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A NOTE ON COLLECTIVELY COINCIDENCE RESULTS
BETWEEN UPPER SEMICONTINUOUS KKM MAPS AND
COMPACT DKT MAPS

DONAL O’REGAN

ABSTRACT. We present collectively coincidence results between K K M type maps
and compact DKT (or HLPY') type maps. Our argument is based on closed
compact K KM self maps on an admissible convex set in a Hausdorff topological
vector space.

1. INTRODUCTION

In this paper we use a fixed point theorem in the literature for K KM maps
[3] to establish two collectively coincidence results between two different classes
of set—valued maps defined on Hausdorff topological vector spaces. One class is
the KK M type maps (which includes PK type maps, the Kakutani maps and
the admissible maps of Gorniewicz) and the other class are DKT type maps (or
HLPY type maps). In addition the DKT type maps (or the HLPY type maps)
are compact maps which is quite different from results in the literature (see [10] and
the references therein) where the compact maps are in the K KM class.

Now we describe the maps considered in this paper. Let H be the Cech ho-
mology functor with compact carriers and coefficients in the field of rational num-
bers K from the category of Hausdorff topological spaces and continuous maps
to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hy(X)} (here X is a Hausdorff topological space) is a graded vector
space, Hy(X) being the g-dimensional Cech homology group with compact car-
riers of X. For a continuous map f : X — X, H(f) is the induced linear map
fo = {feq} where fiq,: Hy(X) — Hy(X). A space X is acyclic if X is nonempty,
Hy(X) =0 for every ¢ > 1, and Hy(X) ~ K.

Let X, Y and I' be Hausdorff topological spaces. A continuous single valued
map p:I' — X is called a Vietoris map (written p: I' = X) if the following two
conditions are satisfied:

(i) for each z € X, the set p~!(x) is acyclic
(ii) p is a perfect map i.e. p is closed and for every x € X the set p~!(z) is
nonempty and compact.

Let ¢ : X — Y be a multivalued map (note for each z € X we assume ¢(z) is a
nonempty subset of Y'). A pair (p,q) of single valued continuous maps of the form

2020 Mathematics Subject Classification. 47TH10, 54H25.
Key words and phrases. Coincidence points, set—valued maps.



198 DONAL O’'REGAN

X & T3 Y is called a selected pair of ¢ (written (p,q) C ¢) if the following two
conditions hold:

(i) p is a Vietoris map
and
(i) ¢(p~'(z)) C ¢(x) for any x € X.

Now we define the admissible maps of Gorniewicz [8]. A upper semicontinu-
ous map ¢ : X — Y with compact values is said to be admissible (and we write
¢ € Ad(X,Y)) provided there exists a selected pair (p,q) of ¢. An example of an
admissible map is a Kakutani map. A upper semicontinuous map ¢ : X — CK(Y)
is said to be Kakutani (and we write ¢ € Kak(X,Y)); here Y is a Hausdorff topo-

logical vector space and CK(Y') denotes the family of nonempty, convex, compact
subsets of Y.

We also discuss the following classes of maps in this paper. Let Z be a subset of
a Hausdorff topological space Y7 and W a subset of a Hausdorff topological vector
space Y5 and G a multifunction. We say F' € HLPY (Z,W) [9] if W is convex and
there exists a map S : Z — W with co (S(z)) C F(z) for z € Z, S(x) # () for each
z€Zand Z={int S H(w): we W}; here STHw) ={2€ Z: we S(z)} and
note S(z) # () for each x € Z is redundant since if z € Z then there exists a w € W
with z € int S~ H(w) € S~ (w) so w € S(z) i.e. S(z) # 0. These maps are related
to the DKT maps in the literature and F' € DKT(Z,W) [5] if W is convex and
there exists a map S : Z — W with co (S(x)) C F(z) for x € Z, S(z) # 0 for each
x € Z and the fibre S~!(w) is open (in Z) for each w € W. Note these maps were
motivated from the ®* maps. We say G € ®*(Z,W) [2] if W is convex and there
exists a map S : Z — W with S(z) C G(z) for x € Z, S(x) # () and has convex
values for each x € Z and the fibre S~!(w) is open (in Z) for each w € W.

Now we consider a general class of maps, namely the PK maps of Park. Let
X and Y be Hausdorff topological spaces. Given a class X of maps, X(X,Y)
denotes the set of maps F : X — 2V (nonempty subsets of Y') belonging to X,
and X, the set of finite compositions of maps in X'. We let

FX)={Z: FixF#0 forall FeX(Z 2)}
where Fix F' denotes the set of fixed points of F.
The class U of maps is defined by the following properties:

(i) U contains the class C' of single valued continuous functions;
(ii) each F' € U, is upper semicontinuous and compact valued; and
(iii) B"™ € F(U,) for all n € {1,2,...}; here B" ={z ¢ R": ||z| < 1}.
We say F € PK(X,Y) if for any compact subset K of X there is a G €
U(K,Y) with G(z) C F(z) for each x € K. Recall PK is closed under compo-
sitions.

Next we describe a class of maps more general than the PK maps in our setting.
Let X be a convex subset of a Hausdorff topological vector space and Y a Hausdorft
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topological space. If S, T': X — 2 are two set valued maps such that T'(co (A)) C
S(A) for each finite subset A of X then we call S a generalized K KM mappping
w.r.t. T. Now the set valued map 7' : X — 2Y is said to have the K KM property
if for any generalized KKM map S : X — 2¥ w.r.t. T the family {S(z) : x €
X} has the finite intersection property (the intersection of each finite subfamily is
nonempty). We let

KKM(X,Y)={T:X — 2Y|T has the KKM property}.

Note PK(X,Y) C KKM(X,Y) (see [4]). Next we recall the following results from
the literature.

Theorem 1.1 ([4]). Let X be a convex subset of a Hausdorff topological vector
space and Y, Z be Hausdorff topological spaces.
(i) Te KKM(X,Y) iff T|n € KKM(A,Y) for each polytope A\ in X ;
(ii)) f Te KKM(X,Y) and f € C(Y,Z) then fT € KKM(X,Z);
(iii) if Y is a normal space, /\ a polytope of X and if T : A — 2V is a set valued
map such that for each f € C(Y,A) we have that fT has a fized point in
A, thenT € KKM(A,Y).

Let I be an index set.

Theorem 1.2 ([10]). Let X be a convex set in a Hausdorff topological vector space
and {Y;}ier be a family of Hausdorff topological spaces. Suppose T; € KKM (X,Y;)
for each i € I and let T : X — 2¥ (here Y = [[;c; Vi) be defined by T(z) =
[Lic; Ti(z) forz € X. ThenT € KKM(X,Y).

In Section 2 we will make use of the following two properties [10]. Let C' and X
be convex subsets of a Hausdorff topological vector space E with C' C X and Y a
Hausdorff topological space.

(i) T e KKM(X,Y) then G=T|c € KKM(C,Y).
(i) f T"e KKM(X,Y), T(X) € Z C Y and Z is closed in Y then T €
KKM(X,Z).

Next we recall the following fixed point result for K K M maps. Recall a nonempty
subset W of a Hausdorff topological vector space E is said to be admissible if for
any nonempty compact subset K of W and every neighborhood V' of 0 in E there
exists a continuous map h : K — W with x — h(z) € V for all z € K and h(K)
is contained in a finite dimensional subspace of E (for example every nonempty
convex subset of a locally convex space is admissible).

Theorem 1.3 ([3]). Let X be an admissible convex set in a Hausdorff topological
vector space E and T € KKM (X, X) be a closed compact map. Then T has a fized
point in X.

Theorem 1.4 ([10]). Let X be an admissible convez set in a Hausdorff topological
vector space, Y a convex set in a Hausdorff topological vector space and 'Y a normal
space. If T € KKM(X,Y) is a upper semicontinuous map with compact values and
feClY,X) thenT fe KKM(Y,Y).
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2. COINCIDENCE RESULTS

In this section we present coincidence results between two classes of set—valued
maps. Throughout this section I and J will denote index sets.

Theorem 2.1. Let {X;}ier be a family of convex sets each in a Hausdorff topological
vector space E; and {Y;}ics be a family of sets each in a Hausdorff topological space
Zi, with Y = [;c; Yi a paracompact subset of Z = [[;c; Zi and X = [[;c; Xi is
an admissible subset of E = [[,c; Es. For each i € J suppose F; € KKM(X,Y;)
is upper semicontinuous with compact values and for each j € I suppose G; €
DKT(Y, X;) (or alternatively, G; € HLPY (Y, X;)). Also for each j € I suppose
there exists a compact set K; C X; with G; (Y) C K. Then there exists a x € X,
ay €Y withy; € Fj(x) for all j € J and z; € Gi(y) for all i € I (here x;
(respectively, y;) is the projection of x (respectively, y) on X; (respectively, Y;)).

Proof. Fix j € I. Since Y is paracompact from [5] (or alternatively, from [9]) there
exists a continuous (single valued) selection g; : Y — X; (i.e. gj € C(Y, X)) of G;.
Now let g(y) = [[;c; 9i(y) for y € Y and note g € C(Y, X).

Let F(x) = [[;c; Fi(z) for x € X and from Theorem 1.2 we note that F €
KKM(X,Y) is a upper semicontinuous map with compact values. Also Theorem
1.1 guarantees that g FF € KKM (X, X) is a upper semicontinuous compact map
with compact values, so a closed map [1]. Now Theorem 1.3 guarantees a x € X
with € g F(x). Now let y € F(x) with z = g(y). Note y € F'(z) so y; € Fj(x) for
all j € J. Also note z = g(y) = [,c; 9i(y) so x; = gi(y) € Gi(y) foralli € I. [

Remark 2.2. (i). In the proof of Theorem 2.1 we apply Theorem 1.3 on the map
g F'. Tt is also possible to consider F' g if we assume in addition in the statement of
Theorem 2.1 that {Y;};cs is a family of convex sets each in a Hausdorff topological
vector space Z; and Y is an admissible subset of Z. To see this note g € C(Y, X),
F e KKM(X,Y) and Theorem 1.4 (note Y is normal since Hausdorff paracompact
spaces are normal [6]) implies that F g € KKM(Y,Y) is a upper semicontinuous
compact (note F ¢g(Y) C F(K)) map with compact values. Then Theorem 1.3
guarantees a y € Y with y € F g(y).

(ii). In the statement of Theorem 2.1 we could replace ” X is an admissible subset
of E” with " K = [[,.; K; is an admissible subset of E” if we assume in addition that
K is convex for each j € I. To see this fix j € I. We claim G; € DKT(Y, K;) (or
alternatively, G; € HLPY (Y, Kj)). Suppose G; € DKT(Y, X;). Then there exists
amap Sj: Y — X; with co(S;(y)) C Gj(y) for y € Y, Sj(y) # 0 for each y € Y
and Sj_l(x) is open (in Y') for each € X;. Note in particular we have Sj_l(af:) is
open (in Y') for each € K; and also note S; : Y — K since S;(y) C co (S;(y)) C
Gj(y) € Kj for each y € Y. Thus G; € DKT(Y,K;). Alternatively suppose
Gj € HLPY (Y, X;). Then there exists a map S; : Y — X with co (S;(y)) C G,(y)
foryeY and Y = U{intSj_l(w) : w € Xj}. Note for any y € Y there exists
aw € X; with y € intS;l(w) sow € Sj(y) € co(Sj(y)) € G4(y) € K;. Thus
Y =U{intS; ' (w): we K;}soGj e HLPY (Y, Kj).
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Thus for each ¢ € I since Y is paracompact from [5] (or alternatively, from [9])
there exists a selection g; € C(Y, Kj) of G;. Now let g(y) = [[,c; gi(y) for y € Y
and note g € C(Y, K). Now let F'(z) = [[,c; Fi(x) for x € X and from Theorem 1.2
we note that F € K KM (X,Y) is a upper semicontinuous map with compact values.
Also from Section 1 note F (= F|g) € KKM(K,Y) is a upper semicontinuous map
with compact values. Now Theorem 1.1 guarantees that g F' € KKM (K, K) is
a upper semicontinuous compact map with compact values. Thus Theorem 1.3
guarantees a x € K with z € g F(x), and we are finished.

Our next result replaces the condition that Y is paracompact in Theorem 2.1. In
our next result I = J.

Theorem 2.3. Let {X;}icr be a family of convex sets, {Y;}icr be a family of sets,
each in a Hausdorff topological vector space E; and X = [[;c; Xi is an admissible
subset of E = [];c; E;. For each i € I suppose F; € KKM(X,Y;) is upper semi-
continuous with compact values and for each j € I suppose G; € DKT (Y, X;) (or
alternatively, G; € HLPY (Y, X)) where Y = [[,c; Yi. Also for each j € I sup-
pose there exists a compact set K; C X; with G;(Y') C Kj. Let F(x) = [[;c; Fi(x)
forx e X, K = [[,c; K;, L(K) be the linear span of K (i.e. the smallest linear
subspace of E that contains K) and assume F(X) C L(K)NY and L(K)NY s
closed in both Y and L(K). Then there exists a x € X, ay € Y with y; € Fj(x)
forall j €1 and x; € Gi(y) for alli € I.

Proof. Note as in Theorem 2.1 that ' € KKM(X,Y) is a upper semicontinuous
map with compact values. Fix j € I and let G; € DKT(Y, X;) (or alternatively,
Gj € HLPY (Y, X;)). We claim G; € DKT(Y N L(K), X;) (or alternatively, G; €
HLPY (Y N L(K),X;)). Suppose G; € DKT(Y,X;). Then there exists a map
S; Y — X; with co(S;(y)) C Gj(y) for y € Y, S;j(y) # 0 for each y € Y and
Sj_l(:c) is open (in Y) for each » € Xj;. Let S; (= Sjlynr(k)) be the restriction of
Sj to Y N L(K) and note for z € X; we have
S;l(m) = {zeYNLK): z€S5j(2)}

= LK)N{zeY:2eSj(2)}=L(K) ﬂS;l(x)
which is open in L(K)NY. Thus G; € DKT(Y NL(K), X;). Alternatively suppose
Gj € HLPY (Y, X;). Then there exists a map S; : Y — X with co (S;(y)) C G;(y)
foryeY and Y = U{mtS’j_l(w) :w € Xj}. Let S; = Silynrk). We now show
Y N LK) =U{intynrx) S;l(w) : w € X,}. To see this first notice that

LIK)NY = L(K)m(U {int ST (w): we Xj}) = J{Lu)nint 57 (w) : w e X},

so L(K)NY < U{intynrx) S;l(w) . w € X;} since for each w € X; we
have that Y N int Sj_l(w) = int Sj_l(w) so L(K) N intSj_l(w) = LIK)NnYnN
int S’j_l(w) = (L(K)NY)Nint Sj_l(w) with is open in L(K)NY. On the other
hand clearly U{intynrx)S; (w) : w € X;} € L(K)NY. Thus L(K)NY =
U{intynra S; ' (w) : w e X} so Gj € HLPY (Y N L(K), X;).
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Next recall L(K) is Lindelof so paracompact [6, 7] and since Y N L(K) is closed
in L(K) then Y N L(K) is paracompact. Now from [5] (or alternatively, from [9])
there exists a selection g; € C(Y N L(K), X;) of Gj. Now let g(y) = [[;c; 9i(y) for
y € Y NL(K) and note g € C(Y N L(K), X). Since F(X) CY N L(K) then from
Section 1 we have that F' € KKM(X,Y N L(K)) is a upper semicontinuous map
with compact values. Now Theorem 1.1 guarantees that g F' € KKM(X,X) is a
upper semicontinuous compact map with compact values, so a closed map. Now
Theorem 1.3 guarantees a x € X with € g F(z), and we are finished. O

Remark 2.4. In the proof of Theorem 2.3 we apply Theorem 1.3 on the map g F. It
is also possible to consider F' g if we assume in addition in the statement of Theorem
2.3 that {Y;}ies is a family of convex sets and L(K)NY is an admissible subset of
E. To see this let g be as in Theorem 2.3 and note FF € KKM(X,Y N L(K)) and
g€ C(YNL(K),X). Then Theorem 1.4 (note Y N L(K) is normal since Hausdorff
paracompact spaces are normal [6]) guarantees that FFlg € KKM(Y N L(K),Y N
L(K)) is a upper semicontinuous compact map with compact values, so a closed
map. Now apply Theorem 1.3.

Now we relax some of the conditions in Theorem 2.1.

Theorem 2.5. Let {X;}icr be a family of convex sets each in a Hausdorff topological
vector space E; and {Y;}icy be a family of sets each in a Hausdorff topological space
Zi, with Y = [l,c; Yi a paracompact subset of Z = [[,c; Zi. For each i € J,
suppose F; : X = [[ie; Xi — Y and F; € KKM(X,Y;) is upper semicontinuous
with compact values. For each j € I, suppose Gj : Y — X; and there exists a convex
compact set K; with G;(Y) C K; C X; and also there exists a map S; : Y — X
with S;(y) C Gj(y) fory €Y, Sj(y) has convex values for eachy € Y and S;l(w)
is open (in'Y') for each w € K;. Also assume K = [[,c; K; is an admissible subset
of E = [lie; Ei- Finally suppose for each y € Y there exists a j € I with S;(y) # 0.
Then there exists a x € X, ay € Y, a iy € I withy; € Fj(x) for all j € J and
xiy € Giy(y) (here z; (respectively, y;) is the projection of x (respectively, y) on X;
(respectively, Y;)).

Proof. Note C; = {y € Y : S;(y) # 0},i € I is an open covering of Y and since Y
is paracompact there exists a covering {D;};cr of Y where D; is closed in Y and
D, c Cjforalli € I. Now foreachi € I let M; : Y — K; and L; : Y — K; be
given by
Gi(y), y € D; Si(y), y € D;
Miy) = { K, yey\p, 4 L= { K, y € Y\D;.

We claim for each ¢ € I that M; € ®*(Y, K;). Let ¢ € I. First note L;(y) # () for
y € Y since if y € D; then L;(y) = S;(y) # () since D; C C; whereas if y € Y\D;
then L;(y) = K;. Also if y € D; then L;(y) = Si(y) C Gi(y) = M;(y) whereas if
y € Y\D; we have L;(y) = K; = M;(y). Combining gives L;(y) C M;(y) fory € Y.
Finally note if x € Kj;, we have

L7l z) = {zeY:2eLiz)y={2€Y\D;: x€Li(2) = K;} U{z € D;: = € Li(2)}

)
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= (Y\Dj)u{zeD;: ze€Si(2)}=Y\D)U[D;N{zeY: xeSi2)}
= (Y\D)U[D;nS; )] =Y n[(Y\D;)US; ' (z)] = (Y\D;) US; (z)

which is open in Y (note S; () is open in Y and Dj is closed in Y). Thus for each
i € I we have M; € ®*(Y, K;).

Now for i € I (since Y is paracompact) from [5] there exists a continuous (single
valued) selection ¢; : Y — K; of L; i.e. ¢i(y) € Li(y) C M;(y) for y € Y. Now let
9(y) = [Lics 9i(y) for y € Y and note g € C(Y,K). Also F; € KKM(K,Y;) for
i€J. Let F(x) = [[,c; Fi(x) for € K and from Theorem 1.2 we note that F' €
KKM(K,Y) is a upper semicontinuous map with compact values. Also Theorem
1.1 guarantees that g FF € KKM(K, K) is a upper semicontinuous compact map
with compact values, so a closed map. Now Theorem 1.3 guarantees a * € K
with © € gF(x). Now let y € F(x) with = g(y). Thus y; € Fj(z) for all
Jj € J. Also note v = g(y) = [l;c; 9i(y) so x; = gi(y) € Li(y) S M;(y) for all
i € I. Next since {D;}ics is a covering of Y there exists a ig € I with y € D;, so
Ziy € Mio (y) = Gio (y) O

Remark 2.6. In Theorem 2.5 one could replace ” K is admissible” with 7 K is
Schauder admissible”, if we put appropriate assumptions so " F € KKM(K,Y)” is
replaced, by say, "F € PK(K,Y)” (here F is in the proof of Theorem 2.5).

Theorem 2.5 can be extended to DKT and HLPY type maps.

Theorem 2.7. Let { X;}icr be a family of convex sets each in a Hausdorff topological
vector space E; and {Y;}icy be a family of sets each in a Hausdorff topological space
Zi, with Y = [l,c; Yi a paracompact subset of Z = [[,c; Zi. For each i € J,
suppose Fi : X = [[;e; Xi — Y and F; € KKM(X,Y;) is upper semicontinuous
with compact values. For each j € I, suppose Gj : Y — X; and there exists a convex
compact set K; with G;(Y) C K; C X; and also there exists a map T; : Y — K
with co(T;(y)) € G(y) fory € Y and Tj_l(w) is open (in'Y') for each w € K;.
Also assume K = [[;c; K; is an admissible subset of E = [];c; Ei. Finally suppose
for each y € Y there exists a j € I with Tj(y) # 0. Then there exists a x € X, a
yeY, aig €l withy; € Fj(z) for all j € J and x;, € Gi,(y).

Proof. For j € I let S;(y) = co(Tj(y)) for y € Y. Fix j € I. Note S;j(y) has
convex values for each y € Y and note Sj(y) C Gj(y) for y € Y. In addition
for j € I from [11, Lemma 5.1] we have that S;l(w) is open (in Y) for each
w € Kj. Finally note if y € Y then there exists a jo € I with Tj,(y) # 0 and so
0 # Tj,(y) € co(Tj,(y)) = Sj,(y). Now Theorem 2.5 guarantees that there exists a
r€X,ayeY and a iy € I with y; € Fj(x) for all j € J and z;, € Gy, (y). O

Theorem 2.8. Let {X;}icr be a family of convex sets each in a Hausdorff topological
vector space E; and {Y;}icy be a family of sets each in a Hausdorff topological space
Zi, with Y = [l,c; Yi a paracompact subset of Z = [[;c; Z;. For each i € J,
suppose Fi : X = [[;e; Xi = Y and F; € KKM(X,Y;) is upper semicontinuous
with compact values. For each j € I, suppose Gj : Y — X; and there exists a convex
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compact set K; with Gj(Y) C K; C Xj and also there exists a map T; : Y — K;
with co (Tj(y)) C Gj(y) fory €Y andY = U;¢; U{intTj*l(w) cw e Kj}. Also
assume K = [[,c; K; is an admissible subset of E = [[,c; Es. Then there exists a
reX,ayeY, aigel withy; € Fj(x) for all j € J and x;, € Gy (y).
Proof. For j € I let R; : Y — Kj be given by

Ri(y)={z: y€ intT;l(zj)}, yey
and let S; : Y — K be given by

Sj(y) = co(R;(y)) for yeY.

Fix j € I. Note S;(y) has convex values for each y € Y and also note that R;(y)
Tj(y) for y € Y since if z; € R;(y) theny € intTj_l(zj) - Tj_l(zj) ={weY: z
Tj(w)} so z; € Tj(y). Thus for j € I we have Sj(y) = co(R;(y)) C co(T;(y))
Gj(y) fory e Y.

Now for j € I notice for z; € K that Rj_l(acj) ={z: z; € Rj(2)} = intTj_l(:L‘j)
S0 R;l(xj) is open (in Y') and so from [11, Lemma 5.1] we have that S;l(xj) is
open (in Y).

Now let y € Y. Since Y = {J;¢; U{intTj*l(w) : w € K} there exists a j € I
with y € int Tj_l(w) for some w € K; and so w € Rj(y) i.e. Rj(y) # 0 and as a
result () # R;(y) € co(R;(y)) = Sj(y). Now Theorem 2.5 guarantees the result. [

-
€
-
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