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AN APPLICATION OF BORSUK-ULAM’S THEOREM TO
PARAMETRIC OPTIMIZATION

HIDEFUMI KAWASAKI

ABSTRACT. Borsuk-Ulam’s theorem is a useful tool of algebraic topology. It
states that for any continuous mapping f from the n-sphere S™ to R", there exists
a pair of antipodal points such that f(z) = f(—xz). As for its applications, ham-
sandwich theorem, necklace theorem and coloring of Kneser graph by Lovész [3]
are well-known. Recently [2] applied Borsuk-Ulam’s theorem to an n-tuple of
parametric optimization problems with parameter u € S™. This paper sharpens
the results of [2].

1. INTRODUCTION

Borsuk-Ulam’s theorem [1] is an important theorem of algebraic topology. It
states that for any continuous mapping f from the n-sphere S™ to the Euclidean
space R", there exists a point x € S™ such that f(x) = f(—x). It has several
equivalent statements: Tucker’s lemma, is a combinatorial version and LSB theorem
is a set-cover version, see e.g. Matousek [4]. This is reminiscent of Brouwer’s fixed
point theorem, which also has many equivalent statements: Sperner’s lemma is
a combinatorial version and KKM lemma is a set-cover version. Borsuk-Ulam’s
theorem implies Brouwer’s fixed point theorem. However, the converse is unknown
for 100 years. In this sense, Borsuk-Ulam’s theorem seems stronger than Brouwer’s
fixed point theorem.

Ham-sandwich theorem is one of the most famous applications of Borsuk-Ulam’s
theorem. Let Ai,..., A, C R"™ be compact sets with positive Lebesgue measure
p. Then ham-sandwich theorem states that there is a hyperplane H which divides
each A; in half, that is, u(A; N HT) = p(A; N H™) for any i = 1,...,n, where H
and H~ denote closed half spaces determined by H.

Recently in [2] we applied Borsuk-Ulam’s theorem to an n-tuple of parametric
optimization problems with parameter u© € S™ by using a technique of ham-sandwich
theorem, and presented Theorems 1.1 and 1.2 below.

Before quoting them, we explain our notations. For any w = (u1,...,uny1) € S™,
we write u = (u1,...,up) € R" and u = (u,uns1). We assign to u € S™ a
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hyperplane H,, = {z € R" | (u,x) = u,+1} and two closed half-spaces:
Hf ={x e R" | (u,2) > upi1}, H, ={z € R" | (u,x) < upi1},

where (u, ) denotes the inner product uxy+- - -+upzy. It is clear that Hju =H,.
In the case of u # 0, both H, and H,, are non-empty. In the case of u = 0, one of
H; and Hy, is R, and the other is empty.
We assume the following strict convexity of A; in Theorem 1.1 and Sections 2.
(SC) A; N H = {z} for any boundary point = of A; and for any supporting
hyperplane H of A; at x.

Theorem 1.1 ([2]). Let A; C R™ be a compact convex set whose interior is non-
empty, and Q; be a non-singular matriz of order n for any i = 1,...,n. Assume
(SC) for any i =1,...,n. Then there exists some w € S™ such that both A; N H}
and A; N H,, are non-empty, and
(1.1)  max (u,Q;z) — min (u,Q;z) = max (u,Q;zr)— min (u,Q;x).
zeA;NHL zEA;NHLE z€A;NHy z€A;NHy
Theorem 1.2 ([2]). Let A; C R"™ be a compact set whose convex hull has a non-
empty interior for any t = 1,...,n. Then there exists some u € S™ such that both
A;NH} and A; N H, are non-empty and

(1.2) 6*(u | cod;NH)—64(u | coAd;NH) = 6*(u | cod;NH, ) —6x(u | cod;NH,)
foralli=1,... n, where coA; denotes the convex hull of A;, and

Mul X) = gle%?(u,m), de(u | X) = ;rg)r(l(u,@

In this paper, we extend Theorem 1.1 to any antipodal function f;(z,u) w.r.t.
u, that is, fi(z, —u) = —fi(x,u) for any (z,u) € R" x S™. Further we remove some
assumptions on the interior of A; from Theorems 1.1 and 1.2.

In Section 2, we introduce n-tuple of parametric optimization problems with
parameter u € S™, and show the continuity of its optimal-value function w.r.t. u.
By applying Borsuk-Ulam’s theorem to the optimal-value functions, we obtain the
main theorem (Theorem 2.3).

2. PARAMETRIC OPTIMAL-VALUE FUNCTIONS

In this section, we consider a family of parametric optimization problems, and
show the continuity of optimal-value functions.

Let A; be a non-empty compact convex subset of R™ and f; : R” x S™ — R be
a continuous function for any ¢ = 1,...,n. We consider n-tuple of optimal-value
functions ¢ = (¢1,...,¢n) : 5" = R™

c€A;NHY, r€A;NH,
(5*(U | Al) — Unp+1 (AZ N H;— = Q))

The essential part of (2.1) is the first case. The second case comes from the fact
that A; N H = 0 if and only if §*(u | A;) — ups1 < 0, see Lemma 2.1 below. We

max fi(z,u) — min fi(z,u) (A;NHS #0),
R :={ : :
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note that we defined ¢;(u) = 0 for A; N H,l =0 in [2]. The present ¢; works better
than the old one.
Set U, Uf and UiO as follows.

(2.2) U~ = {ueR"™ |5 (u| A) <uny1l,
(2.3) Ul = {uweR"™ |5 (u]A) > upi1},
(2.4) U = {uweR"™ |5 (u| A) = upy1}

Since A; is a compact convex set, 6*(u | A;) — un41 is a continuous convex function
_ — . + . O .
of u = (u, up41). Hence U, is open and convex, U;" is open, and U;’ is closed.

Lemma 2.1.
(1) pi(u*) = =1 at the north pole u* := (0,...,0,1) € S™.
(2) A; N HY is empty if and only if u € U .
Further, under the assumption (SC), it holds that
(3) If 6*(u | A;) = upy1, then A; NV H is a singleton and ¢;(u) = 0. For any
converging sequence uF to w, the diameter of A; N HJ,C converges to 0.
(4) @i is continuous on S™.

Proof. Since A; N Hf. = {z € A; | (0,x) > 1} = () at the north pole u* = (0, 1),
and since 0*(0 | A;) — 1 = —1, (1) is apparent from the second case of (2.1).

(2) Since A; is a compact convex set, it holds that
AiNH =0 & max{(u,2) |2 € A} <upp1 & uweU; .

(3) If 6*(u | A;) = up+1, then it follows from (2) that A; N H is non-empty.
Since A; is compact, there exists z* € A; such that (u,z*) = 0*(u | A;) = Upy1.
Hence H := {z € R" | (u,x) = up4+1} is a supporting hyperplane of A; at z*. By
(SC), A; N H is a singleton. Since A; N Hf = A; N H = {z*}, we have

pi(u) = max fi(z,u)— min f;i(z,u)=0.
zEANHE zEA;NHL

Deny the latter half assertion, then there exist a sequence u” converging to u and

d > 0 such that diam(A4; N H;k) > §. That is, there exist y*, z¥ € A; such that
(2‘5) H yk - Zk HZ 57 <uk7yk> > U’I:LJrl? <uk72k> > U’?li+1'

By compactness of 4;, we may assume that y* and z* converge to some vy, z € A4;,
respectively. Taking k& — oo in (2.5), we have

|| Yy—=z Hz 57 <U,y> > Un+1, <'LL,Z> > Un+1-

Therefore, A; N H,l includes distinct points y and z, which contradicts the first
assertion.

(4) Since max{ f;(z,u) | * € A;NH}} —min{f;(z,u) | x € A;NH}} is continuous
on the open set U;", and since 6*(u | 4;) —uy41 is continuous on the open set U, , it
suffices to prove that ¢; is continuous at any w € U?. Assume that u® = (u¥, uf 1)
converges to u. Since @;(u) = 0, we may assume that o;(u*) # 0 for all k.
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(i) If @;(u*) < 0, then
wi(uf) = 6% (u¥ | 4;) — uflﬂ — 0" (u | Ai) —upt1 =0 = pi(u).
(ii) If @;(u¥) > 0, then

gpl(uk) = max fi(ﬂj‘,uk)— min+ fz(x,uk)
xeAimHuk CCEAiﬂHuk

Since f; is uniformly continuous on the compact set A; x S™, and since the diameter
of A; N H;'k tends to 0, we see for any € > 0

‘fl(y¢uk)_fl(z7uk)| <e (ya zeAzmHIk>

for all sufficiently large k. Therefore

0< max fi(z,u’)— min fi(z,u¥) <e,
a:eAimH:,C a:eAmHIk
that is, ](pi(uk) —pi(u)| = ](pz(uk)| < E. O

Lemma 2.2. Assume that f;(x,wu) is antipodal w.r.t. w for any x € R™. Then

{ max fi(z,u) — min fi(z,u) (A;NH, #0),
(2,6) Spi(—u) — r€EA,NHy, rE€A;NH,
Up+1 — (5*(11, | AZ) (AZ nNH, = Q))

Proof. Since HY,, = H,, A;NH, is non-empty if and only if A;NH*,, is non-empty.
Then it follows from definition of ¢; that

o) = max feouw) - min | fiz-u)
zGAZﬂHfu IEAiﬂHiru

= max (7fi($7u))7 min (*fz(x’u))
r€A;NHy, r€A;NH,

= max fi(zr,u) —min f;(z,u).
T€A;NHy x€A;NHy,

If A; N H is empty, then A; N H*, is empty. Hence, by definition of ¢;, we have
@i(—u) = 0"(—u | Ai) + Uns1 = tny1 — 0u(u | 4;).
O

By applying Borsuk-Ulam’s theorem to ¢ : S — R", we obtain the following,
which is an extension of Theorem 1.1.

Theorem 2.3. Assume that fi(z,u) is antipodal w.r.t. w and (SC) is satisfied
for any i = 1,...,n. Then there exists some u € S™ such that both A; N H, and
A; N H,, are non-empty, and

(2.7) max fi(z,u) — min fi(zr,u)= max fi(z,u)— min fi(z,u)
zEANHE zEA;NHLE z€A;NHy z€A;NHy

foranyi=1,... ,n.
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Proof. By Borsuk-Ulam’s theorem, there exists u € S™ such that p(u) = p(—u).
Suppose that A; N H, is empty for some i. Then Lemma 2.1 (2) implies ¢;(u) < 0.
On the other hand, Since A; N H, = A; # (), we see from (2.6) that ¢;(—u) > 0,
which contradicts ¢;(u) = p;(—u). Hence A;NH,} is non-empty. Similarly, A;NH,,
is non-empty. Therefore (2.7) is a direct consequence of (2.1) and (2.6). O

3. SPECIAL CASE OF fi(z,u)

In Section 2, we required the strict convexity (SC) for A; to guarantee the con-
tinuity of ¢;. When we take f;(z,u) = (u,z), we do not need (SC).

Lemma 3.1. When we take fi(x,u) = (u,z) for anyi=1,...,n, ¢; is continuous
on the whole S™ without assuming (SC).

Proof. Tt suffices to prove that ; is continuous at any w = (u,up+1) such that
¢i(u) = 0. Then, it follows from Lemma 2.1 (2) that A; N H is non-empty. So, by
definition of ¢;, we have
max (u,z) — min (u,x) = @;(u) =0,
r€ANHYE zEA;NHY

which implies that (u,z) is constant on A; N H = {z € A; | (u,x) > upi1}-

Now, assume that u® = (u”,u%, ) converges to u. Since ¢;(u) = 0, it’s enough
to consider k such that o;(u*) # 0.

(i) If there are infinitely many k such that o;(u*) > 0, then it holds that

(1) wuh) = max_ (F2)— min_ (uFa) = (Wb,ab) - (Wb, p)
zeAmH:k :ceAmH:k

for some z¥, y* € A; N H,.. By taking subsequences, we may assume that z* and
y* converge to some z* € A; and y* € A;, respectively. Taking k — oo in (3.1), we
have

(3.2) Jim i (u) = (u,2%) = (u,y7").

Also, since (u*, 2*) > uth, we have (u, z*) > up41, that is, * € A;NH,. Similarly
we have y* € A; N H,l. Since (u, ) is constant on A; N H,l, it follows from (3.2)
that @;(uF) — 0 = ¢;(u).

(ii) If there are infinitely many & such that ¢;(u”) < 0, then by definition of ¢,
it holds that

(3-3) pi(u’) = 6" (u" | Aj) —upiy — 5 (u | Ai) = unsr.

Hence 6*(u | A;) — upy1 < 0. On the other hand, taking 2% € A; N H} C A;, we
have 6*(w | A;) — uni1 > (u, 2% — upp1 > 0. Therefore

@i(uF) = 5" (u | Aj) — uns1 = 0 = p;(u).
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Theorem 3.2. Let A; CR" (i =1,...,n) be non-empty compact convex sets. Then
there exists some u € S™ such that both A; N\ H,f and A; N H,, are non-empty and

(3.4)  &(u| ANHD) —d(u| AinH)=06"(u| A NH,) —6.(u|A;NH,)
foralli=1,... n.

Proof. Take fi(z,u) = (u,z) for any i = 1,...,n. Since y; is continuous by Lemma
3.1, we obtain (2.7) as well as Theorem 2.3. Then LHS of (2.7) turns into

pi(u) = max (u,z) — min (u,x) =0 (u| A NHL) = 6(u| A NH]),
T€EA;NHL z€EANHE

and RHS of (2.7) turns into
vi(—u) = max (u,z)— min (u,x)=0"(u|A; NH,)—d(u|A NH,).

w€ANHy, w€ANHy,
Therefore, we obtain (3.4). O
Example 3.3. n = 1. Take fi(x1,u) = wjx; and A; = [—1,1]. Representing

u € S! in polar coordinates as u = (cos0,sin ) (—7/4 < § < Tr/4), we have

[tanf,1]  (—7w/4 <60 <m/4)

B B o cosd > sin g — 0 (/4 < 0 < 3m/4)

A0 Hy = {z € [FL ]y cosh 2 sind) = [~1,tand] (37/4 < 0 < 57 /4)
~1,1]  (57/4 <0 < Tn/4).

— 0
0" (uq |A1)—u2:{|u1‘ uz (w7 0) = |uy| — ug = | cos @] — sin .
—Uus Ul = 0)

cos(f) —sin(f) (—m/4 <6 <m/4)
0" (ur | A1) — 0x(ur | A1) =< sin(f) —cos(f) (3w/4 <0 < b57/4)
2| cos(0)] (5m/4,7m/4).
Therefore, the optimal-value function (2.1) turns into
|cos(0) —sin(f)| on [—m/4,7/4] U [37/4, 57 /4]
v1(u) = |cos@| —sinf  on [r/4,3m/4]
2| cos(0)] on [5m/4,Tr/4].
There is a pair of antipodal points where ¢; has the same value. For u = (1,0)

corresponding to 6 = 0, , it holds that p1(u) = p1(—u) =1.

We have just removed the assumption of the strict convexity of A;. By taking its
convex hull, we do not need to require convexity either. So A; can be finite.

Corollary 3.4. Let A; CR" (i =1,...,n) be non-empty compact sets. Then there
exists some u € S™ such that both A; N H and A; N H,, are non-empty and

(3.5)  0%(u| AN HD) —0u(u| AN HE) = 6" (u | A N HY) — 6.(u| Ay 0 HY)

foralli=1,... n.



AN APPLICATION OF BORSUK-ULAM’S THEOREM TO PARAMETRIC OPTIMIZATION 251

ESE)

FIGURE 1. The graph of ¢; on S'. The doted curve corresponds to
the case A1 N H,f = 0.

Proof. This is a combination of Theorem 3.2,
6 (u | cody NHE) = 6" (u| A N HE)

and
Su(u | coA; N HE) = 6,(u| A;nHDE).

Al N HJ A2 N H{i—
u
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F1GURE 2. This figure represents the equal division of the widths of
data A; and As. The black points represent data from A;, and the
white points represent data from As.
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