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the infected period of influenza, people should drink plenty of water of fluid and

sufficiently rest. Antiviral medicine cannot remove the symptoms of the influenza

but it can reduce the appearance and the duration of the disease. Every person need

not go for active antiviral treatment for influenza but should take action based on

several factors. If the persons are very ill and suffering for disease also, then there

is a risk factor and the person’s needs antiviral medicines. If a person is suffering

influenza for more than 48 hours with all symptoms of the influenza, then it is

advisable to the consult a doctor for treatment. The dynamics of the influenza [5,8]

have been studied by various researcher such as Andresen et al [6], Hethcote [3],

who have also suggested mathematical models for the transmission dynamics of the

influenza.

2. Mathematical assumption

Here the mathematical model is considered which is based on a system of ordi-

nary differential equations and it is of compartmental model. A SEIR model was

discussed by Pinky,L. [10]. In that work Infected disease was considered in exposed

class also and both co-infection classes, which is a very complicated dynamics to

study. The exposed class and co-infected class are not considered in our work.

The total population N(t) of the mathematical model is divided into six different

classes namely S(t) proportion of the human population which is susceptible at time

t. I1(t) proportion of the human population which is infected at time t by the virus

-1 (influenza) and I2(t) proportion of the human population which is infected at time

t by the virus -2 (SARS-COV-2) and S
(2)
1 (t) proportion of the human population

which are recovered from virus-2 are immune to virus-2 but now are susceptible to

virus-1 at time t and S
(1)
2 (t) proportion of the human population which are recovered

from virus -1, they are immune to virus-1 but now are susceptible to virus-2 at time

t, R(t) be the proportion of the human which are recovered at time t. Initially the

population are susceptible to both viruses (Influenza and SARS-COV2). Population

can be infected by either virus with the force of infection ki(i = 1, 2) and move into

the infected components. Our assumption is that virus -1(Non-SARS-COV-2 such

as influenza) and virus -2 is (SARS-COV-2). Some susceptible are infected at a time

by virus -1 with the rate k1 and some are infected by virus-2 with the rate k2,after

some time infected are recovered from virus -1 but now they are susceptible to virus-

2 (S
(1)
2 (t)) at the rate δ1 again those susceptible belong to the I2(t) components at

the rate µ1. Population on I2(t) classes are recovered from virus-2 but now they

are susceptible to virus-1 (S
(2)
1 (t)) at the rate δ2 again those susceptible belong to

the I1(t) components at the rate µ2. Both of the infected are recovered at the rate

δi(i = 1, 2). The natural death rate µ is applicable in each of the classes of the

model.
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Figure 1. Model Diagram

3. Model diagram

The model diagram is a block diagram which is the interaction between different

variables. The Fig-1 represent the diagram corresponding to the model.

4. Model equations

The mathematical model can be represented by the following first order system

of ODE

(4.1)
dS

dt
= π − k1S − k2S − µS

(4.2)
dI1
dt

= k1S − δ1I1 + µ2S
(1)
2 − µI1 − δ2I1

(4.3)
dI2
dt

= k2S − δ2I2 + µ1S
(2)
1 − µI2 − δ1I2

(4.4)
dS

(2)
1

dt
= δ2I2 − µ2S

(2)
1 − µS

(2)
1

(4.5)
dS

(1)
2

dt
= δ1I1 − µ1S

(1)
2 − µS

(1)
2

(4.6)
dR

dt
= δ1I2 + δ2I1 − µR

The details of the parameters are described in Table-1:
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Table 1. Parameter Details

Parameter Description Value Reference

k1 Infected rate of disease-1(Influenza) 0.35 per day [7]
k2 Infected rate of disease-2(Covid) 0.41 per day [?]]
δ1 Recovery rate from disease-1(Influenza) 0.21 per day [1]
δ2 Recovery rate from disease-2(Covid) 0.10 per day [10]
π Recruitment Rate 0.0381 per day [10]
µ Average Life Span 0.00003914 per day [3]
µ1 Infection rate of virus -2 which is recovered from virus -1 0.12 per day [9]
µ2 Infection rate of virus -1 which is recovered from virus-2 0.21 per day [11]

5. Positivity of the solution

The model of the system (1)−(6) monitors the changes in the human populations.

It is therefore important to prove that the solution of the system with on negative

initial conditions will remain non-negative for all t > 0, thus we have the following

theorem.

Theorem 5.1. If Given that the initial condition of the system is S(0) ≥ 0, I1(0) ≥
0, I2(0) ≥ 0, S

(2)
1 ≥ 0, S

(1)
2 ≥ 0, R ≥ 0, then all the solutions will be non negative.

Proof. Using standard inequality system, we can show the positivity of the system

as follows,

(5.1)
ds

dt
≥ π − (k1 + k2 + µ)S

Here this represent a linear differential equation with intregrating factor, e(k1+k2+µ)t

By multiplying both side with the integrating factor and integrating, we get the

following,

S ≥ π(k1 + k2 + µ) + C
(k1+k2+µ)e

(k1+k2+µ)t, where C is the integrating constant.

As t → ∞, S ≥ π(k1 + k2 + µ)

Which shows that S(t) is positive.

Similarly for all remaining variable positivity can be shown. □

6. Boundedness

We show that the all solutions of the system are bounded. The analysis of the

system (1) − (6) be analysed in the region ω of the biological interest. Thus, we

have the following theorem on the system (1) − (6) for boundedness property.

Theorem 6.1. The feasible region ω defined by ω = {S, I1, I2, S(1)
2 , S

(2)
1 , R|0 ≤

N ≤ max{N(0), πµ}} with all positive initial conditions, is positively invariant and

attracting with respect to system (1)− (6), where N = S + I1 + I2 + S
(1)
2 + S

(2)
1 +R
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Proof. Here at time t, the total population is defines as

N = S + I1 + I2 + S
(1)
2 + S

(2)
1 +R. By taking derivative and putting all value from

equations (1)− (6), the following can be obtained,

(6.1)
dN

dt
= π − µN

As the equation is a linear differential equation, the integrating factor is eµt

By multiplying both side with the integrating factor and taking the initial condition

as N(0) = N0, the following solution can be obtained

(6.2) N ≤ π

µ
+ ke−µt

Where k = N0 − π
µ

As t → ∞, 0 ≤ N ≤ π
µ □

7. Existence of equilibrium points

In the absence of influenza (I = 0), system (1)− (6) has disease free equilibrium,

which is given by,

E0 = ( π
(k1+k2+µ) , 0, 0, 0, 0)

If no one can be infected by virus - 1(influenza) but infected by virus-2 (SARS-

COV-2) then equilibrium point will be

E1 =
( π

(k1 + k2 + µ)
, 0,

πk2
(k1 + k2 + µ)(δ1 + δ2 + µ)

, 0,

πk2δ2
(k1 + k2 + µ)(δ1 + δ2 + µ)(µ1µ2)

,
πk2δ1

(k1 + k2 + µ)(δ1 + δ2 + µ)µ

)
Again, if we consider I2 = 0 i.e. no one can be infected by virus-2 (SARS-COV-2)

but the population is infected by virus -1. The equilibrium point will be

E2 =
( π

(k1 + k2 + µ)
,

πk1
(k1 + k2 + µ)(δ1 + δ2 + µ)

, 0, 0,

πk2
(k1 + k2 + µ)µ

,
πk1δ2

(k1 + k2 + µ)(δ1 + δ2 + µ)µ

)
8. Stability analsysis

Theorem 8.1. The disease-free equilibrium point E0 is locally asymptotically stable

if the transmission rate of those, who are recovered by one disease will not be affected

by another disease.
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Proof. Linearizing the system (1) − (6) around the equilibrium point E0, the fol-

lowing matrix can be obtained,

−(k1 + k2 + µ) 0 0 0 0 0

k1 −(δ1 + δ2 + µ) 0 µ2 0 0

k2 0− (δ1 + δ2 + µ) 0 µ1 0

0 0 δ2 −(µ1 + µ2) 0 0

0 δ1 0 0 −(µ1 + µ2) 0

0 δ2 δ1 0 0 −µ


From the jacobian matrix the eigen values can be obtained as

λ1 = −(k1 + k2 + µ)

λ2 = −µ

Others eigen value will be root of the following equation,

{−(δ1 + δ2 + µ) − λ}{−µ − λ}{−(δ1 + δ2 + µ) − λ}{−(µ + µ1) − λ}{−(µ + µ2) −
λ} − µ1µ2δ2 = 0

Case− I : If µ1 = 0 i.e. S
(1)
2 does not belong to the I2 class, then different eigen

values of the system are

−(δ1 + δ2 + µ),−(k1 + k2 + µ),−µ

Which shows the system will be asymptotically stable.

Case− II : If µ2 = 0 i.e. S
(2)
1 does not belong to the I1 class, then different eigen

values of the system are

−(δ1 + δ2 + µ),−(k1 + k2 + µ),−µ

Which shows the system will be asymptotically stable.

Case− III : If µ1 = 0 and µ2 = 0, then different eigen values of the system are

−(δ1 + δ2 + µ),−(k1 + k2 + µ),−µ

Which shows the system will be asymptotically stable. □

9. Numerical simulation

Based on the Numerical simulation on Matlab we got the following figures i.e

figure2-figure 7.

10. Results and discussion

Here the model is highly non-linear in nature. The results shows that the disease-

free equilibrium point will be always asymptotically stable if the rate of propagation

to one disease will be zero provided it has been safe already protected from another

disease. It means that the person is already recovered from the influenza but he/

she has no chance to affected by covid. In this case the disease-free case is stable.

The model is stable also it means the person is already recovered from the covid but

he/ she has no chance to affected by Influenza. The following diagram shows the
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Figure 2. suspected vs time

Figure 3. Infected by virus 1 vs time

Figure 4. Infected by virus2 vs time

Figure 5. suspectable to virus 1 but recovered from2 vs time
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Figure 6. suspectable to virus 2 but recovered from virus 1 vs time

Figure 7. Recovered vs time

justification for the claim. Here Fig1 shows the growth rate of susceptible disease-1

for Disease-free equilibrium. The curve started from a high note and gradually min-

imizing and tending to zero, which indicates that susceptible population is showing

decay, which means the disease is minimizing. In the same sense the Fig6 shows

the growth rate of recovered population, which is growing. This means the number

of recovered persons increasing day by day which might lead to a stable position.

Fig2 – Fig5 show the growth rate of other variables namely (Influenza, Covid etc.)

which also showing stability.

The epidemic model involving two viruses is considered here. Such kind of virus

infection is seen very frequently. By our model, it can be observed that, the absence

of one virus shows significance results. Though our model has many limitations,

despite of that, we try to provide the impact of absence of one virus or the impact

of parameter in the model.

11. Conclstion

This model is very realistic and interesting. Normally the idea is that one disease

accelerates other disease. But there are some situations, where one virus block or

supress another virus if they live in the same host. Here we try to explore two

different viruses in the same host. In our model we try to observe the viruses

individually as well as coherently. Till now, we are able to consider the disease-

free case, where some interesting results are observed. The rate of infection of

one disease for those population, which have been recovered from other disease,
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plays an important role for that. If the rate is zero, then the model is becoming

asymptotically stable.
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