 1, . . . , n.
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Figure 1. The graph of φ1 on S1. The doted curve corresponds to

the case A1 ∩H+
u = ∅.

Proof. This is a combination of Theorem 3.2,

δ∗(u | coAi ∩H±
u ) = δ∗(u | Ai ∩H±

u )

and

δ∗(u | coAi ∩H±
u ) = δ∗(u | Ai ∩H±

u ).

□

Figure 2. This figure represents the equal division of the widths of

data A1 and A2. The black points represent data from A1, and the

white points represent data from A2.
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