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Fractional differential equations make use of fractional derivatives. Their capacity

to simulate intricate phenomena has drawn a great deal of attention. Investigat-

ing fractional differential equations therefore becomes a crucial part of this subject.

There are many analytical and numerical methods exist to solve this type of frac-

tional differential equations such as Adomian decomposition method(ADM) [10,23–

25], variational iteration method(VIM) [12,15], residual power series method(RPSM)

[2], reduced differential transform method(RDTM) [31], new iterative method(NIM)

[4, 5], homotopy perturbation method(HPM) [13, 14], homotopy analysis method

(HAM) [17,19–22,32], modified homotopy analysis method(modified-HAM) [27,30],

collocations methods [3,33], wavelets methods [6], finite element method(FEM) [29],

finite volume method(FVM) [11] etc.

In this study, we investigate some non-linear fractional partial differential using

the homotopy analysis transform technique(HATT). The HATT is a simple conjunc-

tion of the new integral transform [28] and the homotopy analysis method. Section

2 is all about the basic definitions from fractional calculus and integral transform.

In Section 3, the procedure of the proposed method is provided. And the some

applications of suggested method is given in the Section 4. The graphical and nu-

merical discussion is provided in Section 5. The last section contains some conclude

notes.

2. Some preliminaries

Some fundamental concepts of fractional order derivatives, such as

Riemann-Liouville’s derivative, Caputo’s derivative, and the new integral trans-

form, will be covered in this part. Additionally, the new integral transformation of

those derivatives will be discussed.

Definition 2.1. The βth(β > 0)-order Riemann-Liouville [17] fractional integration

of a function φ(χ) can be stated as below :

(2.1) Iβ
χφ(χ) =


1

Γ(β)

χ∫
0

(χ− ς)β−1φ(ς)dς, β > 0, χ > 0

φ(χ), for β = 0

Definition 2.2. The βth(β > 0)-order Riemann-Liouville [30] fractional derivative

of a function φ(χ) can be stated as below :

(2.2) RLDβ
χφ(χ) =

1

Γ(m− β)

dm

dχm

χ∫
0

(χ− ς)m−β−1φ(ς)dς,

where m is a positive integer such that m− 1 < β ≤ m.
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Definition 2.3. The βth(β > 0)-order Caputo [30] fractional derivative of a func-

tion φ(χ) can be stated as below :

(2.3) CDβ
χφ(χ) =


1

Γ(m−β)

χ∫
0

(χ− ς)m−β−1 dm

dςmφ(ς)dς, for m− 1 < β < m

φ(χ), for β = m, m ∈ N

Definition 2.4. Let the function φ(χ) ∈ ℧, where

℧ = {φ(χ) | ∃M, η1, η2 > 0, |φ(χ)| < M exp

(
|χ|
ηi

)
, if χ ∈ (−1)i × [0,∞)}.

Then the new integral transform [28] is defined as follows

(2.4) V[φ(χ)] = s

∞∫
0

φ(χ)e
−sχ
u dχ

with the inverse of the new integral transform as

(2.5) V−1[V[φ(χ)]] = φ(χ) = lim
t→∞

1

2πi

1

u

c+it∫
c−it

1

s
e

sχ
u V[φ(χ)]ds

Theorem 2.5 ([28]). If φ(χ) is a piecewise-continuous function in χ ∈ [0, η], ∀η ∈ R
and exponential order of φ(χ) is µ, then the new integral transform of φ(χ) exists

for all s
u > µ.

Theorem 2.6. If V[φ1(χ)] and V[φ2(χ)] are the new integral transform of φ1(χ)

and φ2(χ) respectively [28], then

(2.6) V[xφ1(χ) + yφ2(χ)] = xV[φ1(χ)] + yV[φ2(χ)], ∀ x, y ∈ R.

Theorem 2.7. Let φ(m)(χ) ∈ ℧ is the m−the derivative of a function φ(χ) with

respect to χ [28], then

(2.7) V[φ(m)(χ)] =
( s
u

)m
V[φ(χ)]− s

m−1∑
j=0

( s
u

)m−j−1
φ(j)(0)

Theorem 2.8. If V[φ1(χ)] and V[φ2(χ)] are the new integral transform of φ1(χ)

and φ2(χ) respectively [28], then the new integral transform of the convolution of

φ1 and φ2 is

(2.8) V[(φ1 ∗ φ2)(χ)] =
1

s
V[φ1(χ)]V[φ2(χ)]

where,

φ1 ∗ φ2 =

χ∫
0

φ1(ς)φ2(χ− ς)dς.
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Definition 2.9. The new transform of Riemann-Liouville fractional integration can

be given by [28]

(2.9) V[Iβ
χφ(χ)] =

(u
s

)β
V[φ(χ)]

Definition 2.10. The new transform of Riemann-Liouville fractional derivative can

be given by [28]

(2.10) V[RLDβ
χφ(χ)] =

( s
u

)β
V[φ(χ)]− s

m−1∑
j=0

( s
u

)m−j−1 dj

dχj
Im−β
χ φ(0+)

Definition 2.11. The new transform of Caputo fractional derivative operator can

be given by [28]

(2.11) V[CDβ
χφ(χ)] =

( s
u

)β
V[φ(χ)]− s

m−1∑
j=0

( s
u

)β−j−1
φ(j)(0+)

Some basic properties of the new integral transform: The following prop-

erties can be derived with the help of above theorems and definitions.

(1) V[c] = cs
(
u
s

)
, c ∈ R.

(2) V[ξβ ] = Γ(β + 1)s
(
u
s

)β+1
, β > −1 .

3. Analysis of the proposed method(HATT)

In this section, the brief analysis of the homotopy analysis transformation tech-

nique is discussed. This technique is a simple conjunction of the homotopy analysis

method and the new integral transform. Let us consider the general temporal frac-

tional non-linear partial differential equation in Caputo derivative sense as follows:

(3.1) CDβ
τ φ(χ, τ) +N [φ(χ, τ)] +R[φ(χ, τ)] = ϕ(χ, τ), β ∈ ⌊m⌋, m ∈ N.

Where CDβ
τ is a Caputo fractional derivative of β order w.r.t. τ , N [φ(χ, τ)] is

the non-linear and R[φ(χ, τ)] is a remaining term of the differential equation and

ϕ(χ, τ) is a source/known term.

The first step is to apply new integral transform V to the above Eqn. (3.1). By

doing this we can get simple differential equation in an integer order as follows:

V
[
CDβ

τ φ(χ, τ) +N [φ(χ, τ)] +R[φ(χ, τ)]
]
= V[ϕ(χ, τ)](3.2)

V
[
CDβ

τ φ(χ, τ)
]
+ V [N [φ(χ, τ)] +R[φ(χ, τ)]] = V[ϕ(χ, τ)](3.3) ( s

u

)β
V[φ(χ, τ)]− s

m−1∑
j=0

( s
u

)β−j−1
φ(j)(χ, 0)

+ V [N [φ(χ, τ)] +R[φ(χ, τ)]] = V[ϕ(χ, τ)](3.4)
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V[φ(χ, τ)]− s
(u
s

)β m−1∑
j=0

( s
u

)β−j−1
φ(j)(χ, 0)

+
(u
s

)β
V [N [φ(χ, τ)] +R[φ(χ, τ)]− ϕ(χ, τ)] = 0(3.5)

Now the second step is to solve above Eqn. (3.5) using the homotopy analysis

method. For that let us consider the non-linear operator as follows:

NL[φ(χ, τ ; q)] = V[φ(χ, τ ; q)]− s
(u
s

)β m−1∑
j=0

( s
u

)β−j−1
φ(j)(χ, 0; q)

+
(u
s

)β
V [N [φ(χ, τ ; q)] +R[φ(χ, τ ; q)]− ϕ(χ, τ ; q)] = 0,(3.6)

where q ∈ [0, 1] is the homotopy parameter. Now by considering this non-linear

operator NL[φ(χ, τ ; q)], the deformation equation of zero order can be defined as

follows:

(1− q)L[φ(χ, τ ; q)− φ0(χ, τ)] = qℏNL[φ(χ, τ ; q)],(3.7)

where L is the auxiliary linear operator, φ0(χ, τ) is the starting guess of the unknown

function φ(χ, τ) and ℏ ̸= 0 is the auxiliary real parameter. If we put q = 0 and

q = 1 in the above equation (3.7), it holds

φ(χ, τ ; 0) = φ0(χ, τ) and φ(χ, τ ; 1) = φ(χ, τ)(3.8)

respectively. Thus we can say that as q goes from 0 to 1, the solution φ(χ, τ ; q)

varies from the starting guess φ0(χ, τ) to the original solution of the problem (3.1).

By expanding the φ(χ, τ ; q) in the Taylor series expansion form with respect to q,

one can get

φ(χ, τ ; q) =
∞∑
k=0

[
∂kφ(χ, τ ; q)

∂qk

∣∣∣
q=0

]
qk(3.9)

By choosing the properly values of L, φ0(χ, τ) and ℏ, the above series (3.9) con-

verges at q = 1. Now by taking k times derivative of Eqn. (3.7) w.r.t. q and

dividing it by k! ( arranged q = 0), one can get the deformation equation of order

k as below:

L[φk(χ, τ)− ℵkφk−1(χ, τ)] = ℏRk[
−→φ k−1](3.10)

where

Rk[
−→φ k−1] =

1

(k − 1)!

∂k−1NL[φ(χ, τ ; q)]
∂qk−1

∣∣∣
q=0

and

ℵk =

{
0, k ≤ 1.

1, k > 1.
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Here the k-th order deformation equation is a simple linear equation, so it can

be solved easily. By solving that equation one can find φ1(χ, τ), φ2(χ, τ), φ3(χ, τ),

etc.

4. Some applications of the proposed method

In this section, the application of the proposed method to some time-fractional

non-linear partial differential equation is examined.

Example 4.1. Examined the time fractional Foam-drainage [1] problem as follows.

(4.1)
CDβ

τ φ(χ, τ)−
1

2
φ(χ, τ)φχχ(χ, τ)+2φ2(χ, τ)φx(χ, τ)−φ2

x(χ, τ) = 0, 0 < β ≤ 1, τ ≥ 0

and the initial condition is

(4.2) φ(χ, 0) =

{
−
√
l tanh(

√
lχ), χ ≤ 0

0, χ > 0.

The exact solution of the problem for β = 1

(4.3) φExact(χ, τ) =

{
−
√
l tanh(

√
l(χ− lτ)), χ ≤ lτ

0, χ > lτ ,

where l is a velocity constant.

By taking the initial guess φ0(χ, τ) as

φ0(χ, τ) = −
√
l tanh(

√
lχ)(4.4)

and applying our proposed method, discussed in above section, we will get

φ0(χ, τ) = −
√
l tanh(

√
lχ)(4.5)

φ1(χ, τ) = ℏl2
(
tanh(

√
lχ)2 − 1

) τβ

Γ(β + 1)
(4.6)

φ2(χ, τ) = (1 + ℏ)ℏl2
(
tanh(

√
lχ)2 − 1

) τβ

Γ(β + 1)

−
2ℏ2l

7
2 tanh(

√
lχ)
(
tanh(

√
lχ)2 − 1

)
Γ(β + 1)

τ2β

Γ(2β + 1)
(4.7)

So, the approximate solution of the above problem upto 3-terms can written as

follows:

φHATT (χ, τ) = −
√
l tanh(

√
lχ) + ℏl2

(
tanh(

√
lχ)2 − 1

) τβ

Γ(β + 1)

+ (1 + ℏ)ℏl2
(
tanh(

√
lχ)2 − 1

) τβ

Γ(β + 1)

−
2ℏ2l

7
2 tanh(

√
lχ)
(
tanh(

√
lχ)2 − 1

)
Γ(β + 1)

τ2β

Γ(2β + 1)
.(4.8)
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Example 4.2. Consider the one dimensional time fractional form of Burger equa-

tion [16] as follows.

(4.9) CDβ
τ φ(χ, τ) +φ(χ, τ)φχ(χ, τ)−φχχ(χ, τ) = 0, 0 ≤ χ ≤ 1, τ ≥ 0, 0 < β ≤ 1

and the initial condition is

(4.10) φ(χ, 0) =
1

2
− 1

2
tanh

(
1

4
χ

)
.

The exact solution [9] of the problem for β = 1

(4.11) φ(χ, τ) =
1

2
− 1

2
tanh

(
1

4

(
χ− τ

2

))
.

By taking the initial guess φ0(χ, τ) as

φ0(χ, τ) =
1

2
− 1

2
tanh

(
1

4
χ

)
(4.12)

and applying our proposed method(HATT), we will get

φ0(χ, τ) =
1

2
− 1

2
tanh

(
1

4
χ

)
(4.13)

φ1(χ, τ) =
ℏ
16

(
tanh

(
1

4
χ

)2

− 1

)
τβ

Γ(β + 1)
(4.14)

φ2(χ, τ) =
(1 + ℏ)ℏ

16

(
tanh

(
1

4
χ

)2

− 1

)
τβ

Γ(β + 1)

− ℏ2

64Γ(β + 1)
tanh

(
1

4
χ

)(
tanh

(
1

4
χ

)2

− 1

)
τ2β

Γ(2β + 1)
(4.15)

So, the approximate solution of the above problem upto 3-terms can written as

follows:

φHATT (χ, τ) =
1

2
− 1

2
tanh

(
1

4
χ

)
+

ℏ
16

(
tanh

(
1

4
χ

)2

− 1

)
τβ

Γ(β + 1)

+
(1 + ℏ)ℏ

16

(
tanh

(
1

4
χ

)2

− 1

)
τβ

Γ(β + 1)

− ℏ2

64Γ(β + 1)
tanh

(
1

4
χ

)(
tanh

(
1

4
χ

)2

− 1

)
τ2β

Γ(2β + 1)
.(4.16)

5. Results and discussion

In this section, the numerical and graphical analysis provided for above two

examples. There are two main benefits of the using proposed method. The first

one is that the method contains the new integral transform which converts the

fractional differential equation to the simple differential equation. And the second

one is that it contains the embedding parameter ℏ which is very helpful to control
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Figure 1. Graphs of exact solution and HATT approximate solu-

tion for different order β.

the convergence of the series solution.

Figure (1) is all about Ex. (4.1). It contains the graphs of exact solution and

the approximate solution derived by HATT for various order β. Graph of exact

one can be found in the subfigure (1a) and subfigures (1b)-(1f) display the HATT

approximate solutions for different values of β like β = 1, β = 0.95, β = 0.90, β =

0.80, β = 0.70 respectively. Table (1) shows the numerical solutions for different

order β and compared with exact one for β = 1 for Example (4.1). In Table (2),

the comparison of approximate solution obtained using HATT with other method

is provided.
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Figure 2. Graphs of exact solution and HATT approximate solu-

tion for different order β.

Figure 3. ℏ-curves for Example (4.1) and (4.2).
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Table 1. Numerical data for different order β and compared with

exact one for β = 1 at l = 1 and ℏ = −1.04 for Example (4.1).

χ τ
φHATT

at β = 0.70

φHATT

at β = 0.80

φHATT

at β = 0.90

φHATT

at β = 0.95

φHATT

at β = 1

φExact

at β = 1

1 0.02 -0.729332 -0.740955 -0.748332 -0.750959 -0.753067 -0.753066

0.04 -0.706779 -0.724473 -0.736286 -0.740668 -0.744277 -0.744277

0.06 -0.686061 -0.708773 -0.724374 -0.730290 -0.735222 -0.735222

0.08 -0.666200 -0.693368 -0.712415 -0.719748 -0.725897 -0.725897

0.10 -0.646809 -0.678061 -0.700333 -0.709007 -0.716298 -0.716298

2 0.02 -0.958494 -0.960514 -0.961781 -0.962229 -0.962587 -0.962587

0.04 -0.954526 -0.957658 -0.959716 -0.960472 -0.961090 -0.961090

0.06 -0.950827 -0.954903 -0.957654 -0.958685 -0.959534 -0.959534

0.08 -0.947241 -0.952172 -0.955566 -0.956856 -0.957917 -0.957917

0.10 -0.943709 -0.949435 -0.953441 -0.954980 -0.956237 -0.956237

Table 2. Comparison of absolute error for our proposed method

with other method for Example (4.1) at β = 1, l = 1 and ℏ = −1.04.

χ τ Absolute error by RPS [1] Absolute error by HATT

1.0 0.02 6.6627 ×10−6 8.2427 ×10−7

0.04 9.0798 ×10−5 6.5549 ×10−6

0.06 3.8406 ×10−4 2.1982 ×10−5

0.08 1.0024 ×10−3 5.1754 ×10−5

3.0 0.02 7.2440 ×10−10 5.2061 ×10−11

0.04 2.4547 ×10−8 4.2262 ×10−9

0.06 1.9773 ×10−7 1.4413 ×10−8

0.08 8.8589 ×10−7 3.4523 ×10−7

5.0 0.02 2.4314 ×10−13 1.0133 ×10−14

0.04 8.2420 ×10−12 8.4632 ×10−13

0.06 6.6377 ×10−11 2.6669 ×10−12

0.08 2.9735 ×10−10 6.4613 ×10−11

Similarly, the graphical analysis of Ex. (4.2) given in Figure (2). Subfigure (2a)

displays the graph of exact solution and subfigures (2b)-(2f) contain the graphs of

approximate solution derived using HATT for different order β. Table (3) shows the

absolute error analysis and Table (4) contains the numerical solutions for different

order β and compared with exact solution for β = 1. In the last Figure (3), ℏ-curves
for different order β of Example (4.1) and (4.2) are given. From Figure (??), the

valid region for ℏ-values of Ex. (4.1) for β = 1 can be found as −3 ≤ ℏ ≤ 2.

Similarly, we can find the valid region for other fractional order β as segment of

curve which is parallel to horizontal line. Also, the valid region for ℏ- values of Ex.
(4.2) for β = 1 is an interval −1.5 ≤ ℏ ≤ 1.
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Table 3. Absolute error for Example (4.2) at ℏ = −1.

χ τ |φExact − φHATT |
1.0 0.02 2.0209 ×10−9

0.04 1.6162 ×10−8

0.06 5.4422 ×10−8

0.08 1.2920 ×10−7

2.0 0.02 7.8794 ×10−10

0.04 6.0196 ×10−9

0.06 2.0095 ×10−8

0.08 4.8014 ×10−8

5.0 0.02 8.6945 ×10−8

0.04 6.8432 ×10−9

0.06 2.2920 ×10−8

0.08 5.4303 ×10−8

Table 4. Numerical data for different order β and compared with

exact one for β = 1 for Example (4.2) at ℏ = −1.

χ τ
φHATT

at β = 0.70

φHATT

at β = 0.80

φHATT

at β = 0.90

φHATT

at β = 0.95

φHATT

at β = 1

φExact

at β = 1

1 0.02 0.381736 0.380305 0.379349 0.379000 0.378716 0.378716

0.04 0.384369 0.382360 0.380919 0.380362 0.379894 0.379894

0.06 0.386625 0.384214 0.382411 0.381691 0.381072 0.381072

0.08 0.388669 0.385951 0.383855 0.382999 0.382252 0.382252

0.10 0.390569 0.387605 0.385266 0.384293 0.383433 0.383433

2 0.02 0.272461 0.271258 0.270456 0.270163 0.269925 0.269926

0.04 0.274680 0.272985 0.271773 0.271305 0.270912 0.270912

0.06 0.276588 0.274547 0.273026 0.272421 0.271900 0.271900

0.08 0.278321 0.276013 0.274242 0.273520 0.272892 0.272892

0.10 0.279935 0.277413 0.275431 0.274610 0.273885 0.273885

6. Conclusion

In this study, the non-linear fractional partial differential equations were ex-

amined using a novel analytical technique termed the homotopy analysis transform

technique (HATT), which is a straightforward combination of the new integral trans-

form and the homotopy analysis method. We have studied two issues and produced

approximate analytical solutions using the suggested methodology. We can see that

compared to other methods described in the literature, the approximations answers

obtained using HATT look better. HATT has been discovered to be user-friendly

and computation-efficient.
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