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A NOVEL HYBRID APPROACH TO SOLVE NON-LINEAR
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS VIA
NEW INTEGRAL TRANSFORM

VISHALKUMAR J. PRAJAPATI AND RAMAKANTA MEHER

ABSTRACT. In this paper, the homotopy analysis transform technique is a math-
ematical approach that has been developed to solve non-linear partial differential
equations, particularly those that are fractional in nature. This approach com-
bines homotopy analysis method(HAM) and transform method to derive analyt-
ical solutions that are accurate and efficient. The method involves constructing
a homotopy, which is a continuous deformation of one problem into another, and
then applying the transform method to obtain an analytical solution. One of
the advantages of this approach is that it provides a reliable and accurate solu-
tion with a short processing time, making it a valuable tool in various scientific
and engineering applications. To ensure the reliability and validity of the sug-
gested approach, comparison tests are usually carried out to compare the results
with other established techniques in the literature. The fact that the suggested
methodology is in agreement with other approaches which are available in the
literature. The use of tables and graphs to display the numerical results also
enhances the visual representation of the data and makes it easier to interpret.

1. INTRODUCTION

In the field of fractional calculus, integrals and derivatives of arbitrary order are
examined and utilized in a variety of contexts. The applications that fractional
calculus finds in numerical analysis and other fields of physics and engineering, pre-
sumably including fractal phenomena, have sparked great interest in it in recent
years. Fractional calculus is a topic that is both old and new. There are clear phys-
ical and geometric ramifications for integrals and derivatives of integer order. How-
ever, fractional-order integration and differentiation are not the case; they rapidly
expand fields with theoretical and practical applications. It has been applied in
the past several years to the study of viscoelastic materials and a wide range of
scientific and technical fields, including probability, electrical networks, fluid flow,
rheology, diffusive transport, and electromagnetic theory. The fundamental mathe-
matical notions of fractional calculus were created long ago by mathematicians such
as Leibniz, Liouville, Riemann, and others [7,8, 18, 26].
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Fractional differential equations make use of fractional derivatives. Their capacity
to simulate intricate phenomena has drawn a great deal of attention. Investigat-
ing fractional differential equations therefore becomes a crucial part of this subject.
There are many analytical and numerical methods exist to solve this type of frac-
tional differential equations such as Adomian decomposition method(ADM) [10,23~
25], variational iteration method(VIM) [12,15], residual power series method(RPSM)
[2], reduced differential transform method(RDTM) [31], new iterative method(NIM)
[4, 5], homotopy perturbation method(HPM) [13, 14], homotopy analysis method
(HAM) [17,19-22,32], modified homotopy analysis method(modified-HAM) [27,30],
collocations methods [3,33], wavelets methods [6], finite element method(FEM) [29],
finite volume method(FVM) [11] etc.

In this study, we investigate some non-linear fractional partial differential using
the homotopy analysis transform technique(HATT). The HATT is a simple conjunc-
tion of the new integral transform [28] and the homotopy analysis method. Section
2 is all about the basic definitions from fractional calculus and integral transform.
In Section 3, the procedure of the proposed method is provided. And the some
applications of suggested method is given in the Section 4. The graphical and nu-
merical discussion is provided in Section 5. The last section contains some conclude
notes.

2. SOME PRELIMINARIES

Some fundamental concepts of fractional order derivatives, such as
Riemann-Liouville’s derivative, Caputo’s derivative, and the new integral trans-
form, will be covered in this part. Additionally, the new integral transformation of
those derivatives will be discussed.

Definition 2.1. The 8*(3 > 0)-order Riemann-Liouville [17] fractional integration
of a function ¢(x) can be stated as below :
L 7 1
W) Of(x — )" p(s)ds, B>0, x>0
p(x), for 5=0

(2.1) Io(x) =

Definition 2.2. The 3*(3 > 0)-order Riemann-Liouville [30] fractional derivative
of a function ¢(x) can be stated as below :

X
1 qm ==
(22) DY) = gy | (=" el
0

where m is a positive integer such that m — 1 < g8 < m.
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Definition 2.3. The (8 > 0)-order Caputo [30] fractional derivative of a func-
tion p(x) can be stated as below :

X
T — )M AL L o(6)ds, f -1<8<
S wp(c)ds, for m m
(23)  “Dlp(x) =4 " ({(X ) i ol6)

¢(x), for B=m, m eN

Definition 2.4. Let the function ¢(y) € U, where

5= {p() | 3M, mi, 12> 0, lp(x)] < Mexp ('nx') Lif x e (1) x [0,00)}.

)

Then the new integral transform [28] is defined as follows

e}
—sx

(2.4) Vip(x)] = s / (e d
0

with the inverse of the new integral transform as

c+it
(2.5) VW0l = () = lim — / L e Vip(n)ds

t—o00 271 U S
c—it
Theorem 2.5 ([28]). If ¢(x) is a piecewise-continuous function in x € [0,n], Vn € R
and exponential order of p(x) is u, then the new integral transform of o(x) exists
for all 3 > p.

Theorem 2.6. If V[pi(x)] and V]pa(x)| are the new integral transform of p1(x)
and @2(x) respectively [28], then

(2.6) VIze1(x) + yo2(0)] = 2V[e1 ()] + yVip2(x)], ¥V 2,y € R.

Theorem 2.7. Let o™ (x) € U is the m—the derivative of a function ¢(x) with
respect to x [28], then

m—1

27) Vg™l = (2) " Vieol - s 3 (3)" w90)

U

J]=

Theorem 2.8. If V[p1(x)] and V]pa(x)| are the new integral transform of p1(x)
and @a(x) respectively [28], then the new integral transform of the convolution of
p1 and @z 1s

(28) V(o1 * 22)(0] = - VIe1 ()] Viga ()]

where,

X
1% P2 = /sm(c)sﬂz(x —¢)ds.
0
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Definition 2.9. The new transform of Riemann-Liouville fractional integration can
be given by [28]

u

(29) vizge(o] = (%) Viek)

s
Definition 2.10. The new transform of Riemann-Liouville fractional derivative can
be given by [28]

m—1

210) VD001 = (2) Wieal - s 3 (2)" T Peton
=0

Definition 2.11. The new transform of Caputo fractional derivative operator can
be given by [28]

1) VDLl = (2) v _szl( )" 0
=0

Some basic properties of the new integral transform: The following prop-
erties can be derived with the help of above theorems and definitions.

(1) Vi =cs (%), ceR.
(2) VIEP) =T (B +D)s (1), 5> 1.

3. ANALYSIS OF THE PROPOSED METHOD(HATT)

In this section, the brief analysis of the homotopy analysis transformation tech-
nique is discussed. This technique is a simple conjunction of the homotopy analysis
method and the new integral transform. Let us consider the general temporal frac-
tional non-linear partial differential equation in Caputo derivative sense as follows:

(3.1)  “Dlo(x,7) + Ne(x, 7] + Rlp(x, 7)] = ¢(x,7), B € [m], meN.

Where DY is a Caputo fractional derivative of 8 order w.r.t. 7, Np(x,7)] is
the non-linear and R[¢(x,7)] is a remaining term of the differential equation and
¢(x, ) is a source/known term.

The first step is to apply new integral transform V to the above Eqn. (3.1). By
doing this we can get simple differential equation in an integer order as follows:

(82)  V[“Dle(x,7) + Nl 7] + Rlp(x, 7] = VIelx, 7)]
(33)  V["Dle(xm)| + VIVt T+ Rlp(x 7l = VIe(x. )
m—1 L
() Vel -5 3 () 0,0
j=0
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Vip(x,7)] — (3)6 nf (f)ﬁ_j_l v (x,0)
=0

S u
J:

65+ (9 VIVl )+ Rl )] - 606 7)] = 0

Now the second step is to solve above Eqn. (3.5) using the homotopy analysis
method. For that let us consider the non-linear operator as follows:

)_n

Nelptemal = Vigtorsal —s (1) S

( )ﬂ " ¢ (x,0; q)
=0
u\ B

(3.6) +(2) VINTe( 7 )] + Rle (x5 0)] = o, mia)] = 0,

s
where ¢ € [0,1] is the homotopy parameter. Now by considering this non-linear
operator N'L[¢(x,T;q)], the deformation equation of zero order can be defined as
follows:

(3.7) (1= q)Lle(x, 759) — wo(x; T)] = ¢hN L[p(x, 75 9)],

where L is the auxiliary linear operator, o (x, 7) is the starting guess of the unknown
function ¢(x,7) and & # 0 is the auxiliary real parameter. If we put ¢ = 0 and
g = 1 in the above equation (3.7), it holds

(3.8) o(x:730) = po(x, 7) and (X, 751) = @(x, 7)

respectively. Thus we can say that as ¢ goes from 0 to 1, the solution ¢(x,T;q)
varies from the starting guess ¢o(x, 7) to the original solution of the problem (3.1).
By expanding the ¢(x,7;q) in the Taylor series expansion form with respect to g,
one can get

(3.9) e(x.T5q) = i [akw(X’T;Q) ‘q:o} ¢*

k
k=0 8q

By choosing the properly values of L, pg(x,7) and h, the above series (3.9) con-
verges at ¢ = 1. Now by taking k times derivative of Eqn. (3.7) w.r.t. ¢ and
dividing it by k! ( arranged ¢ = 0), one can get the deformation equation of order
k as below:

(3.10) Llpr (6 7) = Rppr—1(x, 7)) = "Rk [Fr-1]
where
2= 5’“‘1Nﬁ[<ﬁ(x77;q}]‘
S kE—1)! Ogk—1 4=0
and

kE<1.
WD L
1, k> 1.
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Here the k-th order deformation equation is a simple linear equation, so it can
be solved easily. By solving that equation one can find ¢1(x,7), p2(x, 7), ¢3(X,T),
etc.

4. SOME APPLICATIONS OF THE PROPOSED METHOD

In this section, the application of the proposed method to some time-fractional
non-linear partial differential equation is examined.

Example 4.1. Examined the time fractional Foam-drainage [1] problem as follows.
(4.1)

1
“Dlo(x. 7) = 5006 T (6 T)+20° (6, ) (6, T) =92 (6, 7) = 0, 0 < F < 1, 72 0
and the initial condition is

o(x,0) = {—ﬂtanh(\/ix), X <0

4.2 =
(4.2) 0, x>0.

The exact solution of the problem for 5§ =1

—VItanh(VI(x — I7)), x < It
0, x>Ir,

(4'3) @Exact(X, 7') = {

where [ is a velocity constant.

By taking the initial guess @o(x,7) as
(4.4) @o(x,7) = —V1tanh(Vix)
and applying our proposed method, discussed in above section, we will get

(4.5) ©o(x, 7) = —V1tanh(V1y)

B
(4.6) o1(x, ) = hi? (tzmh(\/zx)2 - 1) S
B
02(x, ) = (1 + h)Al2 (tanh(ﬂx)z - 1) T
2h215 tanh(v/1x) (tanh(\/lx)Q - 1) 28
(47) B L(B+1) (26 +1)

So, the approximate solution of the above problem upto 3-terms can written as
follows:

B
orarr(x,7) = —/Itanh(vVIx) + hi® (tanh(ﬂx)2 - 1) TG+D)
+ (1 + h)hi? (taunh(\[l)()2 - 1) F(/B’Tj—l)

21212 tanh(v/1x) <tanh(\ﬁx)2 - 1) 28
- T(B+1) T(28+1)
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Example 4.2. Consider the one dimensional time fractional form of Burger equa-
tion [16] as follows.

(4.9) CDESD(XaT) +90(X77')90x(X77') _Wxx(XvT) =0,0<x<1,7>0,0<pB<1

and the initial condition is

1 1 1
(4.10) ©(x,0) = 273 tanh (4X> )

The exact solution [9] of the problem for § =1

(4.11) o(x,7) = é — %tanh <411 (X — g)) :

By taking the initial guess @o(x, ) as

1 1 1
(4.12) wo(x,T) = 3 itanh (4)()

and applying our proposed method(HATT), we will get

1 1 1
(4.13) wo(x,T) = 373 tanh <4x>

2 B
(414)  w(xT) = % (tanh <1X> - 1) L(B+1)
RTINS -
= ()

4 h? b 1 b 1 \? 728

.15 -t - t - 1) =——
(19 sz (1) (e () 1) mre

So, the approximate solution of the above problem upto 3-terms can written as
follows:

1 1 1 A 1 \2 5
et =5 =gt () g (60 () 1) e
(1+ h)h 1\2 5
+ T (tanh <4X> — 1) m

A h? e W (LY 72

1 _—— - - 1| =

(4.16) G+ 1) <4X> e <4X> (261 1)
5. RESULTS AND DISCUSSION

In this section, the numerical and graphical analysis provided for above two
examples. There are two main benefits of the using proposed method. The first
one is that the method contains the new integral transform which converts the
fractional differential equation to the simple differential equation. And the second
one is that it contains the embedding parameter A which is very helpful to control
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A
'“"i;’[{i’l

(e) HATT Solution for 5 = 0.80 (f) HATT Solution for 8 = 0.70

F1GURE 1. Graphs of exact solution and HATT approximate solu-
tion for different order .

the convergence of the series solution.

Figure (1) is all about Ex. (4.1). It contains the graphs of exact solution and
the approximate solution derived by HATT for various order 3. Graph of exact
one can be found in the subfigure (1a) and subfigures (1b)-(1f) display the HATT
approximate solutions for different values of § like 5 =1, 5 =0.95, 5 =0.90, 5 =
0.80, B = 0.70 respectively. Table (1) shows the numerical solutions for different
order # and compared with exact one for § = 1 for Example (4.1). In Table (2),
the comparison of approximate solution obtained using HATT with other method
is provided.
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(e) HATT Solution for 5 = 0.80 (f) HATT Solution for g = 0.70

FIGURE 2. Graphs of exact solution and HATT approximate solu-
tion for different order .
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(b) h-curves for various values of /5 for Example

(a) h-curves for various values of 3 for Example
4.2).

(4.1).

FIGURE 3. h-curves for Example (4.1) and (4.2).
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TABLE 1. Numerical data for different order 5 and compared with
exact one for f=1at [ =1 and h = —1.04 for Example (4.1).

r YHATT YHATT YHATT YHATT YHATT PEzact
X at =070 at =080 at =090 at =095 atp=1 atf=1

1 0.02 -0.729332 -0.740955 -0.748332 -0.750959  -0.753067 -0.753066
0.04 -0.706779 -0.724473 -0.736286 -0.740668  -0.744277 -0.744277
0.06 -0.686061 -0.708773 -0.724374 -0.730290  -0.735222 -0.735222
0.08 -0.666200 -0.693368 -0.712415 -0.719748  -0.725897 -0.725897
0.10  -0.646809 -0.678061 -0.700333 -0.709007  -0.716298 -0.716298

2 0.02 -0.958494 -0.960514 -0.961781 -0.962229  -0.962587 -0.962587
0.04 -0.954526 -0.957658 -0.959716 -0.960472  -0.961090 -0.961090
0.06 -0.950827 -0.954903 -0.957654 -0.958685  -0.959534 -0.959534
0.08 -0.947241 -0.952172 -0.955566 -0.956856  -0.957917 -0.957917
0.10  -0.943709 -0.949435 -0.953441 -0.954980  -0.956237 -0.956237

TABLE 2. Comparison of absolute error for our proposed method
with other method for Example (4.1) at 8 =1, [ =1 and i = —1.04.

X 7  Absolute error by RPS [1] Absolute error by HATT
1.0 0.02 6.6627 x10° 8.2427 x10~ 7
0.04 9.0798 x107° 6.5549 x106
0.06 3.8406 x10~* 2.1982 x10~°
0.08 1.0024 x1073 5.1754 x107°
3.0 0.02 7.2440 x10~10 5.2061 x10~ 11
0.04 2.4547 x10~8 4.2262 x10~9
0.06 1.9773 <1077 1.4413 x10~8
0.08 8.8589 x10~7 3.4523 x10~ "
5.0 0.02 2.4314 x10~13 1.0133 x10~
0.04 8.2420 x10~12 8.4632 x10~13
0.06 6.6377 x10~ 11 2.6669 x10~12
0.08 2.9735 x10~10 6.4613 x10~ 11

Similarly, the graphical analysis of Ex. (4.2) given in Figure (2). Subfigure (2a)
displays the graph of exact solution and subfigures (2b)-(2f) contain the graphs of
approximate solution derived using HATT for different order 5. Table (3) shows the
absolute error analysis and Table (4) contains the numerical solutions for different
order 8 and compared with exact solution for § = 1. In the last Figure (3), h-curves
for different order 8 of Example (4.1) and (4.2) are given. From Figure (??), the
valid region for A-values of Ex. (4.1) for # = 1 can be found as —3 < A < 2.
Similarly, we can find the valid region for other fractional order g as segment of
curve which is parallel to horizontal line. Also, the valid region for A~ values of Ex.
(4.2) for f =1 is an interval —1.5 < h < 1.
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TABLE 3. Absolute error for Example (4.2) at h = —1.

X T |90E:vact - ‘-PHATT|
1.0 0.02  2.0209 x10~Y
0.04 1.6162 x10~8
0.06  5.4422 x10~8
0.08  1.2920 x10~7
2.0 0.02 7.8794 x10~10
0.04  6.0196 x107?
0.06  2.0095 x10~8
0.08  4.8014 x10~8
5.0 0.02  8.6945 x10~®
0.04  6.8432 x107?
0.06  2.2920 x10~8
0.08  5.4303 x10°8

TABLE 4. Numerical data for different order 8 and compared with
exact one for =1 for Example (4.2) at A = —1.

WYHATT PHATT PHATT PHATT PHATT Y Ezact
x T at =070 at 3=080 at =090 at =095 atf=1 atpg=1
1 0.02 0.381736 0.380305 0.379349 0.379000 0.378716 0.378716
0.04 0.384369 0.382360 0.380919 0.380362  0.379894 0.379894
0.06  0.386625 0.384214 0.382411 0.381691  0.381072 0.381072
0.08  0.388669 0.385951 0.383855 0.382999  0.382252 0.382252
0.10  0.390569 0.387605 0.385266 0.384293  0.383433 0.383433
2 0.02 0.272461 0.271258 0.270456 0.270163  0.269925 0.269926
0.04 0.274680 0.272985 0.271773 0.271305  0.270912 0.270912
0.06 0.276588 0.274547 0.273026 0.272421  0.271900 0.271900
0.08 0.278321 0.276013 0.274242 0.273520  0.272892 0.272892
0.10  0.279935 0.277413 0.275431 0.274610  0.273885 0.273885

6. CONCLUSION

In this study, the non-linear fractional partial differential equations were ex-

amined using a novel analytical technique termed the homotopy analysis transform
technique (HATT), which is a straightforward combination of the new integral trans-
form and the homotopy analysis method. We have studied two issues and produced

approximate analytical solutions using the suggested methodology. We can see that
compared to other methods described in the literature, the approximations answers
obtained using HATT look better. HATT has been discovered to be user-friendly
and computation-efficient.
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