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SKEWNESS OF BANAS-FRACZEK SPACE

KEN-ICHI MITANI

ABSTRACT. Let s(X) be the skewness of a Banach space X. In this paper, we
compute the s(X)-constant for X being Banas-Fraczek space R3, where X > 1.
Moreover, it is shown that the inequality s(X) < 2px (1) is strict for such a space
X, where px is the modulus of smoothness of X.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, let X be a real Banach space with dim X > 2, Sx = {z €
X :|lz|]| =1} and Bx = {x € X : ||z|| < 1}. The skewness of X was introduced by
Fitzpatrick-Reznick [3], as follows:

s(X) :sup{(x,y> —(y,x): z,y € SX},

where
[l + tyl| — [l]]

t
for z,y € X (cf.[9]). Clearly, 0 < s(X) < 2 for all spaces X. It is known that
s(X) = 0 if and only if X is a Hilbert space. The skewness for X being L,, spaces
were computed. Some geometrical properties of X can be characterized by means of
s(X). In fact, it was shown that s(X) < 2 if and only if X is uniformly non-square,
that is, there exists a § > 0 such that for any x,y € Sx, either ||z + y| < 2(1 — )
or [z —y| <2(1—9) ([3]). Moreover, it is known that

= li
(e,y) = ]| fim,

(1.1) s(X) < 2px(1)

for any Banach space X, where px is the modulus of smoothness of X ([2]). In
[11], Yang introduced the Banas-Fraczek space Ri, i.e., the space R? with the norm
|| - |lx2 defined by

(2, y)lIx2 = max {Alz], [|(z, y) 2}

where A > 1 (see also [1]). As stated in [8], this space may be considered as a
generalization of Day-James space ¢2-¢1. Indeed, R%/E is isometric to ¢2-£1. Recently,

Mitani-Saito-Komuro [7] computed s(X)-constant for X being ¢,-¢1, where 1 < p <
oo (cf. [2, 8]).
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In this paper, we compute s(X)-constant for X being R%\. This calculation
method is similar to that of s(¢,-¢1) in [7]. Indeed, as in [7], we will use the following
result in [3]; for any Banach space X,

(1.2) 5(X) =sup{z*(y) —y" () : 2,y € Sx, 2" € D(X,x),y" € D(X,y)},

where D(X,z) is the set of all norming functionals of z. We first determine the
dual norm of || - [[x2 and the set D(R3,z). By using this result and (1.2), we can
obtain the value of S(R?\) for all A > 1. As an application, we discuss the inequality
(1.1) for a Banach space X and prove that the inequality (1.1) is strict under the
case X = ]Ri.

We recall some definitions and notations. Throughout this paper, we denote
by R and R™ the set of real numbers and non-negative real integers, respectively.
An element x* € Sx« is said to be a norming functional of x € X with x # 0 if
x*(x) = ||z||. The modulus of smoothness of X is defined by

px (1) = sup{||x+7y|| ; lz =7yl —1l:z,y€ SX}, T>0.

It is well-known that X is uniformly non-square if and only if px (1) < 1 (see [10]).
For 1 < p,q < oo, the norm |- |, on R? is defined by

Iz, y)llp xy =0
‘(x’ y) p,q = ?
Iz 9)llq 2y <0,
where || - ||, is £,-norm on R2. The space (R?, |- |,,) is called the Day-James space

and is denoted by £)-¢, (cf. [4]).

2. RESULTS

The following lemma is an improvement of (1.2), which is useful for computing
the constant s(R3).

Lemma 2.1 ([6], Lemma 3.3). Let X = (R2,||-|). Then
s(X) = sup{s(X,x,y) : 7,y € ext(Bx) "R x R},
where
s(X,z,y) =sup{[z”(y) —y"(2)| : 2" € D(X,z), y" € D(X,y)}
and ext(Byx) is the set of all extreme points of Bx.
Let || - ||} o be the dual norm of || - || 2, that is,
(2.1) )l = supd a2 + gl = (2, w) € B2, ||z, w)n2 = 1}
for (z,y) € R2.
Lemma 2.2. Fixt > 0. We define a function
(2.2) fls)=ts+/1-s2, 0<s<lL.
Then f is strictly increasing on (0,«) and is strictly decreasing on (o, o0), where

_ t

V241
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Proof. The derivative of f is

(8) = t — ———.
7(s) =
Hence, if 0 < s < «, then f'(s) > 0 and if a < s, then f’(s) < 0. This completes
the proof. O
Using this lemma we can determine the norm || - |3 ,.

Proposition 2.3. Let A > 1. Then

Fla|+ /1= 3=lyl, if VA2 —1|z| > |y]
vV +y?, if VA2 —1|z| < |yl

”(]I,y) >|;\2 -

for any (x,y) € R?,

Proof. Put a = \/téﬁ Let f be the function as in (2.2). By (2.1) we have

[zl DIk e = (@, 9]} for any (z,y) € R2. Hence it is enough to show that
for all ¢t > 0,
It D115 2 = sup{[tz + w| : (z,w) € R? [|(z,w)[[n2 = 1}
/ T 1
ViZ+1, if ¢t <

Take (z,w) € R? with ||(z,w)||x2 = 1. It follows from the definition of || - ||y 2 that
Alz| €1 and v22 + w? < 1. Namely, |z| < } and |w| < v/1 — 22, Hence

[tz +w| < tlz] + |w| < tlz] + V1 =22 = f(|z]).

1
A2-1°

Lett>\/— Then |z| < 1 < a. By Lemma 2.2,
1 t 1
<f(2)=244/1- =
fN<£(3) =5 +\1- 5
Thus
itz | < L4y f1— 2
z4+w| < < - =.
A A2
We have equality in above when z = % and w=4/1— %
Let t < \/}\27 Then |z| < a < . By Lemma 2.2,
Fl2) < fla) =ta+V1I—a? =V +1.
Thus

[tz +w| < V2 + 1.

t 1
11 pr

t2+1 and w t2+1

proof. O

We have equality in above when z =

. This completes the
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In the following, we shall determine norming functionals of R%\. Let A > 1. For
0 <60 < 2w, we put 2(0) as

(cosf,sin )

l|(cos 0, sin )|z

z(0) =

It is clear that
(2.3) ext(Bpz) NR x RY ={2(0): 0\ <0 <7 —0)},

where 6, = tan~!v/A2 — 1. Note that

1 1
Z(G)\) = (COSQ)\,SiHG)\) = (X’ 1— ﬁ) .

Lemma 2.4. Let \ > 1.
(i) If 6y < 0 <7 — 0y, then

(ii) If 6 = 0, then

(2.4) D(R%,2(0)) = {(% + (1= )\, iy /1 — %) 0< < 1}.

(iii) If 0 = ™ — @), then

(25) DR, 2(m—0y)) = {(-% (1= A1 - %) 0<p< 1}.

Proof. (i) Let 6y <6 < m—0x. Then z(¢) = (cos,sind). By [z(0)3 , = [2(0)]5 =
1 and (2(0),2(0)) = 1, it follows that z(6) is a norming functional of z(#). Since
z(0) is a point of smoothness of Bgz, we obtain (i).

(ii) Let 6 = 0. Take any a = (a,b) € D(R3, 2(,)). Then we have
1= <(a7 b)az(g)\» < <(‘a|7 ’b|)7z(0)\)>
< ll(lal, [bD1IX 212()lIx2 = ll(a, D)X 2ll2(0) 1x2 = 1,

which gives [a| = a and [b] = b. Hence a > 0 and b > 0. We also have [|(a,b)|[} , =1
and

a 1
(2.6) 1= (a,2(0))) = X +4/1— 2 b.
Hence, it follows from Proposition 2.3 that VA2 — 1a > b. Namely, a > —=2

A2—-1°
This inequality and (2.6) imply that

a 1 b 1
l=—+44/l-5b> ———=+/1— b
A'+ A2 _-A\/A2——1-+ A2
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and so b < \/1—%. Here, Weputbzm/l—%,whereogugl. Then we have
by (2.6),

+ (1 —p)A.

a= -0V —1=)\—pu 1_%\&2_ —

Thus we can write
n / 1
(a7b):(x+(1_:u'))‘7u 1_ﬁ>

Conversely, take any p with 0 < pu < 1. It is easy to see that
H 1 2
X—i_(l_:u))‘vu 1_ﬁ GD(R)\,Z(Q)\)).
Thus we get (2.4).

In the same way, we can obtain (iii). O

>|=

We now show the main theorem.

Theorem 2.5. Let \ > 1.

(i) If A > V2, then s(R3) = 2 (1 — %) .

(ii) If A < V2, then s(R3) = /A2 — 1.
Proof. Let X = R3. Lemma 2.1 and (2.3) yield that
(2.7) s(X) =sup {s(X,z,y): x=2(0), y=2(0), 0,0' € [0x, 7 — 6)]},
where

s(X,2,y) = sup{|z"(y) — y*(2)| : " € D(X, ), y* € D(X,y)}.
Let 2 = 2(0) and y = 2(¢’), where 6,6" € [0\, — 0,]. Take any z* € D(X,z) and
y* € D(X,y). It is enough to consider the following cases:
Case 1: 0) < 0,0’ < 7—0),. By Lemma 2.4 it follows that 2* = 2z(6) and y* = z(¢').
Hence we have

z(y) —y*(x) = (2(0), 2(¢")) — (=(¢"),2(0)) =0,

which gives s(X,z,y) = 0.
Case 2: 0 = 6y, 0y < 0 < 7 — 0. Then = = 2(6)) = (%, 1—$) and y =
2(0") = (cos @', sinf’). By Lemma 2.4, we have z* = (% + (1= )\, py /1 — l) and
y* = 2(0") = (cos @ ,sin ), where 0 < u < 1. Hence,

" (y) — y*(x)

— <<§ + (1= ), /1 — %) ,(cos@',sin@')>
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1 1
— <(C0$9’,sin0'), <X’ 1-— ﬁ>>
7(E+(1— )>\>COSG’—|— 1——sm€’—icose’ 1—ism9’
=\ n w 22 2\ 22
—(1—u)\/1—ﬁ(sinﬁ/—\//\2—1(3089l>

1
2" (y) =y (@) < 4/1— v |sin® — /A2 — 1cos@|.

We define a function

and so

g(t) =sint — \/ A2 — 1 cost.
The derivative of g is ¢'(t) = cost + VA2 — 1sint and so
g (m—0)) = —cosOy + VA2 — 1sin0)
A —2
P

Let A > /2. Then ¢/(t) > 0 for all §) < t < m —@0). This implies that g is strictly
increasing on (A, ™ — 6,) and so

g(t) gg(w—aA):Q,/l—é

for all 6y <t <7 — ). Moreover, g(f,) = 0. Hence
lz*(y) —y (w)\ﬁ\/l—ﬁ-2\/1—p:2<1—ﬁ)

1
s(X,z,y) <2 <1— F)

Let A < v/2. Then g is strictly increasing on (), o) and is strictly decreasing on
(tg, ™ — 6)), where t( is the unique solution of ¢'(t) = 0 (6 < t < m — 6)), that is,

to = cos™! ( v /1= —) From costyg = —4/1 — /\—12 and sintg = %, we have

g(t)SQ(to)=§— /\2—1-<_ 1_%>:/\

for all 6, <t < m — 0,. Hence,

Iw*(y)—y*(x)lgy/l—— = VA2 —

Moreover, we have equality in above when ¢t = ¢ty and © = 0. Thus we obtain

s(X,z,y) < VA2 -1

In particular, s(X,z,y) = VA2 — 1, whenever z = 2(6,) and y = z(to).

:___|_ )\2 1___

Thus
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Case 3: 0 =0,,0 = 7—0,. Note that z = (%,\/1 - %) and y = (—%, 1— /\—12>

By Lemma 2.4, we have z* = (% + (1= )\ py/1— )\—12) and y* = (—“7/ —(1-

A 'y /1 — %), where 0 < p, 1/ < 1. Then

*(y) — y*(z)

1 1 1
N ),

and so

We have equality in above when g = 1 and p' = 0. Therefore

s(X,x,y)zQ(l—%).

Case 4: 0, <0 <7 —0),0 =7 —0). By an argument similar to that in Case 2, it
follows that s(X,z,y) < 2( - %) if A > /2, and s(X,z,y) < VA2 —1if A < /2.

By 2(1 — %) < VA2 —1 for all A > 1, this completes the proof.

3. APPLICATIONS

The following is due to Baronti-Papini [2].
Proposition 3.1 ([2]). For any Banach space X,
(3.1) s(X) < 2px(1).

If X is uniformly convex, then the inequality (3.1) is strict ([8], cf.[5]). If X
is not uniformly non-square, then s(X) = 2px(1) = 2. There exists a uniformly
non-square (not uniformly convex) Banach space X such that s(X) = 2px(1). In
fact, if X is Day-James space {oo-1, then s(X) = 2px(1) = 1. As in [7], it was
shown that if X is Day-James space £,-¢1, where 1 < p < oo, then the inequality
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(3.1) is strict. We discuss the inequality (3.1) for the case X = R3. The James type
constant Jx (1) for a Banach space X is defined by

t . t\ 1/t
JXﬁt(T):Sup{C\xwyu+||a: Tyn) :wesx}’

2

where 7 > 0 and —oo <t < oo ([10]). Note that px(1) = Jx (1) — 1. C. Yang-X.
Yang [12] introduced the Banas-Fraczek type space X ,, i.e., R? with the norm
|| - ||lnp defined by

1@, y)lIxp = max{Alz], [|(z,y),},
where A > 1 and p > 1. Note that X o = R?\.

Theorem 3.2 ([12], Theorem 2.3). Let p > 2, A > 1.
(i) If t > p, then

52) Toppe)) =27 (14 (12 )7

t
(ii) Ift <p and AP < 1 —i—)\%, then
1-1 tp (11
Jxy (1) =2 71N (14 X))t r
(iii) If t <p and NP > 1+ )\t%pp, then (3.2) is also valid.
In particular,

Corollary 3.3. Let X = ]R?\, where A > 1.

(1) If A < /258, then px (1) = VAZ+1 - 1.

(ii) If A > /155 then px(1) = \/@

By this result and Theorem 2.5 we obtain the following.
Corollary 3.4. Let X = R%, where A > 1. Then s(X) < 2px(1).
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