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X
p← Γ

q→ Y is called a selected pair of ϕ (written (p, q) ⊂ ϕ) if the following two

conditions hold:

(i) p is a Vietoris map

and

(ii) q (p−1(x)) ⊂ ϕ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [8]. A upper semicontinu-

ous map ϕ : X → Y with compact values is said to be admissible (and we write

ϕ ∈ Ad(X,Y )) provided there exists a selected pair (p, q) of ϕ. An example of an

admissible map is a Kakutani map. A upper semicontinuous map ϕ : X → CK(Y )

is said to be Kakutani (and we write ϕ ∈ Kak(X,Y )); here Y is a Hausdorff topo-

logical vector space and CK(Y ) denotes the family of nonempty, convex, compact

subsets of Y .

We also discuss the following classes of maps in this paper. Let Z be a subset of

a Hausdorff topological space Y1 and W a subset of a Hausdorff topological vector

space Y2 and G a multifunction. We say F ∈ HLPY (Z,W ) [9] if W is convex and

there exists a map S : Z → W with co (S(x)) ⊆ F (x) for x ∈ Z, S(x) ̸= ∅ for each
x ∈ Z and Z =

∪
{ int S−1(w) : w ∈ W}; here S−1(w) = {z ∈ Z : w ∈ S(z)} and

note S(x) ̸= ∅ for each x ∈ Z is redundant since if z ∈ Z then there exists a w ∈W

with z ∈ int S−1(w) ⊆ S−1(w) so w ∈ S(z) i.e. S(z) ̸= ∅. These maps are related

to the DKT maps in the literature and F ∈ DKT (Z,W ) [5] if W is convex and

there exists a map S : Z → W with co (S(x)) ⊆ F (x) for x ∈ Z, S(x) ̸= ∅ for each
x ∈ Z and the fibre S−1(w) is open (in Z) for each w ∈ W . Note these maps were

motivated from the Φ⋆ maps. We say G ∈ Φ⋆(Z,W ) [2] if W is convex and there

exists a map S : Z → W with S(x) ⊆ G(x) for x ∈ Z, S(x) ̸= ∅ and has convex

values for each x ∈ Z and the fibre S−1(w) is open (in Z) for each w ∈W .

Now we consider a general class of maps, namely the PK maps of Park. Let

X and Y be Hausdorff topological spaces. Given a class X of maps, X (X,Y )

denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X ,
and Xc the set of finite compositions of maps in X . We let

F(X ) = {Z : FixF ̸= ∅ for all F ∈ X (Z,Z)}

where FixF denotes the set of fixed points of F .

The class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;

(ii) each F ∈ Uc is upper semicontinuous and compact valued; and

(iii) Bn ∈ F(Uc) for all n ∈ {1, 2, ....}; here Bn = {x ∈ Rn : ∥x∥ ≤ 1}.
We say F ∈ PK(X,Y ) if for any compact subset K of X there is a G ∈

Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K. Recall PK is closed under compo-

sitions.

Next we describe a class of maps more general than the PK maps in our setting.

Let X be a convex subset of a Hausdorff topological vector space and Y a Hausdorff
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topological space. If S, T : X → 2Y are two set valued maps such that T (co (A)) ⊆
S(A) for each finite subset A of X then we call S a generalized KKM mappping

w.r.t. T . Now the set valued map T : X → 2Y is said to have the KKM property

if for any generalized KKM map S : X → 2Y w.r.t. T the family {S(x) : x ∈
X} has the finite intersection property (the intersection of each finite subfamily is

nonempty). We let

KKM(X,Y ) = {T : X → 2Y |T has the KKM property}.

Note PK(X,Y ) ⊂ KKM(X,Y ) (see [4]). Next we recall the following results from

the literature.

Theorem 1.1 ([4]). Let X be a convex subset of a Hausdorff topological vector

space and Y, Z be Hausdorff topological spaces.

(i) T ∈ KKM(X,Y ) iff T |△ ∈ KKM(△, Y ) for each polytope △ in X;

(ii) if T ∈ KKM(X,Y ) and f ∈ C(Y, Z) then f T ∈ KKM(X,Z);

(iii) if Y is a normal space, △ a polytope of X and if T : △→ 2Y is a set valued

map such that for each f ∈ C(Y,△) we have that f T has a fixed point in

△, then T ∈ KKM(△, Y ).

Let I be an index set.

Theorem 1.2 ([10]). Let X be a convex set in a Hausdorff topological vector space

and {Yi}i∈I be a family of Hausdorff topological spaces. Suppose Ti ∈ KKM(X,Yi)

for each i ∈ I and let T : X → 2Y (here Y =
∏

i∈I Yi) be defined by T (x) =∏
i∈I Ti(x) for x ∈ X. Then T ∈ KKM(X,Y ).

In Section 2 we will make use of the following two properties [10]. Let C and X

be convex subsets of a Hausdorff topological vector space E with C ⊆ X and Y a

Hausdorff topological space.

(i) If T ∈ KKM(X,Y ) then G ≡ T |C ∈ KKM(C, Y ).

(ii) If T ∈ KKM(X,Y ), T (X) ⊆ Z ⊆ Y and Z is closed in Y then T ∈
KKM(X,Z).

Next we recall the following fixed point result for KKM maps. Recall a nonempty

subset W of a Hausdorff topological vector space E is said to be admissible if for

any nonempty compact subset K of W and every neighborhood V of 0 in E there

exists a continuous map h : K → W with x − h(x) ∈ V for all x ∈ K and h(K)

is contained in a finite dimensional subspace of E (for example every nonempty

convex subset of a locally convex space is admissible).

Theorem 1.3 ([3]). Let X be an admissible convex set in a Hausdorff topological

vector space E and T ∈ KKM(X,X) be a closed compact map. Then T has a fixed

point in X.

Theorem 1.4 ([10]). Let X be an admissible convex set in a Hausdorff topological

vector space, Y a convex set in a Hausdorff topological vector space and Y a normal

space. If T ∈ KKM(X,Y ) is a upper semicontinuous map with compact values and

f ∈ C(Y,X) then T f ∈ KKM(Y, Y ).
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2. Coincidence results

In this section we present coincidence results between two classes of set–valued

maps. Throughout this section I and J will denote index sets.

Theorem 2.1. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological

vector space Ei and {Yi}i∈J be a family of sets each in a Hausdorff topological space

Zi, with Y ≡
∏

i∈J Yi a paracompact subset of Z ≡
∏

i∈J Zi and X ≡
∏

i∈I Xi is

an admissible subset of E ≡
∏

i∈I Ei. For each i ∈ J suppose Fi ∈ KKM(X,Yi)

is upper semicontinuous with compact values and for each j ∈ I suppose Gj ∈
DKT (Y,Xj) (or alternatively, Gj ∈ HLPY (Y,Xj)). Also for each j ∈ I suppose

there exists a compact set Kj ⊆ Xj with Gj(Y ) ⊆ Kj. Then there exists a x ∈ X,

a y ∈ Y with yj ∈ Fj(x) for all j ∈ J and xi ∈ Gi(y) for all i ∈ I (here xi
(respectively, yj) is the projection of x (respectively, y) on Xi (respectively, Yj)).

Proof. Fix j ∈ I. Since Y is paracompact from [5] (or alternatively, from [9]) there

exists a continuous (single valued) selection gj : Y → Xj (i.e. gj ∈ C(Y,Xj)) of Gj .

Now let g(y) =
∏

i∈I gi(y) for y ∈ Y and note g ∈ C(Y,X).

Let F (x) =
∏

i∈J Fi(x) for x ∈ X and from Theorem 1.2 we note that F ∈
KKM(X,Y ) is a upper semicontinuous map with compact values. Also Theorem

1.1 guarantees that g F ∈ KKM(X,X) is a upper semicontinuous compact map

with compact values, so a closed map [1]. Now Theorem 1.3 guarantees a x ∈ X

with x ∈ g F (x). Now let y ∈ F (x) with x = g(y). Note y ∈ F (x) so yj ∈ Fj(x) for

all j ∈ J . Also note x = g(y) =
∏

i∈I gi(y) so xi = gi(y) ∈ Gi(y) for all i ∈ I. □

Remark 2.2. (i). In the proof of Theorem 2.1 we apply Theorem 1.3 on the map

g F . It is also possible to consider F g if we assume in addition in the statement of

Theorem 2.1 that {Yi}i∈J is a family of convex sets each in a Hausdorff topological

vector space Zi and Y is an admissible subset of Z. To see this note g ∈ C(Y,X),

F ∈ KKM(X,Y ) and Theorem 1.4 (note Y is normal since Hausdorff paracompact

spaces are normal [6]) implies that F g ∈ KKM(Y, Y ) is a upper semicontinuous

compact (note F g(Y ) ⊆ F (K)) map with compact values. Then Theorem 1.3

guarantees a y ∈ Y with y ∈ F g(y).

(ii). In the statement of Theorem 2.1 we could replace ”X is an admissible subset

of E” with ”K =
∏

i∈I Ki is an admissible subset of E” if we assume in addition that

Kj is convex for each j ∈ I. To see this fix j ∈ I. We claim Gj ∈ DKT (Y,Kj) (or

alternatively, Gj ∈ HLPY (Y,Kj)). Suppose Gj ∈ DKT (Y,Xj). Then there exists

a map Sj : Y → Xj with co (Sj(y)) ⊆ Gj(y) for y ∈ Y , Sj(y) ̸= ∅ for each y ∈ Y

and S−1
j (x) is open (in Y ) for each x ∈ Xj . Note in particular we have S−1

j (x) is

open (in Y ) for each x ∈ Kj and also note Sj : Y → Kj since Sj(y) ⊆ co (Sj(y)) ⊆
Gj(y) ⊆ Kj for each y ∈ Y . Thus Gj ∈ DKT (Y,Kj). Alternatively suppose

Gj ∈ HLPY (Y,Xj). Then there exists a map Sj : Y → Xj with co (Sj(y)) ⊆ Gj(y)

for y ∈ Y and Y =
∪
{ int S−1

j (w) : w ∈ Xj}. Note for any y ∈ Y there exists

a w ∈ Xj with y ∈ int S−1
j (w) so w ∈ Sj(y) ⊆ co (Sj(y)) ⊆ Gj(y) ⊆ Kj . Thus

Y =
∪
{ int S−1

j (w) : w ∈ Kj} so Gj ∈ HLPY (Y,Kj).
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Thus for each i ∈ I since Y is paracompact from [5] (or alternatively, from [9])

there exists a selection gj ∈ C(Y,Kj) of Gj . Now let g(y) =
∏

i∈I gi(y) for y ∈ Y

and note g ∈ C(Y,K). Now let F (x) =
∏

i∈J Fi(x) for x ∈ X and from Theorem 1.2

we note that F ∈ KKM(X,Y ) is a upper semicontinuous map with compact values.

Also from Section 1 note F (= F |K) ∈ KKM(K,Y ) is a upper semicontinuous map

with compact values. Now Theorem 1.1 guarantees that g F ∈ KKM(K,K) is

a upper semicontinuous compact map with compact values. Thus Theorem 1.3

guarantees a x ∈ K with x ∈ g F (x), and we are finished.

Our next result replaces the condition that Y is paracompact in Theorem 2.1. In

our next result I = J .

Theorem 2.3. Let {Xi}i∈I be a family of convex sets, {Yi}i∈I be a family of sets,

each in a Hausdorff topological vector space Ei and X ≡
∏

i∈I Xi is an admissible

subset of E ≡
∏

i∈I Ei. For each i ∈ I suppose Fi ∈ KKM(X,Yi) is upper semi-

continuous with compact values and for each j ∈ I suppose Gj ∈ DKT (Y,Xj) (or

alternatively, Gj ∈ HLPY (Y,Xj)) where Y ≡
∏

i∈I Yi. Also for each j ∈ I sup-

pose there exists a compact set Kj ⊆ Xj with Gj(Y ) ⊆ Kj. Let F (x) =
∏

i∈I Fi(x)

for x ∈ X, K =
∏

i∈I Ki, L(K) be the linear span of K (i.e. the smallest linear

subspace of E that contains K) and assume F (X) ⊆ L(K) ∩ Y and L(K) ∩ Y is

closed in both Y and L(K). Then there exists a x ∈ X, a y ∈ Y with yj ∈ Fj(x)

for all j ∈ I and xi ∈ Gi(y) for all i ∈ I.

Proof. Note as in Theorem 2.1 that F ∈ KKM(X,Y ) is a upper semicontinuous

map with compact values. Fix j ∈ I and let Gj ∈ DKT (Y,Xj) (or alternatively,

Gj ∈ HLPY (Y,Xj)). We claim Gj ∈ DKT (Y ∩ L(K), Xj) (or alternatively, Gj ∈
HLPY (Y ∩ L(K), Xj)). Suppose Gj ∈ DKT (Y,Xj). Then there exists a map

Sj : Y → Xj with co (Sj(y)) ⊆ Gj(y) for y ∈ Y , Sj(y) ̸= ∅ for each y ∈ Y and

S−1
j (x) is open (in Y ) for each x ∈ Xj . Let Sj (= Sj |Y ∩L(K)) be the restriction of

Sj to Y ∩ L(K) and note for x ∈ Xj we have

S−1
j (x) = {z ∈ Y ∩ L(K) : x ∈ Sj(z)}

= L(K) ∩ {z ∈ Y : x ∈ Sj(z)} = L(K) ∩ S−1
j (x)

which is open in L(K)∩Y . Thus Gj ∈ DKT (Y ∩L(K), Xj). Alternatively suppose

Gj ∈ HLPY (Y,Xj). Then there exists a map Sj : Y → Xj with co (Sj(y)) ⊆ Gj(y)

for y ∈ Y and Y =
∪
{ int S−1

j (w) : w ∈ Xj}. Let Sj = Sj |Y ∩L(K). We now show

Y ∩ L(K) =
∪
{ intY ∩L(K) S

−1
j (w) : w ∈ Xj}. To see this first notice that

L(K)∩Y = L(K)∩
(∪
{ int S−1

j (w) : w ∈ Xj}
)
=

∪
{L(K)∩ int S−1

j (w) : w ∈ Xj},

so L(K) ∩ Y ⊆
∪
{ intY ∩L(K) S

−1
j (w) : w ∈ Xj} since for each w ∈ Xj we

have that Y ∩ int S−1
j (w) = int S−1

j (w) so L(K) ∩ int S−1
j (w) = L(K) ∩ Y ∩

int S−1
j (w) = (L(K) ∩ Y ) ∩ int S−1

j (w) with is open in L(K) ∩ Y . On the other

hand clearly
∪
{ intY ∩L(K) S

−1
j (w) : w ∈ Xj} ⊆ L(K) ∩ Y . Thus L(K) ∩ Y =∪

{ intY ∩L(K) S
−1
j (w) : w ∈ Xj} so Gj ∈ HLPY (Y ∩ L(K), Xj).
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Next recall L(K) is Lindelöf so paracompact [6, 7] and since Y ∩ L(K) is closed

in L(K) then Y ∩ L(K) is paracompact. Now from [5] (or alternatively, from [9])

there exists a selection gj ∈ C(Y ∩ L(K), Xj) of Gj . Now let g(y) =
∏

i∈I gi(y) for

y ∈ Y ∩ L(K) and note g ∈ C(Y ∩ L(K), X). Since F (X) ⊆ Y ∩ L(K) then from

Section 1 we have that F ∈ KKM(X,Y ∩ L(K)) is a upper semicontinuous map

with compact values. Now Theorem 1.1 guarantees that g F ∈ KKM(X,X) is a

upper semicontinuous compact map with compact values, so a closed map. Now

Theorem 1.3 guarantees a x ∈ X with x ∈ g F (x), and we are finished. □
Remark 2.4. In the proof of Theorem 2.3 we apply Theorem 1.3 on the map g F . It

is also possible to consider F g if we assume in addition in the statement of Theorem

2.3 that {Yi}i∈J is a family of convex sets and L(K) ∩ Y is an admissible subset of

E. To see this let g be as in Theorem 2.3 and note F ∈ KKM(X,Y ∩ L(K)) and

g ∈ C(Y ∩L(K), X). Then Theorem 1.4 (note Y ∩L(K) is normal since Hausdorff

paracompact spaces are normal [6]) guarantees that F g ∈ KKM(Y ∩ L(K), Y ∩
L(K)) is a upper semicontinuous compact map with compact values, so a closed

map. Now apply Theorem 1.3.

Now we relax some of the conditions in Theorem 2.1.

Theorem 2.5. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological

vector space Ei and {Yi}i∈J be a family of sets each in a Hausdorff topological space

Zi, with Y ≡
∏

i∈J Yi a paracompact subset of Z ≡
∏

i∈J Zi. For each i ∈ J ,

suppose Fi : X ≡
∏

i∈I Xi → Yi and Fi ∈ KKM(X,Yi) is upper semicontinuous

with compact values. For each j ∈ I, suppose Gj : Y → Xj and there exists a convex

compact set Kj with Gj(Y ) ⊆ Kj ⊆ Xj and also there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y and S−1
j (w)

is open (in Y ) for each w ∈ Kj. Also assume K ≡
∏

i∈I Ki is an admissible subset

of E ≡
∏

i∈I Ei. Finally suppose for each y ∈ Y there exists a j ∈ I with Sj(y) ̸= ∅.
Then there exists a x ∈ X, a y ∈ Y , a i0 ∈ I with yj ∈ Fj(x) for all j ∈ J and

xi0 ∈ Gi0(y) (here xi (respectively, yj) is the projection of x (respectively, y) on Xi

(respectively, Yj)).

Proof. Note Ci = {y ∈ Y : Si(y) ̸= ∅}, i ∈ I is an open covering of Y and since Y

is paracompact there exists a covering {Di}i∈I of Y where Di is closed in Y and

Di ⊂ Ci for all i ∈ I. Now for each i ∈ I let Mi : Y → Ki and Li : Y → Ki be

given by

Mi(y) =

{
Gi(y), y ∈ Di

Ki, y ∈ Y \Di
and Li(y) =

{
Si(y), y ∈ Di

Ki, y ∈ Y \Di.

We claim for each i ∈ I that Mi ∈ Φ⋆(Y,Ki). Let i ∈ I. First note Li(y) ̸= ∅ for
y ∈ Y since if y ∈ Di then Li(y) = Si(y) ̸= ∅ since Di ⊂ Ci whereas if y ∈ Y \Di

then Li(y) = Ki. Also if y ∈ Di then Li(y) = Si(y) ⊆ Gi(y) = Mi(y) whereas if

y ∈ Y \Di we have Li(y) = Ki = Mi(y). Combining gives Li(y) ⊆Mi(y) for y ∈ Y .

Finally note if x ∈ Ki, we have

L−1
i (x) = {z ∈ Y : x ∈ Li(z)} = {z ∈ Y \Di : x ∈ Li(z) = Ki} ∪ {z ∈ Di : x ∈ Li(z)}
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= (Y \Di) ∪ {z ∈ Di : x ∈ Si(z)} = (Y \Di) ∪ [Di ∩ {z ∈ Y : x ∈ Si(z)}]
= (Y \Di) ∪

[
Di ∩ S−1

i (x)
]
= Y ∩

[
(Y \Di) ∪ S−1

i (x)
]
= (Y \Di) ∪ S−1

i (x)

which is open in Y (note S−1
i (x) is open in Y and Di is closed in Y ). Thus for each

i ∈ I we have Mi ∈ Φ⋆(Y,Ki).

Now for i ∈ I (since Y is paracompact) from [5] there exists a continuous (single

valued) selection gi : Y → Ki of Li i.e. gi(y) ∈ Li(y) ⊆ Mi(y) for y ∈ Y . Now let

g(y) =
∏

i∈I gi(y) for y ∈ Y and note g ∈ C(Y,K). Also Fi ∈ KKM(K,Yi) for

i ∈ J . Let F (x) =
∏

i∈J Fi(x) for x ∈ K and from Theorem 1.2 we note that F ∈
KKM(K,Y ) is a upper semicontinuous map with compact values. Also Theorem

1.1 guarantees that g F ∈ KKM(K,K) is a upper semicontinuous compact map

with compact values, so a closed map. Now Theorem 1.3 guarantees a x ∈ K

with x ∈ g F (x). Now let y ∈ F (x) with x = g(y). Thus yj ∈ Fj(x) for all

j ∈ J . Also note x = g(y) =
∏

i∈I gi(y) so xi = gi(y) ∈ Li(y) ⊆ Mi(y) for all

i ∈ I. Next since {Di}i∈I is a covering of Y there exists a i0 ∈ I with y ∈ Di0 so

xi0 ∈Mi0(y) = Gi0(y). □

Remark 2.6. In Theorem 2.5 one could replace ”K is admissible” with ”K is

Schauder admissible”, if we put appropriate assumptions so ”F ∈ KKM(K,Y )” is

replaced, by say, ”F ∈ PK(K,Y )” (here F is in the proof of Theorem 2.5).

Theorem 2.5 can be extended to DKT and HLPY type maps.

Theorem 2.7. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological

vector space Ei and {Yi}i∈J be a family of sets each in a Hausdorff topological space

Zi, with Y ≡
∏

i∈J Yi a paracompact subset of Z ≡
∏

i∈J Zi. For each i ∈ J ,

suppose Fi : X ≡
∏

i∈I Xi → Yi and Fi ∈ KKM(X,Yi) is upper semicontinuous

with compact values. For each j ∈ I, suppose Gj : Y → Xj and there exists a convex

compact set Kj with Gj(Y ) ⊆ Kj ⊆ Xj and also there exists a map Tj : Y → Kj

with co (Tj(y)) ⊆ Gj(y) for y ∈ Y and T−1
j (w) is open (in Y ) for each w ∈ Kj.

Also assume K ≡
∏

i∈I Ki is an admissible subset of E ≡
∏

i∈I Ei. Finally suppose

for each y ∈ Y there exists a j ∈ I with Tj(y) ̸= ∅. Then there exists a x ∈ X, a

y ∈ Y , a i0 ∈ I with yj ∈ Fj(x) for all j ∈ J and xi0 ∈ Gi0(y).

Proof. For j ∈ I let Sj(y) = co (Tj(y)) for y ∈ Y . Fix j ∈ I. Note Sj(y) has

convex values for each y ∈ Y and note Sj(y) ⊆ Gj(y) for y ∈ Y . In addition

for j ∈ I from [11, Lemma 5.1] we have that S−1
j (w) is open (in Y ) for each

w ∈ Kj . Finally note if y ∈ Y then there exists a j0 ∈ I with Tj0(y) ̸= ∅ and so

∅ ̸= Tj0(y) ⊆ co (Tj0(y)) = Sj0(y). Now Theorem 2.5 guarantees that there exists a

x ∈ X, a y ∈ Y and a i0 ∈ I with yj ∈ Fj(x) for all j ∈ J and xi0 ∈ Gi0(y). □

Theorem 2.8. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological

vector space Ei and {Yi}i∈J be a family of sets each in a Hausdorff topological space

Zi, with Y ≡
∏

i∈J Yi a paracompact subset of Z ≡
∏

i∈J Zi. For each i ∈ J ,

suppose Fi : X ≡
∏

i∈I Xi → Yi and Fi ∈ KKM(X,Yi) is upper semicontinuous

with compact values. For each j ∈ I, suppose Gj : Y → Xj and there exists a convex
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compact set Kj with Gj(Y ) ⊆ Kj ⊆ Xj and also there exists a map Tj : Y → Kj

with co (Tj(y)) ⊆ Gj(y) for y ∈ Y and Y =
∪

j∈I
∪
{ int T−1

j (w) : w ∈ Kj}. Also

assume K ≡
∏

i∈I Ki is an admissible subset of E ≡
∏

i∈I Ei. Then there exists a

x ∈ X, a y ∈ Y , a i0 ∈ I with yj ∈ Fj(x) for all j ∈ J and xi0 ∈ Gi0(y).

Proof. For j ∈ I let Rj : Y → Kj be given by

Rj(y) = {zj : y ∈ int T−1
j (zj)}, y ∈ Y

and let Sj : Y → Kj be given by

Sj(y) = co (Rj(y)) for y ∈ Y.

Fix j ∈ I. Note Sj(y) has convex values for each y ∈ Y and also note that Rj(y) ⊆
Tj(y) for y ∈ Y since if zj ∈ Rj(y) then y ∈ int T−1

j (zj) ⊆ T−1
j (zj) = {w ∈ Y : zj ∈

Tj(w)} so zj ∈ Tj(y). Thus for j ∈ I we have Sj(y) = co (Rj(y)) ⊆ co (Tj(y)) ⊆
Gj(y) for y ∈ Y .

Now for j ∈ I notice for xj ∈ Kj that R
−1
j (xj) = {z : xj ∈ Rj(z)} = int T−1

j (xj)

so R−1
j (xj) is open (in Y ) and so from [11, Lemma 5.1] we have that S−1

j (xj) is

open (in Y ).

Now let y ∈ Y . Since Y =
∪

j∈I
∪
{ int T−1

j (w) : w ∈ Kj} there exists a j ∈ I

with y ∈ int T−1
j (w) for some w ∈ Kj and so w ∈ Rj(y) i.e. Rj(y) ̸= ∅ and as a

result ∅ ̸= Rj(y) ⊆ co (Rj(y)) = Sj(y). Now Theorem 2.5 guarantees the result. □
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